
A Trie-based APRIORI Implementation for Mining Frequent
Item sequences

Ferenc Bodon
∗

Department of Computer Science and Information Theory,
Budapest University of Technology and Economics and

Computer and Automation Research Institute of the
Hungarian Academy of Sciences

bodon@cs.bme.hu

ABSTRACT
In this paper we investigate a trie-based APRIORI algo-
rithm for mining frequent item sequences in a transactional
database. We examine the data structure, implementation
and algorithmic features mainly focusing on those that also
arise in frequent itemset mining. In our analysis we take
into consideration modern processors’ properties (memory
hierarchies, prefetching, branch prediction, cache line size,
etc.), in order to better understand the results of the exper-
iments.

Keywords
Frequent item sequence mining, APRIORI algorithm, trie.

1. INTRODUCTION
Algorithm APRIORI [1] is one of the oldest and most versa-
tile algorithms of Frequent Pattern Mining (FPM). With
sound data structures and careful implementation it has
been proven to be a competitive algorithm in the contest of
Frequent Itemset Mining Implementations (FIMI) [8]. Al-
though it was beaten most of the time by sophisticated DFS
algorithms, such as lcm [19], nonordfp [15] and eclat [17],
its merits are undisputable. Its advantages and its moder-
ate traverse of the search space pay off when mining very
large databases, where eclat requires too much memory and
CPU in handling TID-lists of frequent pairs. APRIORI also
outperforms FP-growth based algorithms in databases that
include many frequent items, but not many frequent item-
sets, because generating the conditional FP-trees takes too

∗This work was supported in part by OTKA Grants T42481,
T42706, TS-044733 of the Hungarian National Science
Fund, NKFP-2/0017/2002 project Data Riddle and by a
Madame Curie Fellowship (IHP Contract nr. HPMT-CT-
2001-00251).

long.

APRIORI is not only an appreciated member of the FIMI
community and regarded as a baseline algorithm, but its
variants to find frequent sequences of itemsets [2], episodes,
[12], boolean formulas [9] and labeled graphs [10, 11] have
proven to be efficient algorithms as well.

Mining frequent item sequences (also called as serial episodes)
in transactional data (FSM) is a neglected field of FPM in
spite of its theoretical significance. It is an immediate gen-
eralization of frequent itemset mining, hence it is useful to
investigate what difficulties arise when we take into consider-
ation the ordering and when we allow duplicates both in the
transactions and in the patterns. Throughout this paper,
we focus on the differences between trie-based APRIORI of
FIM and FSM.

2. PROBLEM STATEMENT
Frequent item sequence mining is a special case of Frequent
Pattern Mining. Let us first describe this general case. We
assume that the reader is familiar with the basics of poset
theory. We call a poset (P,�) locally finite, if every interval
[x, y] is finite, i.e. the number of elements z, such that x �
z � y is finite. The element x covers y, if y � x and for any
z such that y � z, we have z �� x.

Definition 1. We call the poset PC = (P,�) pattern
context, if there exists exactly one minimal element, PC is
locally finite and graded, i.e. there exists a size function
| | : P → Z, such that |p| = |p′| + 1, if p covers p′. The
elements of P are called patterns and P is called the pattern
space or pattern set.

Without loss of generality, we assume that the size of the
minimal pattern is 0 and it is called the empty pattern.

In the frequent pattern mining problem, we are given the set
of input data T, the pattern context PC = (P,�), the anti-
monotonic function suppT : P → N and min supp ∈ N. We
have to find the set F = {p ∈ P : suppT(p) ≥ min supp}
and the support of the patterns in F . Elements of F are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OSDM’05, August 21, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-210-0/05/08 ...$5.00.

56

called frequent patterns, suppT is the support function and
min supp is referred as support threshold.

A large family of the FPM is mining frequent patterns in a
transactional database, i.e. the input data is a set of trans-
actions, and the support function is defined on the basis of a
containment relation. The support of a pattern equals to the
number of transactions that contain the pattern. In the case
of frequent itemset and frequent item sequence mining, the
type of the patterns and the type of the transactions are the
same, i.e. itemsets and item sequences and the containment
relation is � (i.e. an itemset/item sequence p is contained
in a transaction t, if p is a subset/subsequence of t). Con-
tainment relation of itemsets corresponds to the traditional
set inclusion (⊆) relation. In the case of item sequences we
say that item sequence s = 〈i1, i2, . . . , in〉 is a subsequence
of s′ = 〈i′1, i′2, . . . , i′m〉 if there exist integers 1 ≤ j1 < j2 <
· · · < jn ≤ m, such that i1 = i′j1 , i2 = i′j2 , . . . , in = i′jn

, i.e.
we can get s by deleting some items from s′. For example
〈e, a, a, b〉 ≺ 〈f, e, a, b, c, a, a, c, b〉 because i1 = 2, i2 = 3,
i4 = 6, i4 = 9 meet the requirements. We can regard this
FSM problem statement as a generalization of the FIM or as
a specialization of the frequent sequence of itemset mining
[2].

We denote the set of items by I. Without loss of generality
we assume that the elements of I are consecutive integers
starting form zero.

3. APRIORI IN A NUTSHELL
APRIORI scans the transaction dataset several times. After
the first scan, the frequent items are found, and in general
after the �th scan, the frequent item sequences of size � (we
call them �-sequences) are extracted. The method does not
determine the support of every possible sequence. In an
attempt to narrow the domain to be searched, before every
pass it generates candidate sequences. A sequence becomes
a candidate if every subsequence of it is frequent. Obviously
every frequent sequence is a candidate too, hence it is enough
to calculate the support of candidates. Frequent �-sequences
generate the candidate (� + 1)-sequences after the �th scan.

Candidates are generated in two steps. First, pairs of �-
sequences are found, where the elements of the pairs have
the same prefix of size �−1. Here we denote the elements of
such a pair with 〈i1, i2, . . . , i�−1, i�〉 and 〈i1, i2, . . . , i�−1, i

′
�〉.

Depending on items i� and i′� we generate one or two poten-
tial candidates. If i� �= i′� then they are 〈i1, i2, . . . , i�−1, i�, i

′
�〉

and 〈i1, i2, . . . , i�−1, i
′
�, i�〉, otherwise it is 〈i1, i2, . . . , i�−1, i�, i�〉

[12]. In the second step the �-subsequences of the potential
candidate are checked. If all subsequences are frequent, it
becomes a candidate.

After all the candidate (� + 1)-sequences have been gener-
ated, a new scan of the transactions is started and the pre-
cise support of the candidates is determined. This is done
by reading the transactions one-by-one. For each transac-
tion t the algorithm decides which candidates is contained
by t. After the last transaction is processed, the candidates
with support below the support threshold are thrown away.
The algorithm ends when no candidates are generated.

The choice of the data structure to store candidates is a

primary factor that determines the efficiency of algorithm.
Trie-based APRIORI implementations for mining frequent
itemsets are the most competitive ones [6, 3, 4]. Since the
itemsets are treated as special item sequences, it is a nat-
ural approach to adopt a trie-based implementation to find
frequent item sequences.

3.1 The Trie Data Structure
A trie is a rooted, labeled tree. In the FIM and FSM setting
each label is an item. The root is defined to be at depth 0
and a node at depth d can point to nodes at depth d + 1. A
pointer is also referred to as edge or link. If node u points to
node v, then we call u the parent of v, and v the child node
of u. Nodes with the same parent are siblings and nodes that
have no children are called leaves. Each node represents an
item sequence that is the concatenation of labels of the edges
that are on the path from the root to the node. In the rest
of the paper, the representation of the node is sometimes
called the sequence of the node.

For the sake of efficiency – concerning insertion and lookup
– a total order on the labels of edges is defined. Figure 1
shows tries in the case of itemsets and item sequences, along
with some important differences.

ordered edges
of children

in
cr

ea
si

n
gl

y
or

d
er

ed
p
at

h
s

A

C

B
F D

C G F

ordered edges
of children

u
n
or

d
er

ed
p
at

h
s

an
d

d
u
p
li
ca

te
s

A

B

B
C B

A D A

Figure 1: Tries of itemsets and item sequences

Edges can be stored in many ways. The two most im-
portant are the so called linked-list representation and the
offsetindex-based tabular representation [6]. In the first so-
lution, all edges of a node are described by (label, pointer)
pairs that are stored ordered by labels in a vector. In the sec-
ond solution only the pointers are stored in a vector, whose
length equals to lmax − lmin, where lmin and lmax denote
the smallest and the largest labels of the edges respectively.
An element at index i belongs to the edge whose label is
lmin + i. If there is no edge with such a label, then the
element is NIL.

3.1.1 The Trie of APRIORI
For the sake of fast support counting the candidates are
stored in a trie. Determining the supports of the candidates
does not make much difference in the itemset and item se-
quence cases. We take the transactions one-by-one. With a
recursive traversal we travel some part of the trie and reach
those leaves that are contained in the actual transaction t.
The support counters of these leaves are increased. The tra-
verse of the trie is driven by the elements of t. No step is
performed on edges that have labels that are not contained
in t. More precisely, if we are at a node at depth d by fol-
lowing a link labelled with the jth item in t, then we move

57

forward on those links that have the labels i ∈ t with index
greater than j, but less than |t| − � + d + 1.

It would be inefficient to build a new trie in each iteration
of APRIORI. Instead, one trie is maintained during the al-
gorithm. In the candidate generation phase new leaves are
added, and in the infrequent candidate removal phase, leaves
are deleted. Obviously “dead-end” paths (paths that do not
lead to any leaves) can also be removed, since they do not
play any role in the latter steps of the algorithm. Removing
dead-end paths (which may mean removing whole branches)
speeds-up the support counting method and decreases mem-
ory need. This is due to two facts. First, finding the cor-
responding edge of a node is proportional to the number of
edges of the node. Second, by removing unnecessary edges
we need less cache lines to store the list of edges, that results
in less cache misses and improve data locality.

Some paths can also become dead-ends during the candidate
generation phase. If a leaf cannot be extended – because
it has no extension whose all subsequences are frequent –
then the path of this node is a dead-end path. There is
a difference between itemsets and item sequences regarding
the removal of this node. Since the leaves are visited in a
depth first manner, the itemset represented by the dead-end
node is not required in the latter subset checks. This is a
straightforward consequence of the following property.

Property 1. For a given depth d, the depth-first order-
ing of the nodes’ representation at depth d is the same as
if we lexicographically order these representations, where the
order used in the lexicographical ordering corresponds to the
edge ordering of the trie.

Removing dead-end paths during the candidate generation
phase speeds-up subset test of other potential candidates.
The property, however, does not hold for item sequences,
thus the technique can not be applied. Since the dead-end
nodes at depth � are only needed in the subset checks of
(� + 1)-sequences and never again in the later phases, they
can be removed, however, after the candidate generation
step. This requires one extra scan of the trie.

3.2 Routing Strategies at the Nodes
In support counting methods we have to find all leaves that
represent �-item candidates that are contained in a given
transaction t. As already described, this is done by a re-
cursive traversal of the trie. The main step of the recursion
is the following: given a part of the transaction (t′) and
a current node of the trie, we have to find the edges that
correspond to an item in t′. Routing strategy refers to the
method of finding the edges to follow. This is the step that
primarily determines the run-time of the algorithm.

There exist many routing strategies. In the following we de-
scribe the most important ones. The notations of the meth-
ods used in the experiments are given after the descriptions.
We denote the number of edges of the current node by n.

search for corresponding item: here we take the edges
one-by-one, and check if there exists an element of t′

that equals to the label of the edge. Since the trans-
action is not ordered, we can do early stops only if the
label item is found; otherwise we have to go over all the
items of t′. This requires in the worst-case n|t′| com-
parisons and index increases. We refer to this method
as lookup seq in our experiments.

The linear time of finding a given item in the transac-
tion can be improved if we use a tabular representation
of the transaction. In the case of itemsets, only the
existence of an item is important, hence an indexvec-
tor or a bitvector is enough to serve a proper support
counting. This does not hold for item sequences, we
also need all the positions of the occurrences. For this
we have to use a position array, the row i stores the
positions of occurrences of item i. To avoid scanning
row i as many times as i appears on an edge of a visited
node we do the following.

At each recursive step of the support counting, we keep
track of a pointer of each row. Initially, all pointers
point to the first elements of the rows. At a recursive
step only the pointed position is considered, and incre-
mented as long as a position is reached that is greater
than the position of the item that led to the current
trie node. Before entering to a recursive step (going
down one step on the trie) the original value of pointer
has to be stored, and after the return from the recur-
sive step the original value has to be set back. Since
the pointers can only increase along a path of a trie, we
save many superfluous pointer increases with this so-
lution (this method is referred as lookup seq array).

search for corresponding label: For each element i of t′,
we check if there exists an edge with label i. Since
duplicates may occur in t′, we have to keep track of
those items that have already occurred in the trans-
action. For this, we make a bitvector initialized with
true values. The element at index i belongs to item
i. Search for edge with label i is only started if the
boolean value at index i is true. After the search the
boolean value of i is set to false.

If the tabular representation is used (lookup edge oi),
then finding the edge with the given label requires one
step (|t′| comparisons). In the case of linked list a
binary search can be used (lookup edge bin). This
approach requires in the worst case |t′| log2 n compar-
isons. Although binary search is theoretically faster
than a linear search, this does not necessarily hold in
the case of modern processors, especially not for short
lists. Binary search performs assignments that de-
pends on the outcome of a comparison, which is hardly
predictable, thus the pipeline of the processor has to
be often flushed. Also prefetching (data locality) is
more effective in the case of linear search.

The naive linear search (always scanning the edges
from the first until the edge is found whose label is
greater than or equal to the item – lookup edge lin)
can be improved if we store the index of edge where
the last linear search terminated. If the next ele-
ment of the transaction is greater than the label of
the stored edge, then we continue the search from this
edge. Otherwise our search is continued backwards
(lookup edge commute). Note, that this method meets

58

the data locality requirement better and causes less
cache misses than binary search, which is the reason
why it sometimes outperforms its binary search coun-
terpart.

simultaneous traversal: In the case of frequent itemset
mining, we have seen that simultaneous traversal (also
called merging) is the best choice [4]. On most of the
datasets it finishes in the first place, and in cases when
it is just the runner-up the advantage of the winner is
not significant. This is again attributed to processor’s
prefetch and data locality features and the fact that
in most cases the number of elements in t′ and the
number of edges of the nodes is small. Simultaneous
traversal can only be applied if both sets are ordered.
To guarantee this, we have to sort t′ and remove dupli-
cates. This can be done in two ways. On one hand, we
can sort the elements, then with a single traversal we
remove duplicates (merge sort remove). On the other
hand, we can apply the bitvector-based approach to
generate the list of items of t′ that contains no dupli-
cates, and then perform the sorting (merge bitvec sort).
Although simultaneous traversal is linear in |t′| and
n, the preprocessing (i.e. the sorting) may require
|t′| log(|t′|) steps.

When a bitvector is used to avoid double traverse through
the same edge (all lookup edge and the merge bitvec sort

methods), it is important to use the offsetindex approach,
i.e use a vector of length lmax − lmin, where lmax and lmin

denote the maximal and minimal label of the actual node.
These two values can be computed very quickly on any edge
representation (ordered linked list or offset index vector) we
use. When we decide if item i is already used, we first check
if lmin ≤ i ≤ lmax, and if this holds, we read the value of the
bitvector at position i − lmin. Our experiments show that
this small optimization has a large impact on the run time.
This is due to the overhead of initializing extra boolean val-
ues and more importantly due to the smaller vectors, thus
less cache line requirement and less cache misses.

3.3 Candidate Generation
Originally APRIORI uses complete pruning, i.e after gen-
erating a potential candidate, it checks all subsets of the
potential candidate if they are frequent. The subsequence
checks can be solved in two ways.

3.3.1 Simple Pruning
In the simple pruning strategy we check each �-subsequence
of the potential (�+1)-element candidates one-by-one. If all
subsequences are found to be frequent, then the potential
candidate becomes a real candidate. Two straightforward
modifications can be applied to reduce unnecessary work.
On one hand, we do not check those subsequences that are
obtained by removing the last and the one before the last
elements. On the other hand, the prune check is terminated
as soon as a subsequence is infrequent, i.e. not contained in
the trie.

3.3.2 Intersection-based Pruning
A problem with the simple pruning method is that it un-
necessarily travels some part of the trie many times. We

illustrate this by an example. Let ABCD, ABCE, ABCF ,
ABCG be frequent 4-sequences. When we check the subse-
quences of potential candidates ABCDE, ABCDF , ABCDG
then we travel through nodes ABD, ACD and BCD three
times. This gets even worse if we take into consideration all
potential candidates that stem from node ABC. We travel
to each subsequence of ABC 6 times.

To save these superfluous traverses we have proposed an
intersection-based pruning method [5] that can be directly
used for item sequences as well. We denote by u the current
leaf that has to be extended, the depth of u by �, the parent
of u by P and the label that is on the edge from P to u
by i. To generate new children of u, we do the following.
First determine the nodes that represent all the (� − 2)-
subsequences of the (�−1)-prefix. Let us denote these nodes
by v1, v2, . . . , v�−1. Then find the child v′

j of each vj that
is pointed by an edge with label i. If there exists a vj that
has no edge with label i (due to dead-end branch removal),
then the extension of u is terminated and the candidate
generation continues with the extension of u’s sibling (or
with the next leaf, if u does not have any siblings). The
complete pruning requirement is equivalent to the condition
that only those labels can be on an edge that starts from
u, which are labels of an edge starting from v′

j and labels
of one starting from P . This has to be fulfilled for each v′

j ,
consequently, the labels of the new edges are exactly the
intersection of labels starting from v′

j and P nodes.

The siblings of u have the same prefix as u, thus, in gen-
erating the children of siblings, we can use the same nodes
v1, v2, . . . v�−1. It is enough to find their children with the
proper label (the new v′

j nodes) and compute the intersec-
tion of the labels of edges that start from the prefix and
the new v′

1, v′
2, . . . v′

�−1. This is the real advantage of this
method. The (� − 2)-subsequence nodes of the prefix are
reused, hence the paths representing the subsequences are
traversed only once, instead of

`
n
2

´
, where n is the number

of children of the prefix.

As an illustrative example let us assume that the trie that
is obtained after removing infrequent sequences of size 4 is
depicted in Fig. 2.

v1 v2 v3

v′
1 v′

2 v′
3

u

A

B

B

C
C

C

D
D

D
F

D E
F G

E
F

G

F
G

F G

Figure 2: Example: intersection-based pruning

To extend the node ABCD, we find the nodes that represent
the 2-subsequences of the prefix (ABC). These nodes are
denoted by v1, v2, v2. Next we find their children that are
reached by edges with label D. These children are denoted
by v′

1, v′
2 and v′

3 in the trie. The intersection of the label

59

sets associated to the children of the prefix, v′
1, v′

2 and v′
3 is:

{D, E, F, G} ∩ {E, F, G} ∩ {F, G} ∩ {F} = {F}, hence only
one child will be added to node ABCD, and F will be the
label of this new edge.

The intersection-based solution can easily be generalized. In
generating descendants of the sibling we used the fact that
the subsequences of the potential candidates can quickly
be obtained from the subsequences of the (� − 1)-element
common prefix. Hence, it is enough to determine the sub-
sequences of the prefix only once. Even more redundant
traversals can be spared if we not only generate descendants
of the siblings, but also the descendants of the cousin nodes
(nodes that have the same grandparent node). All required
subsequences can be reached from the (�−3)-subsequences of
the (�− 2)-element common prefix. The idea can be further
generalized.

3.3.3 No Pruning
Complete pruning is an inherent feature of APRIORI. Our
recent research [5], however, showed that complete pruning
in the case of itemsets does not necessarily decrease running
time. In fact, if we omit subset containment check we get a
faster algorithm in most cases. This is due to the following
inequality that holds in most of the known test databases:

|NB≺A (F) \ NB(F)| � |F |,
where ≺A denotes the ascending order according to the fre-
quencies. Here F denotes a set of frequent itemsets, NB(F)
the negative border [18] of F , and NB≺(F) the order-based
negative border (an itemset I is element of NB≺(F), if I is
not frequent, but the two smallest (|I | − 1)-subsets of I are
frequent. Here “smallest” is understood with respect to ≺
ordering of items.)

The left-hand side of the inequality is proportional to the
extra work to be done if each potential candidate was au-
tomatically regarded as a candidate, i.e., the extra work of
determining the support of those itemsets that would not be
candidates in the original APRIORI. The right-hand side is
proportional to the work done by pruning. This suggests
that the extra work done by subset check is more than it
saves. The following figure shows some result of our experi-
ments.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10

tim
e

(s
ec

)

Support threshold

Database: BMS-WebView-2

SIMPLE-PRUNE
INTERSECT-PRUNE

NOPRUNE

Figure 3: Candidate generation of itemsets with dif-
ferent pruning strategies

Although the |NB≺A (F)\NB(F)| � |F | observation holds
for item sequences as well (definition of NB(F) and NB≺(F)
can easily be generalized to sequences), the left-hand side is
weighted with a much larger factor due to the deterioration
of support count. Determination of a subset of an item-
set and a subsequence of an item sequence in the candidate
generation take exactly the same time. Support counting,
however, is slower in the case of item sequences. This is
also suggested if we compare worst-cases of the best routing
strategy of itemset (simultaneous traversal) and sequences
(lookup seq), which are n + |t′| and n · |t′|. Consequently,
our expectation is that omitting complete pruning does not
speed-up APRIORI in general, but just in those cases where
the size of the transaction is small (an thus the difference be-
tween time requirement of subset checks and support count
is not significant) and the above observation holds.

3.4 Omitting Equisupport Extensions
An important FIM optimization technique is the equisup-
port pruning. Omitting equisupport extension means ex-
cluding from support counting the superset of those �-itemsets
that have the same support as one of their (� − 1)-subsets.
This comes from the following simple property.

Property 2. Let X ⊂ Y ⊆ I. If supp(X) = supp(Y)
then supp(Y ∪ Z) = supp(X ∪ Z) for any Z ⊆ I \ Y .

If candidate Y has the same support as its prefix, then it is
not necessary to generate any superset of Y as new candi-
date. The support of the prefix is available in all depth-first
algorithms and in APRIORI as well, and can be obtained
very quickly, which is the main reason why omitting the
prefix-equisupport extensions (denoting the method prefix-
equisupport pruning) is one of the most versatile speed-up
tricks in FIM implementations. In the case of databases
that contain no non-closed itemsets (and hence this pruning
is never used), the degradation of performance is insignifi-
cant, while in dense databases the improvement can be of
several orders of magnitude. The following figure illustrates
the speed-up gained when this technique is applied in a very
dense dataset.

 0

 100

 200

 300

 400

 500

 600

 30000 35000 40000 45000 50000 55000

tim
e

(s
ec

)

Support threshold

Database: connect

NOPRUNE
INTERSECT-PRUNE

NOPRUNE-NEE

Figure 4: Omitting equisupport extensions (itemset
case)

Note, that omitting equisupport extensions does not mean
that we simply remove the leaves that represent equisupport

60

itemsets. This would not lead to a complete FIM algorithm,
as complete pruning and candidate generation depends on
the existence of frequent leaves. A list – called ee list

– is associated with each node storing the labels of edges
that lead to children with the same support as the node
considered. When an equisupport extension is found the
label of the last edge is added to the ee list of the parent,
and then the leaf is deleted. It is like changing the edge to
a loop edge and deleting the originally pointed node. When
a representation of a leaf is written out, we also print the
representation extended by each subset of the set that is
obtained by taking the unions of the ee lists of nodes that
are on the path from the root to the leaf.

Due to its versatility and efficiency, it is required to examine
if the trick can be applied in the case of item sequences.
First, we have to determine if the above property holds if
X, Y and Z are item sequences, ⊆ denotes the containment
relation of item sequences and union means concatenation.
The following simple example proves that the property does
not hold for item sequences. Let t1 = 〈A〉 and t2 = 〈B, A〉.
Then supp(〈〉) = supp(〈A〉) = 2 but supp(〈B〉) = 1 �= 0 =
supp(〈A,B〉). Note, that the empty sequence is the prefix of
〈A〉 which means that the property surely does not hold in
general and in the case we restrict the subsequence equality
condition to prefixes.

If duplicates were not allowed in the transactions, then the
property would hold for non-prefix subsequences. This can
be easily proven based on the definition of the contain re-
lation. Due to the legitimacy of duplicates the property,
however, does not hold. This is shown by the following
example. Let the database consists of a single sequence
t = 〈B, x,A, B〉. Here supp(〈B〉) = supp(〈A,B〉) = 1, how-
ever supp(〈B,x〉) �= supp(〈A,B, x〉).

3.5 Transaction Caching
Let us call the item sequence that is obtained by removing
infrequent items from t the filtered transaction of t. All fre-
quent item sequences can be determined even if only filtered
transactions are available. To reduce IO and parsing costs
and speed up the algorithm, the filtered transactions can be
stored in main memory instead of on disk. It is ineffective
to store the same filtered transactions multiple times. In-
stead, store them once and employ counters which store the
multiplicities. This way, memory is saved and run-time can
be significantly reduced.

Collecting filtered transactions has a significant influence on
run-time. This is due to the fact that finding candidates
that occur in a given transaction is a slow operation and
the number of these procedure calls is considerably reduced.
If a filtered transaction occurs n times, then the expensive
procedure will be called just once (with counter increment
n) instead of n times (with counter increment 1).

Different data structures are used for storing filtered trans-
action in the competitive APRIORI implementation for FIM.
Today’s fastest APRIORI implementation [6] uses a trie,
our previous implementation adopted a red-black tree. The
same problem occurs in FP-growth based algorithms, where
Patricia-tree based solution [14] showed prominent results.

Transaction caching in the case of item sequences is a bit
different. For two filtered transaction to be equal, not only
the items are important but their order as well. In other
words, there are more requirements for equivalence, hence
we do not expect so many contractions – and thus such
speed-up – like in the case of itemsets. Also the increased
number of different filtered transactions results in a larger
trie and in a larger memory need.

3.6 Further Implementation Issues
In this section we briefly describe those techniques that are
used in our FIM implementation and can be used in FSM
directly or with slight modifications.

3.6.1 Candidate Sequences of Length One and Two
We use a counter vector and a counter array to determine the
support of one- and two-element candidates. In the case of
item sequences a bitvector and a bitarray is also required to
avoid multiple increments of a candidate in transactions that
contain the candidate many times. This means that each
transaction is scanned twice, first for counter increments,
second for reinitializing modified elements of the bitvector
and bitarray. Note, that this second step requires insignifi-
cant time compared to the first step, and the parsing of the
string representation of the transactions’ elements to inte-
gers. This is again attributed to the hierarchical memory
architecture of the processors. In the second step the trans-
action will still be in the first level cache (thus accessing
its elements requires almost no time) and due to the small
memory need of bitvectors and bitarrays, they will be in the
worst case in the second level cache.

3.6.2 Stack-based Output
The FIMI competition has shown, that in very dense datasets
with low support threshold (for example database connect

with min supp = 30000), the procedures that output fre-
quent itemsets affect running times significantly. Therefore
we developed an output class, that spares slow integer to
string conversions by applying a stack-based approach in
storing string representations. Our stack-based approach
suits well for depth-first algorithms. Although APRIORI is
a breadth-first algorithm, outputting the result is done in a
depth-first manner in the candidate generation step. Thus
this class is used in our implementation. Further details and
experimental results on this issue can be found in [16].

4. EXPERIMENTS
Due to the lack of public databases for testing frequent
item sequence mining algorithms, we have generated some
data from the weblog file of the largest Hungarian web news
portal. Different generation techniques were applied to ob-
tain databases with different characteristics. We make these
databases publicly available and submit them to the OSDM
repository. Beside this, we have used a FIM database BMS-POS,
because its transactions are originally unordered and hence
sequence mining make sense (although it does not contain
any duplicates).

All implementations were tested on several min supp values.
A complete account of the results would require too much
space, thus only the most typical ones are shown below. All

61

 1

 10

 100

 1000

 1 10

tim
e

(s
ec

)

Support threshold

Database: kosarak2_10_2

lookup_seq_array
lookup_seq

lookup_edge_bin
lookup_edge_commute

lookup_edge_oi
merge_sort_remove

merge_bitvec_sort

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10000

tim
e

(s
ec

)

Support threshold

Database: kosarak2_100_4

lookup_seq_array
lookup_seq

lookup_edge_bin
lookup_edge_commute

lookup_edge_oi
merge_sort_remove

merge_bitvec_sort

Figure 5: Routing strategies

results together with the test script can be downloaded from
http://www.cs.bme.hu/~bodon/en/fsm/test.html.

Each measurement was taken on a workstation with Intel
Pentium 4 2.8 Ghz processor (family 15, model 2, step-
ping 9) with 512 KB L2 cache, hyperthreading disabled, and
2 GB of dual-channel FSB800 main memory. The system
runs a stripped-down installation of SuSE Linux 9.3, kernel
2.6.11.4-20a (SuSE version) with PerfCtr-2.6.15 patch in-
stalled. Run-times and memory usage were obtained using
the GNU time and memusage command respectively.

First we tested the routing strategies. The notations were
given in the description of the methods (see Sec. 3.2).

The results show that there exist no single routing strategy
that always outperforms all the other methods, however,
lookup seq performs good most of the times. It always fin-
ishes in the first place on databases with long transactions,
and also performs well when transactions are short. Con-
cerning the other methods, we make the following observa-
tions:

• Method lookup seq array is not competitive at high
support threshold (when the trie is small), especially
not when the transactions are short. This is due to
the overhead of building the index array. The results
on database kosarak2 10 2 meet our expectation; the
smaller the min supp, the better the relative perfor-
mance of this method compared to the other solutions.

 0

 50

 100

 150

 200

 250

 10

tim
e

(s
ec

)

Support threshold

Database: kosarak2_10_INFINITE

SIMPLE-PRUNE
INTERSECT-PRUNE

NOPRUNE

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10000

tim
e

(s
ec

)

Support threshold

Database: kosarak2_100_INFINITE

SIMPLE-PRUNE
INTERSECT-PRUNE

NOPRUNE

Figure 6: Candidate generation with different prun-
ing strategies

• In case of short transactions merge sort remove was
the winner. Methods that perform sorting on the trans-
actions (merge sort remove and merge bitvec sort),
however, are not competitive with long transactions.

• The effectiveness of merge sort remove compared to
merge bitvec sort depends on the transactions. Ob-
viously, if the transaction contains many duplicates
then merge bitvec sort performs better, because it
performs sorts on a shorter lists.

• Method lookup edge oi performs bad when the trans-
actions are small. This is due to the fact that this
method requires more memory than linked-list-based
solutions, hence the nodes are more scattered in the
memory. This is not good for prefetching due to the
lack of data locality, and also results many cache misses.

Figure 6 shows the running time of our APRIORI with dif-
ferent pruning strategies.

Intersection-based pruning always resulted in a faster im-
plementation than simple-pruning (obviously in those cases
when the support count procedure determined the running
time, the difference was insignificant). The efficiency of
pruning depends on the database characteristic. When the
transactions are short then the support counting is fast, and
the extra time spent on determining the support of can-
didates that have infrequent subsequences is less than ap-
plying complete pruning. This was the case with database

62

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

m
em

eo
ry

 (M
B

)

Support threshold

Database: kosarak0_100_INFINITE

CACHE
NOCACHE

Figure 7: Transaction caching: effect on memory
need

kosarak2 10 ∞. The second database contained much longer
transactions, hence determining the candidates in a transac-
tion is much slower compared to determining the inclusion
of a subsequence. In such cases, it is important to start
support count as few times as possible. For such databases,
complete pruning is advised.

Next, we have investigated the efficacy of the transaction
caching (see Figure 7). The results show that transaction
caching is by far not such an efficient technique in the case of
item sequences like in the case of itemsets. It never resulted
in a significantly faster algorithm, in the meantime it many
time increased memory need seriously.

In our last experiments (Tables 1 and 2) we have investigated
if our implementation is competitive with other FSM open
source implementations. For this, we have used a prefixs-
pan [13] implementation made by Taku Kudo. The source
code can be downloaded from http://chasen.org/~taku/

software/prefixspan, we have used the latest version (0.4)
with parameters -a -t int. We denote the running time
with ∞ if the program was stopped due to time limit (1500
seconds) exceed. In the tables, time is given in seconds and
memory need in Mbytes.

Our APRIORI implementation always outperformed pre-
fixspan with high support thresholds and also with low thresh-
olds on databases with long transactions. This applies to
running time and memory usage as well.

5. FURTHER IMPROVEMENTS
Our efforts have focused on building a FIM/FSM environ-
ment that is efficient and still flexible, in the sense that
techniques can be switched on and off (for example omitting
equisupport extension or transaction caching) and methods
can be changed easily. This flexibility without computa-
tional penalty was reached by a class template based ap-
proach with inline functions. In this paper we have outlined
and compared the basic possibilities. We believe, however,
that by using more sophisticated solutions, the implemen-
tation can be improved further. Below are some issues that
could be investigated.

Table 1: Comparison of FSM implementations: run-

ning times

implem.
min supp

12000 2000 250 120

apriori 1.9 8.4 142.3 375.9

prefixspan 19.1 61.9 270.3 ∞
BMP-POS

implem.
min supp

200000 100000 60000 40000

apriori 6.2 9.7 18.2 69.4

prefixspan 42.5 117.4 678.2 ∞
kosarak 100 ∞

implem.
min supp

50 5 2 1

apriori 1.5 5.1 14.1 108.7

prefixspan 3.7 4.6 6.2 27.0

kosarak2 10 2

implem.
min supp

20000 10000 4000 2000

apriori 5.5 11.5 72.1 769.5

prefixspan 88.9 288.0 ∞ ∞
kosarak2 100 ∞

Table 2: Comparison of FSM implementations:

memory needs

implem.
min supp

12000 2000 250 120

apriori 0.3 0.6 13.2 66.2

prefixspan 63.1 76.8 82.4

BMP-POS

implem.
min supp

200000 100000 60000 40000

apriori 0.6 0.6 0.6 1.0

prefixspan 124.8 124.9 130.8

kosarak 100 ∞
implem.

min supp

50 5 2 1

apriori 2.7 21.6 75.6 249.0

prefixspan 15.9 16.1 16.1 16.4

kosarak2 10 2

implem.
min supp

20000 10000 4000 2000

apriori 0.8 0.8 1.5 18.8

prefixspan 143.8 143.8

kosarak2 100 ∞

63

• Offsetindex and linked list based approaches can be
combined to get a hybrid representation [6]. The se-
lection of the approach can be made dynamically ac-
cording to the number of the children. This way we
could reach constant lookup time in some cases with-
out sacrificing extra memory and avoid data scattering
in the memory.

• Dynamic selection can also be applied in the routing
strategies. The effectiveness of the different solutions
depends on the size of the transactions, the number
of children of nodes, the number of duplicates, etc.
Characterizing the existing routing solutions, one may
be able to set up an improved selection method.

• If an item of the transaction is not an element of any
candidate then this item can be removed from the
transaction. Processing a shorter transaction is faster,
however, to get an overall performance improvement,
we have to take into consideration the overhead of re-
moving and reinserting a transaction into our database
cacher (a Patricia tree in our case) as well.

• Current research [7] showed that trie based algorithms
that perform their main operation in a depth-first man-
ner can be accelerated by using a cache-conscious trie.
Although APRIORI is called a breadth-first algorithm
due to its search space traversal, the support count is
done in a depth first manner, thus this technique is
expected to reduce running time to its fourth.

6. CONCLUSION
In this paper we present how to modify a trie-based APRI-
ORI algorithm for mining frequent item sequences from a
transactional database. We also investigate the applicabil-
ity of some well-known speed-up tricks, such as omitting
prefix-equisupport extension, not applying complete prun-
ing, etc. We have seen, that some parts of the algorithm do
not have to be modified in the new pattern setting, while
some techniques cannot be applied. We have described a
wide assortment of routing strategies. In the analysis of
most techniques we also considered the specialties of the
modern processors, which has proved to be a more precise
approach than simply calculating the required number of
operations. Our results are summarized in the Table 3.

7. ACKNOWLEDGEMENT
The author would like to thank Balázs Rácz, Lajos Rónyai
and Lars Schmidt-Thieme for their helpful comments.

8. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. The International Conference on
Very Large Databases, pages 487–499, 1994.

[2] R. Agrawal and R. Srikant. Mining sequential
patterns. In P. S. Yu and A. L. P. Chen, editors, Proc.
11th Int. Conf. Data Engineering, ICDE, pages 3–14.
IEEE Press, 6–10 1995.

[3] F. Bodon. A fast apriori implementation. In
B. Goethals and M. J. Zaki, editors, Proceedings of the
IEEE ICDM Workshop on Frequent Itemset Mining
Implementations (FIMI’03), volume 90 of CEUR

Table 3: Summary of the contributions

technique FIM FSM

dead-end pruning

during candidate

generation

possible not possible

complete-pruning

in most cases

unnecessary and

slows down the

algorithm

always speeds up

the algorithm

omitting prefix-

equisupport

extension

possible not possible

best routing

strategy accord-

ing to experi-

ments

simultaneous

traversal

for each label

finding the corre-

sponding item of

the transaction

worst case com-

parisons of the

best routing

strategy

n + |t′| n · |t′|

influence of trans-

action caching on

run-time

many times it re-

sults in a speed-

up

it never resulted

in a significant

speed-up

Workshop Proceedings, Melbourne, Florida, USA,
2003.

[4] F. Bodon. Surprising results of trie-based fim
algorithms. In B. Goethals, M. J. Zaki, and
R. Bayardo, editors, Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining
Implementations (FIMI’04), volume 126 of CEUR
Workshop Proceedings, Brighton, UK, 2004.

[5] F. Bodon and L. Schmidt-Thieme. The relation of
closed itemset mining, complete pruning strategies
and item ordering in apriori-based fim algorithms. In
Proceedings of the 9th European Conference on
Principles and Practice of Knowledge Discovery in
Databases (PKDD’05), Porto, Portugal, 2005.

[6] C. Borgelt. Efficient implementations of apriori and
eclat. In B. Goethals and M. J. Zaki, editors,
Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’03),
volume 90 of CEUR Workshop Proceedings,
Melbourne, Florida, USA, 2003.

[7] A. Ghoting, G. Buehrer, S. Parthasarathy, D. Kim,
Y.-K. C. A. Nguyen, and P. Dubey. Cache-conscious
frequent pattern mining on a modern processor. In
Proceedings of the 31st International Conference on
Very Large Date Bases (VLDB’05), Trondheim,
Norway, 2005.

[8] B. Goethals and M. J. Zaki. Advances in frequent
itemset mining implementations: Introduction to
fimi03. In B. Goethals and M. J. Zaki, editors,
Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’03),

64

volume 90 of CEUR Workshop Proceedings,
Melbourne, Florida, USA, 2003.

[9] K. Hatonen, M. Klemettinen, H. Mannila,
P. Ronkainen, and H. Toivonen. Knowledge discovery
from telecommunication network alarm databases. In
S. Y. W. Su, editor, Proceedings of the twelfth
International Conference on Data Engineering,
February 26–March 1, 1996, New Orleans, Louisiana,
pages 115–122, 1109 Spring Street, Suite 300, Silver
Spring, MD 20910, USA, 1996. IEEE Computer
Society Press.

[10] A. Inokuchi, T. Washio, and H. Motoda. An
apriori-based algorithm for mining frequent
substructures from graph data. In Proceedings of the
4th European Conference on Principles of Data
Mining and Knowledge Discovery, pages 13–23.
Springer-Verlag, 2000.

[11] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In Proceedings of the first IEEE
International Conference on Data Mining, pages
313–320, 2001.

[12] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovering frequent episodes in sequences. In
Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, pages
210–215. AAAI Press, 1995.

[13] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M. Hsu. Prefixspan: Mining sequential
patterns by prefix-projected growth. In Proceedings of
the 17th International Conference on Data
Engineering, pages 215–224, Washington, DC, USA,
2001. IEEE Computer Society.

[14] A. Pietracaprina and D. Zandolin. Mining frequent
itemsets using patricia tries. In B. Goethals and M. J.
Zaki, editors, Proceedings of the IEEE ICDM
Workshop on Frequent Itemset Mining
Implementations (FIMI’03), volume 90 of CEUR
Workshop Proceedings, Melbourne, Florida, USA,
2003.

[15] B. Rácz. nonordfp: An FP-growth variation without
rebuilding the FP-tree. In B. Goethals, M. J. Zaki,
and R. Bayardo, editors, Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining
Implementations (FIMI’04), volume 126 of CEUR
Workshop Proceedings, Brighton, UK, 2004.

[16] B. Rácz, F. Bodon, and L. Schmidt-Thieme. On
benchmarking frequent itemset mining algorithms:
from measurement to analysis. In B. Goethals,
S. Nijssen, and M. J. Zaki, editors, Proceedings of the
ACM SIGKDD Workshop on Open Source Data
Mining on Frequent Pattern Mining Implementations,
Chicago, IL, USA, 2005.

[17] L. Schmidt-Thieme. Algorithmic features of eclat. In
B. Goethals, M. J. Zaki, and R. Bayardo, editors,
Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations (FIMI’04), volume
126 of CEUR Workshop Proceedings, Brighton, UK,
2004.

Table 4: Some statistics of the databases
name |T| |I| |t|

kosarak2 10 ∞ 238 209 29 464 3

kosarak2 10 2 238 209 6 591 3

kosarak2 10 4 238 209 23 541 3

kosarak2 100 ∞ 604 280 71 260 16

kosarak2 100 2 604 280 14 288 16

kosarak2 100 4 604 280 54 225 16

kosarak 100 ∞ 820 771 38 593 11

[18] H. Toivonen. Sampling large databases for association
rules. In The VLDB Journal, pages 134–145, 1996.

[19] T. Uno, M. Kiyomi, and H. Arimura. Lcm ver. 2:
Efficient mining algorithms for
frequent/closed/maximal itemsets. In B. Goethals,
M. J. Zaki, and R. Bayardo, editors, Proceedings of
the IEEE ICDM Workshop on Frequent Itemset
Mining Implementations (FIMI’04), volume 126 of
CEUR Workshop Proceedings, Brighton, UK, 2004.

APPENDIX
A. DATABASE OF SEQUENTIAL TRANS-

ACTION
The following databases were generated from a weblog of
a major Hungarian news portal by different filtering meth-
ods. The original raw database contained users’ visits of four
weeks. Each transaction belongs to a user, items represent
a coded element of the portal. The items of the transaction
are ordered by download time. The item that represents
index.html was removed.

The names of the databases contain some information about
the filtering method. In the name kosarak2 x y the x stands
for upper limit of the element of a transaction. Transactions
with items more than x were removed. Variable y has con-
nection with url handling, i.e. the part after the yth back-
slash was cut of. The more this number is the more urls are
distinguished. If y equals to ∞ then no urls were contracted.

Databases with y=1 are dense datasets (and the distribution
of the item’s support is very steep) while databases with
y=∞ are sparse ones. Table 4 gives the major parameters of
the generated databases, i.e. number of transactions, num-
ber of items, average size of the transactions.

65

