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Preface

The frequent itemset mining problem first has been formulated in 1993 as the compu-
tational relevant step in association rule mining. Given a sequence of itemsets, we have
to find itemsets that are contained as a subset in more than a given number of elements
of the sequence. More than 180 papers have been published about algorithms to solve
this task, most of them declared to be the most efficient. The open-source competition,
which was organized ten years after the problem’s birth, proved that the truth is far
from the claims and the data structure and implementation issues need to be polished
even for the basic algorithms.

In this survey we investigate data structure and implementation details of the three
most important FIM algorithms Apriori, Eclat, FP-growth, examine their advantages
and disadvantages. Besides, we present new techniques to speed-up the basic algorithms.
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Chapter

Introduction

Frequent itemset mining (FIM) is a very young research field born in 1993 [3]. It aims
to find frequently occurring subsets in a sequence of sets. The FIM problem appears
as a subproblem in many other data mining fields like association rule discovery [3],
correlations, classification [27], clustering [28], Web mining [55], [34]. The fact that
algorithms and techniques developed in FIM are also used successfully in finding frequent
patterns of other types (like sequences, episodes, rooted ordered /unordered trees, labeled
graphs and boolean formulas) also proves the significance of the field. The frequent sets
play an important role in many application such as customers relationship management,
improving the efficiency of electronic commerce [48], bioinformatics, DNA and protein
analysis, inductive databases [31], query expansion [39], network intrusion detection [29],
etc.

After the problem was born, many algorithms were proposed, the authors of each
algorithms claimed that their algorithms are the fastest. The efficiency was shown
by run-time plots on a few databases and for the comparisons the authors coded the
counterpart algorithms as well. Unfortunately, neither the proposed algorithm, nor the
implementation of the counterpart algorithm were public available therefore the claimed
results were not reproducible.

Those, who wanted to find the real values, the real contributions were not satisfied
with lack of reproducibility. The first step toward the quality assurance was the pub-
lication of some independent authors who implemented and compared some published
algorithms [25] [19] [26] [9] [17]. Unfortunately, these implementations are less effective
than the best implementations (if there exists such)of the same algorithms, and often
they do not even show the same performance characteristics. This is the reason, we
believe that the consequences drawn form the experiments of such implementations are
not necessarily attributed to the algorithms themselves, but rather to the non-optimized
implementation.

A better and less time-consuming solution was published by Zheng et al. [59], where
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independent referees collected the implementations from the authors themselves, and
run the experiments. The case of Apriori, Eclat and FP-growth has shown the most
efficient implementation of an algorithm is not necessarily developed by the inventors of
the algorithm, therefore the comparison should be open to everybody. This lead to the
public, open-source competitions of FIM implementation [16] in 2003 and 2004. The im-
portance of the FIMI contests is inevitable; it stressed the requirement of reproducibility
and provided some baseline implementation and test datasets for the research commu-
nity. The most important question, however, is not answered. We still don’t know the
real reasons of the efficiency, the borders and the bottleneck of some implementations.
Does the efficiency of best implementation stems from the algorithm itself or from the
sophisticated data structure? Or the outstanding run-time is attributed to the brilliant
programming technique?

Although we agree with the view “Exposition, criticism, appreciation, is work for
second-rate minds.”! we believe that the publishing of data mining algorithms has
reached the point when a theoretical analysis and a comprehensive studies are more
useful to the community than new algorithms. It seems that we have moved from the
“We are drowning in information, but starving for knowledge” to the “We are drowning
in methods, but starving for solutions” era.

Even now, after the numerous publication there are many misbelieves, misunder-
standing about the efficiency of certain algorithms. Most reasoning in textbooks are
either not true or they are not the real reason of an algorithm’s efficiency.

Frequent itemset mining is fortunate compared to other the data mining fields like
classification and clustering, because the problem can be easily formulated. It suffers,
however, from the lack of evaluation method, and from the fact that it is easy to create
a database which is suitable to demonstrate arbitrary inefficient algorithm.

In the beginning this was fortunate, because the opportunity of the easy publication
attracted many researchers, and this has raised frequent itemset mining as one of the
most popular field of the 90s. Unfortunately the high number of published algorithms,
the lack of standard terminology, comparisons and theoretical results led to a chaos and
resulted in an unexpressed loss of credibility of the field.

An efficient FIM program is an implementation of a widely known and basic FIM
algorithm together with many data structure and implementation technique. The base
algorithm alone is not competitive with its counterpart that adapts speed-up techniques.
This is the reasons we believe that speed-up techniques and the base algorithm are
inseparable and there is no point stating anything about the base algorithm without
examine the influence of the statement to the techniques. The FIM world is further
complicated by the fact that the techniques are not independent of each other, i.e. one
reduces, the other increases the influence of a third technique. Actually, the efficiency
of almost any arbitrary simple idea, can be verified by carefully choosing the other

!G H Hardy. A Mathematician’s Apology (London 1941).
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techniques, which resulted in the large number of publications. To reveal the truth, we
have to examine the base algorithms, the techniques alone and their influence on each
other, and the theoretical statements have to be verified with a comprehensive set of
experiments. Such publication has not born yet.

Our goal is twofold. First we would like to clarify the three most important al-
gorithms of the field, i.e. Apriori, Eclat and FP-growth. We believe that the imple-
mentation of the fastest Apriori, Eclat and FP-growth, the most comprehensive set of
experiments and the development of a template FIM library entitles us. Second, e we
try to provide a notation and terminology that is as concise, compact and coherent as
possible. In the literature, often different names have been used. But as the same enti-
ties often got different names and there clearly is no convergence in notation moreover,
the historical terminonolgy sometimes obscures more than it helps. So we felt obliged
to provide a base for further common understanding. For reference, we always provide
the most common historical names in apostrophes.

1.1 The arena of FIM algorithms; a short history

The first FIM algorithm AIS was published in the paper that presented the problem
itself [3]. A year later the same authors published Apriori, which is the widest-known
algorithm even nowadays. In the next few years many Apriori modifications were pro-
posed, DHP [40], DIC [12], Partition [49] and the sampling algorithm [52] are the most
famous ones. These algorithms are regarded obsolete; there exists no public implemen-
tation of any of them that is competitive with today’s algorithms. In 1996 Zaki et al.
[58] published algorithm Eclat and four years later Han et al. [22] presented FP-growth.
Since FP-growth was shown not to perform well on sparse datasets, the authors im-
proved their solution and published H-mine [42]. A very efficient Apriori mutant DCI,
which adapts hybrid support count was presented by Orlando et al. [36].

2003 was a milestone in the history of frequent itemset mining. The first open
FIM competition was organized [16]. Two FP-growth implementations (FP-growth* by
Grahne and Zhu [20] and Patricia by Pietracaprina and Zandolin [43]), a modification
of DIC [38] and a highly optimized Eclat called lem by [53] were standing out from
the field of competitors. L.em was further improved and submitted to the second FIMI
competition, where a brand new FP-growth implementation by Récz [45] overtook the
first place from FP-growth* and Patricia.

1.2 Common misbelieves

In this section we list some common believes that are false and led the researches into
wrong direction.
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e The efficiency is not primarily determined by the number of scan of the database.
In the early era of the FIM many efforts focused on reducing the number of
database scan of Apriori. This led to algorithms DIC [12], Partition [49], etc.
Although there exists no public implementation of these algorithms that outper-
form the most widespread Apriori [11][9], they are quite favored in textbooks.

e Algorithm FP-growth do generates candidates, furthermore it generates more can-
didates than Apriori. An itemset is called candidate if its support is determined,
i.e. a space for counter is reserved in the memory. Actually FP-growth determines
the supports of only 1-itemsets, but then it does it recursively in the projected
database. For example if item B occurs in a transaction that is projected to item
A, then the support of itemset AB is determined.

e The number of candidates is not the primary factor that determines the efficiency
of an algorithm. We will see that Eclat and FP-growth generates more candidate
than Apriori, nevertheless they outperform Apriori most of the cases. The same
applies to Apriori and DHP, it is easy to present databases where DHP generates
fewer candidates, but runs slower. Analysis that use only these numbers (like [24])
have nothing to do with the real performance. To understand the performance, we
have take into consideration the number of candidates, the way they are generated
and their support are determined.

e ['P-tree (or trie) is not necessarily a condensed representation of the database.
Worst-case the size of the FP-tree is four times as much as the size of the database.
In many cases a simple vector that stores the transactions that are deprived of the
infrequent items needs less memory than an FP-tree. See Section[7.2.1/for further
details.

e Support count is always the most time-consuming function in Apriori. In dense,
medium-size databases the candidate generation dominates the run-time.

e Generating candidates of size two is not the bottleneck of algorithm Apriori. This
might have been true in 1997 when the available memories were much smaller
and fewer candidates fit into the memory. With todays’ memory capacities this
restriction no longer lives. See section 7.2 for more details about the bottleneck of
Apriori.

e The numerous database scan is not the bottleneck of algorithm Apriori. We know
that Apriori scans the database as many times as the size of the largest candidates.
The time required by the 1/O operations is only a small fraction of time required
by the support count and almost never dominates the run-time of Apriori.
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1.3 Algorithmic aspects of the modern processors’
features

Many researchers tend to analyze their algorithms by using the external memory model.
Due to the huge memory sizes, most databases fit into the main memory, which leads to
the usage of the simpler random access model (RAM) (also called von Neumann model
[54] named after the Hungarian born John von Neumann who proposed first this archi-
tecture). The precise model of the modern processors, however, is more sophisticated
than the RAM model, which is the reason that the analysis has often nothing to do with
the real run-times. For an excellent overview about the changes in classical algorithm
required by the new model, the reader is referred to [33]. The most important features
of modern processors, which have to be kept in mind by a data mining programmer, are
the memory hierarchy and the pipeline processing.

1.3.1 Memory hierarchies, data locality:

The memory is not one big block but rather a hierarchy of memories with different
sizes, access latencies and access numbers. The larger the memory the longer it takes
to access it. The members of the hierarchy are registers, (few kilobytes of) L1 cache,
(few megabytes of) L2 cache, sometimes L3 cache, (few gigabytes of) main memory and
hard disk. The data are copied from the main memory to the .2 cache and from 1.2 to
L1 cache in blocks. The size of block (also called cache line size) for copying from L2 to
L1 cache is 128 bytes in the case of Pentium 4 processors.

The block processing brings in some important algorithmic aspects. Reaching a single
bit from a slower memory takes the same time as reaching a whole block. Processing the
data that is in the same block does not require an other slow memory access operation.
Therefore data locality, the requirement that data items which are processed close to
each other in time, should be located close to each other in memory, is a immensely
important issue, which affect significantly the running time. Data near the currently
processed data should contain many items, which will be processed in the near future.

When a data has to be processed, it has to be moved into the registers. Sometimes
it is already there, because it was used in the previous instructions. Due to the limited
number of registers, it is more probably that the data is located in L1, L2 cache or in
main memory. It may even be located on the hard disk, if the memory usage of the
algorithm is so large, that the operating system has to swap. We say a data access causes
cache miss if it is located in 1.2 cache or main memory. Although the processor may
perform another operations while the data is fetched, the performance of the processor
get far from its maximum. The processor is capable to do 1000 basic operations (like
addition) during the time the data is fetched from the main memory. In summary, when
designing the data structure — algorithm pair, we have to endeavor to reach high data
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locality so that cache misses are avoided.

1.3.2 Pipeline processing, branch prediction:

The instructions a programmer works with are executed as a sequence of many microop-
erations (u-ops). The operations are not processed individually, one-by-one after each
other. Instead, a parallel processing is done by using a pipeline. Unfortunately, the
data dependency and the conditions ruin the efficiency of parallelism. Data dependency
occurs when an instruction depends on the results of a previous instruction. Branch
prediction means predicting the output of a condition and loading the predicted opera-
tions into the pipeline. If the prediction turns out to be false, then the pipeline has to
be flushed and the correct values have to be reloaded to the registers. These problems
can be often overcome by different techniques (like code reordering), which are done
automatically by the compiler. We still have to take data independence and branch
prediction into consideration when designing a computation intensive algorithm.

The pipeline processing makes it possible to execute more than one instruction dur-
ing a clocktick. The problems mentioned above are the reasons for being the average
performance of the processor much less than the optimal. We say the processor stalls,
if it can not execute an operation in the actual clocktick.

Unnecessary conditions may ruin efficiency, but this is not always the case. The
branch prediction is “intelligent” in the sense that it learns if the outcome of the con-
dition never changes, and sets the prediction accordingly. Therefore, a 100% true (or)
false condition never ruins efficiency at all.

1.4 A Frequent Pattern Mining Template Library

Those who believe that their work is of high value, often say, that the main problem of
frequent pattern mining is the lack of reproducibility and the impossibility of verification.

In the beginning of the FPM era a typical paper proposed some new techniques,
reasoned with some intuitive, informal thoughts and showed its efficiency on some care-
fully generated datasets. This procedure led to indignation, because the efficiency of
the implementation of the rival algorithm was often significantly below the efficiency of
the implementation done by the original authors. The generality, drawbacks, limits of
the proposed algorithm were rarely discussed.

Fortunately, this era quickly closed after some famous implementations were made
publicly available, and at the conferences of high standards it was required that the
proposed algorithms be compared with the known implementations. The level was raised
further by the two FIMI competitions. Now we have ultrafast FIM implementations,
nevertheless nobody exactly knows why do they perform so well, what are the limitations
of the solutions, what kind of input data they prefer. They are like black-boxes, and
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only the authors can change the parts of the implementation, which is attributed to
the highly optimized, non-object oriented codes, which are almost impossible to read by
other researchers.

If we would like to understand the performance effect of all parts of a code, we have
to make it modularized. This is not a trivial task in a highly optimized environment. In
[46] we presented some techniques, which are based on templated and in-line functions,
to make a code object-oriented without sacrificing efficiency. To achieve a perfect FPM
world, object oriented codes are not enough yet. The codes have to be in a library,
where any part of an implementation can be replaced by an other element of the same
functionality and any technique can be switched on and off. This way each part of
an algorithm can be tested separately and together with other techniques. We can
measure how does a certain solution contribute to the final performance, how do different
techniques assist or hold back each other.

These principles were followed in building up our FPM template library, which con-
tains our fully pluggable Apriori, Eclat and FP-growth implementations that are com-
petitive with (and in most of the cases outperform) the black-box implementations. For
example in our Apriori algorithm different template classes are responsible for doing
the support counting, the candidate generation, coding and decoding the items, caching
the transaction. All techniques like, dead-end pruning, equisupport extension, etc. can
be turned on and off by a template parameter. The data structure is also a template
parameter. If it is a trie, then the representation of the list of edges is given by an other
template class, in which even the vector representation is pluggable, therefore we can
chose STL vector or our lightweight, self-made vector.

The FPM template library made possible to conduct a comprehensive set of exper-
iments with reasonable effort. In a black-box system this would have required a lot of
laborious and error-prone work. The library is made publicly available and started to
be used by other researchers.
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Chapter

The Frequent Itemset Mining Problem

Let J be a set of uninterpreted symbols called items. Any subset I C J is called an
itemset.

Let T = (t1,...,t,) be asequence of itemsets called data (also called as transaction
database). Its elements ¢t € T will be called data itemsets or transactions'. For any
itemset I C J we define the set

coverg(I) :={t € T|I C t}
of data itemsets containing I as the cover of /. The size of the cover
sup(I) := | covers(I)]

is called support. Given a lower support threshold minsup called minimum support,
the set
Fs minsup := {I C J| supy(I) > minsup}

is called the set of frequent itemsets.

The frequent itemset mining (FIM) task then is, given data 7 and a lower
support threshold minsup, to compute the set F' of all frequent itemsets.

Historically, the support threshold was defined as a relative measure to the number
of transactions, i.e % and a relative support threshold in interval [0, 1] was given.
The data mining community tended to change the definition, and by today, the absolute
support is the default. In the rest of the paper we refer to the relative support as

frequency and denote Suﬁ’g‘(’) by freqqs(7) and mi‘fiﬁ“‘p by minfreq.

'A large part of the research community defines the data as a multi-set of itemsets or as a binary
relation over a set of items and a set of transaction (bipartite graph-based definition). It is actually a
matter of taste since the three definitions result in an equivalent problem statement. We have decided
for sequence-based definition because, in practice, the data is actually given as sequence .
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We will often illustrate definitions and methods by examples where the items are
denoted by capital letters of the English alphabet. For the sake of simplicity, we often
omit braces and commas when denoting an itemset. For example, we write AEDG
instead of the precise form {A, E, D, G}.

There are some notions that are heavily used throughout the paper. Next, we give
the definitions for them.

In a set of itemsets S the downward closure property holds, if I' € S for all
I' CTandall I € S. A frequent itemset I is maximal if there exist no proper superset
of I in J that is frequent. An itemset [ is closed [41][57] if there exist no proper superset
of I that has the same support as I.

Corollary 2.0.1 All mazimal frequent itemsets are closed.

Definition 2.0.2 The negative border of a set of itemsets F' (denoted by NB(F))
contains the itemsets that are not elements of F', but all their proper mazimal subsets
are in F'. Formally

NB(F):={I|I ¢ F and I' € F for all I' C I such that |I'|+1 = |I|}.
In poset theory the negative border is called the minimal, proper upper bound.

Example 2.0.3 LetJ={A,B,C,D} and F = {0, A, B,C,AB, AC,}. Then NB(F) =
{BC,D}.

Definition 2.0.4 Let < denote a total order on J. The (-element prefix of itemset [
(¢ < |I|), which is denoted by P}, is the (-element subset of I that contains the { smallest
elements of I with respect to the ordering <.

By definition P} = () for any I itemset, i.e. the empty set is the zero-size prefix of all
itemsets.

Example 2.0.5 Let J = {A,B,C,D,E} and < denote the alphabetic order over J.
Here, Pige = AB and Py = B.

Definition 2.0.6 The order based negative border of a set of itemsets F' contains
the itemsets I that are not elements of F', but their prefiz of size |I|—1 and the subsequent
subset of size |I| — 1 are elements of F. Here, subsequent is understood with respect to
the ordering defined on the power set of 3. Formally:

NBX(F):={I|I¢F and P/"' € F.Q € F, where P/"' < Q < Q' (2.1)
for all Q" C I such that |Q'|+1=|I],Q" # P,“H,Q’ #Q}.
(2.2)

By definition item i is in NB~(F) if {i} is not in of F and the empty set is in F'.

10
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Example 2.0.7 LetJ={A,B,C,D,E} , F={0,A, B,C,AB, AC} and for any item-
sets of the same size I1,.J let I < J if I lexicographically precedes J. Then NB~(F) =
{ABC,BC,D}.

Corollary 2.0.8 For any itemset J, F C 27 and < we have
NB(F) C NB*(F).

In depth-first like algorithms the notion projected database plays an important
role.

Definition 2.0.9 Let T be a transaction database over 3. The I-projected database of
T (which is denoted by T|I ) consists of the elements of T that contain I.

The sequence of transactions that are not contained in the I projected database is
denoted by T|I and called the complement of the projected database. Obviously,
no element of T|T contains I.

For example (ABC, AE, BCE, BCE)|{B} = (ABC, BCE, BCE), (ABC, AE, BCE)|{AE} =
(AE) and (ABC, AE, BCE)|{AE} = (ABC, BCE).

11
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Chapter

Base Algorithms

There have been many different algorithms proposed for frequent itemset mining. Al-
though most of these algorithms are variants of other algorithms, sometimes small or
obvious, sometimes larger or more intricate, for marketing purposes most of them come
by their own names, making it rather hard to see the common features as well as the
specific differences.

All these algorithms can be categorized as variants of one of three different base
algorithms, Apriori, Eclat and FP-growth. Furthermore, Eclat and FP-growth are
the same algorithms except that they use a different data structure. Nevertheless, we
distinguish them for historical reasons.

3.1 Bottom-up FIM algorithms

The initial step is common in all algorithms. We scan the database once to determine
the support of every item, and then select the frequent ones. Without loss of generality,
we assume that frequent items are denoted by consecutive integers starting from 0.

In the latter phases of the algorithms each transaction is filtered before being pro-
cessed, i.e. infrequent items are removed. Most of the techniques make the assumption
that the (frequent) items are coded with nonnegative integers. Therefore each transac-
tion is filtered, and recoded. Obviously, before writing out the results the items have to
be coded back.

Apriori, Eclat and FP-growth perform a bottom-up traversal of the search space,
i.e. starting from the empty set they determine the frequent itemsets in a growing
manner. To avoid duplicate checking of the same itemset all FIM algorithm are based
on an ordering of the items. The lexicographic extension of this ordering makes it
possible to order the itemsets. It would be impossible to determine the support of every
possible itemset (their number is exponential in |I|) therefore the algorithms restrict

13
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their attention to the so called candidates. In general a candidate is an itemset whose
support is determined.

Bottom-up search algorithms turned out to be more efficient algorithms than those
that perform top-down or a middle-way top-down bottom-up search (such as algorithms
Pincer [30] and CBW [51]). This is attributed to the fact that the maximal frequent
itemset border is closer to the empty set than to 7, i.e. in general the size of the largest
frequent set is much less than |I|.

3.2 Breadth-first, iterative vs. depth-first, recursive
algorithms

Apriori is an iterative, breadth-first algorithm. In the iteration step £ it determines the
frequent itemsets of size /. Eclat and FP-growth, on the contrary, are recursive, depth-
first-like algorithms. Given a set of frequent itemsets (denoted by Fj) with a common
maximal proper prefix P and of size |P|+ 1, it takes the itemsets [ € Fj one-by-one
and determines the frequent itemsets whose prefix is I. The search is done recursively;
initially the emptyset is considered as a prefix and the set of frequent 1-itemsets is the
given set.

The definition of a candidate in Apriori differs from the definition in Eclat and
FP-growth. In Apriori the set of candidates at iteration ¢ is equal to the negative
border of frequent itemsets found till the iteration step ¢. In Eclat and FP-growth
the set of candidates in the next recursive step belonging to itemset I € F} is the
subset of the order-based negative border of Fi whose element’s prefix is I (formally

{I''l" € NB¥(F3) such that PI‘,IIH = I}). The recursive step is terminated if no
candidate is generated.

It would be inefficient to check all itemsets of a given size if they meet the definition
for candidates. Instead, we generate the candidates. Here we make use of the fact that
in all three algorithms the smallest and the subsequent subset of the candidate must be
frequent. The itemsets form a lattice, therefore each candidate is a union of two frequent
itemsets, that have same prefix of size £ — 1. This is the reason the maximal proper
prefix and the subsequent itemset are called the generators of the candidate. The item
that is added to get the candidate (i.e. the largest item of the second generator) is called
the extender.

The set of infrequent candidates is the the negative border of the frequent itemsets
in Apriori and is the order-based negative border of the frequent itemsets in the case of
Eclat and FP-growth. It follows from Corollary 2.0.8 that the number of candidates is
never less in Eclat and FP-growth than in Apriori.

historical remark: FP-growth has been viewed as an algorithm operation
on the data trie by its inventors [22, 21, 23] that is augmented by so-called
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"header lists” that sequentially link nodes with the same item label. From
this perspective, FP-growth looks like a depth-first algorithm that is quite
different from Eclat. We argue here (and it was also noted by Goethals
[19]), that this is a queer view on the algorithm, and that actually the main
data structure is the set of prefixes (i.e., the “header lists”), while the data
trie is nothing else than a means to compute the relation startsWith effi-
ciently. Then, the effective difference between Eclat and FP-growth is that
FP-growth works on prefixes, while Eclat works on single transaction. That
means, that FP-growth can take advantage from data that can considerably
compressed by a trie, while it has to pay the overhead of a more complex
intersection method that has to take into account the relation startsWith.

3.3 Techniques

Most published algorithms are the modifications of the base algorithms. A typical FIM
paper presents some technique that decreases the run-time, memory need or I/O demand
of a known method. In fact, there is much more to discuss about techniques and data
structure issues than about the base algorithms.

In the next sections we describe the three most important FIM algorithms. Each
algorithm is first described at semantic level, and then we check what kind of data
structure supports best the functions of the algorithm. Then we give a comprehensive
description of the techniques.

We call a technique memory safe if it never increases the memory need of the
algorithm significantly (let us say more than 25%). A memory-safe technique is called
strictly memory-safe if it required the same or less amount of memory than the
algorithm without the technique in all test databases with every support threshold.
Similarly a technique is run-time safe if it never results in a significant run-time
degradation. We call a technique dangerous if the performance drops to its fraction at
some benchmark dataset.

3.4 Graphical presentation of the experiments

This work is based on thorough theoretical analysis and on a very comprehensive set of
experiments. To increase readability we avoid using tables of numbers but rather trying
to visualize the experiments. In the literature the authors present their experiments by
run-time and memory plots. Displaying the plots for all databases takes too much space,
therefore only a few (unfortunately the ones that give a favorable view of the proposed
technique) are selected. The FIMI contests showed that the published algorithms do
not perform so well in general as they do in certain, carefully chosen databases. For
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fairness, we test each technique on 16 well-known test databases, most of them can be
downloaded from http://fimi.cs.helsinki.fi. To avoid space problems, we restrict
our attention to test results at low support thresholds.

In many experiments we compare two solutions (s and S,y ), one (S,ey) is expected
to be faster. The advantage of the faster solution is presented on 16 databases mainly
at very low support thresholds. We use bar-charts, where the height of a bar is m?’;iq)w),
where m denotes the measurement (in most of the cases it is run-time and memory-
need). Sometimes the new technique results in an improvement of a several orders of
magnitude. To present such cases we use the logarithm of the measurements.

In many cases we are not only interested in the run-times but we would like to
visualize the way the technique suits to the features of the modern processor. For this
we use a diagram like the following.

all uops on BMS—WebView-2 at 6

1400

3 uops/tick ————J
2 uopsf/tick T
1 uop/tick
stall  we—

bogus uops
nbogus uops
-nrefetch pending
r/w pending *

1200 |

1000

800 r

GClockticks

600 r

400 -

200

The height of the wide bars centered around the ticks show the actual run-time (the
total clockticks used by the program). The colors/patterns of these bars show how well
the program utilized these clockticks: the top-most part shows the amount of clockticks
during which three u-ops were executed, while the bottom-most part shows the time
during which the program execution was stalled for some reason (i.e., no operations
were executed during that clocktick).

The narrow bars centered around the ticks show the total number of u-ops that were
executed. The bar is divided into two, the upper part show the bogus u-ops, those u-ops
that were speculatively executed on a mispredicted branch, and thus were rolled back.
The ratio of the lower-to-upper part of this bar shows the branch prediction inefficiency.

The narrow bars beside the wide ones show the front-side bus activity, the total
number of clockticks during whose at least one read/write operation was pending (i.e.,
data transfer time including memory latency). The upper part of these bars show the
time consumed by prefetch reads (when the processor speculatively transfers data from
the memory into the cache for further availability), while the lower part shows actual
reads or writes. The main difference is that the delivery of data during actual reads
and writes presumably stalls the execution pipeline (these are the cache misses). If the
ratio of prefetch (top part) to actual wait (bottom part) is high, then a huge amount
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of cache misses are avoided by the prefetch mechanism, thus achieving a considerable
performance gain.

3.5 The trie and its variants

Since the trie (prefix-tree) data structure comes into play in Apriori, FP-growth and
many other FIM algorithms (like MaxMiner [47] and TreeProjection [1]), we begin with
the description this central data structure.

The data structure trie was originally introduced by de la Briandais [14] and Fredkin
[15] to store and efficiently retrieve words of a dictionary. Mueller [35] was the first to
use trie in a FIM algorithm.

A trie is a rooted, labeled tree. Each label is a character and each node represents a
word (sequence of characters) which is the concatenation of the characters that are on
the path from the root to the node. The root is defined to be at depth 0, and a node at
depth d can point to nodes at depth d + 1. A pointer is also referred to as edge or link.
We will use the notations parent, child, sibling, ancestor and descendant as they
are defined in the classical oriented tree data structures.

Tries are suitable for storing and retrieving not only words, but any finite sequences
over arbitrary alphabet as well. In the FIM setting a link is labeled by a frequent item,
and a node represents a sequence of items. To obtain a sequence from a set, we have to
define a total order on the items. For this, we always use the same order that is used
to order the edges. In this case the preorder depth-first search traversal corresponds to
the ascending lexicographical ordering of the itemsets.

If the trie stores sequences of different lengths, then a boolean value is also associated
to each inner node. A true value denotes that the sequence that is represented by the
inner node is also contained in the dictionary not just the sequences represented by the
leaves. Figure (3.1 presents a trie that stores the itemsets A, C, F', AC, AF, EF, AEF.
The order used to convert sets to sequences corresponds to the alphabetic order. Inner
nodes with false and true boolean values are denoted by squares and circles, respectively.

A trie that stores all subsets of a given set is quite unbalanced. The following picture
shows the trie that stores all subsets of itemset {ABCDE}.

Originally the tries are child-linked, i.e. from each node only its children can be
reached with one step. In case of a parent-linked trie we can only reach the parents
directly. Obviously, the two approaches can be combined. For example, in FP-growth
the child linked-trie is converted to parent-linked tree after all itemsets are inserted.

3.5.1 The representation of the list of edges

The list of edges can be represented in many ways. The representation used in the
algorithms greatly affects both run-time and memory-need. Let us assume that we have
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Figure 3.1: Example: a trie that stores sets {A},{C} {F},{AC}, {AF}, {EF}, {AEF}

Figure 3.2: Example: a trie that stores all subsets of itemset {ABCDE}
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a node u with n children. This means that n edges start out from u. Denote the smallest
and largest label of these edges by l,,,;, and l,,,., respectively. The most frequently used
representations are:

ordered list: Each edge is represented by a pair, whose first element is the label, and
the second is a pointer to the child. The edges are stored in a vector, which is
ordered according to the labels. The memory need of this solution (ignoring the
overhead of a list) is 2n cells.

indexvector: The child pointers are stored in a vector whose length equals to the
number of frequent items. A node at index i is the endpoint of the edge whose
label is item 4. If there is no edge with such label, then the element is NIL.

Obviously the elements at index less than the smallest label and greater than the
largest label are NIL. We save memory if these elements are not stored. In offset
indexvector representation the smallest element (the offset) and a pointer vector
of size la0 — lmin + 1 is stored. The child pointer of label 7 is given by the element
at index 7 — L.

hybrid solution: Notice, that neither of the above representations needs always less
memory than the other. If 2n < l,,, — lmin +1+ 1, then the ordered list needs less
memory, otherwise the offset-indexvector. In the hybrid edge representation we
dynamically choose the edge representation based on the memory requirements.

3.5.2 Index vs. pointer-based trie

The nodes of the trie (together with the lists of edges) can be stored consecutively or
scattered in the memory. We distinguish two types of Trie according to the memory
layout (such tries are depicted in Figure [3.3]).

contiguous-memory based: @ pointer-based:
D

B

[2,167,B,6,D,8,0,123,0,102]

Figure 3.3: different representations of the same trie
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pointer-based trie : The nodes are scattered in the memory. The counter and the list
of edges are associated with the node. The nodes are identified by their address
in the memory, and a link is represented by a pointer. When adding a new leaf
into the tree we search for a free space in the memory and reserve it to the new
leaf. Deleting a leaf means simply freeing the memory occupied by the leaf and
removing the pointer (together with the label) from the edgelist of its parent.

If we store the edges in an ordered vector, then the memory need of a node is
the memory need of a counter and a list. The total memory need of a trie is
ns; +nse + (n—1)s; + (n—1)s,, where n is the number of nodes in the trie, s,, is
the memory need of the overhead of the vector, s;, s, is the size of an integer and
a pointer respectively. If the vector of C+4 STL is used then the overhead of a
vector equals three times the size of the pointer, therefore the total memory need
is approximately 2n(s; + s,) which is 26n bytes in a Pentium 4 and 40n bytes in
an Opteron.

contiguous-block trie : The trie is represented by one big vector. The counter, the
number of edges and the list of edges are associated with the node. Each node
is identified by the position in the vector. Adding (and erasing) a leaf is quite a
laborious work. We expand the vector, then insert a new edge into the edgelist of
the parent. This results in an increase of the positions of the nodes coming after
the parent, therefore the indices have to be updated. This requires a total scan of
the vector.

It may be difficult to find a free big block in the memory, hence a list of medium-
size blocks are used in practice. The blocks are of the same size, therefore we can
quickly determine the block (and the offset) of a node it has been placed into.

If the edgelists are stored in an ordered vectors, then the memory need of a node
equals to the memory need of the counter the memory need of the variable that
stores the number of children, and the edges (without overhead). The total mem-
ory need is $,, +n(s; + s; + 2s;) ~ 4ns; which is 16n in a Pentium and Opteron as
well. Note, that we assume that the size of the vector that stores the trie is not
greater that 2% otherwise we cannot address an element by an integer value.

In our implementation leaves are added and deleted from the trie, therefore we use
the pointer-based approach.

3.5.3 Patricia trie

A directed path is called chain if all inner nodes on the path have only one child. A
tree that is obtained from a trie by collapsing maximal chains to a single edge is called
patricia tree. The new edge points to the last node of the chain and its label is the
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sequence of the labels on the chain. If chain collapse is restricted to chains that end in

leaves then we talk about leaf-patricia tree.
Patricia trees consume less memory if the trie contains many chains. Otherwise, it
need more memory, because the labels are represented by vectors, which is an inefficient

solution when it contains just one element.
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Chapter

Algorithm Apriori

APRIORI is regarded to be the first FIM algorithm that can cope with large datasets
and large search space. It was proposed by Agrawal and Srikant [2] and Mannila et al.
[32] independently at the same time. Their cooperative work was presented in [4].

The algorithm scans the transaction datasets several times. After the first scan the
frequent 1-itemsets are found, and in general after the /" scan the frequent (-itemsets
are extracted. The method does not determine the support of every possible itemset. In
an attempt to narrow the domain to be searched, before every pass it generates candidate
itemsets and only the support of the candidates are determined. An itemset becomes
a candidate if all its proper subsets of are frequent. Due to the bottom-up search, all
frequent itemsets of size smaller than the candidate are already determined, therefore it
is possible to do the subset validations.

After all the candidate (¢ + 1)-itemsets have been generated, a new scan of the
transactions is effected and the precise support of the candidates are determined. The
candidates with low support are discarded. The algorithm ends when no candidates are
generated. The pseudo code of Apriori is given below.

The intuition behind candidate generation is based on the following simple fact:

Property 4.0.1 Fvery subset of a frequent itemset is frequent.

This is immediate, because if a transaction ¢ contains an itemset X, then ¢ contains
every subset Y C X.

Using the fact indirectly, we infer that, if itemset I has a subset that is infrequent,
then I cannot be frequent. In the algorithm APRIORI only those itemsets are candidates
whose all subsets are frequent. It is not necessary to check all subsets; if all maximal
proper subsets are frequent, then the anti-monotone property of the support function
guarantees that all subsets are frequent as well.

It would be inefficient to go through on all itemsets of size (£ + 1) and do the subset
check, instead, we generate the candidates. All itemsets that meet the subset check
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Algorithm 1 algorithm Apriori

Require: D : database over the set of items J,
minsup support threshold

Ensure: F': the set of frequent itemsets

(1
Cg 7
while |Cy| # 0 do
support_count( D, Cy )
for all c€ C, do
if c.support > minsup then
Fy+c
end if
end for
Cy41 < candidate_generation( Fj )
{0 +1;
end while
F= U§:1 Fj

requirement must be the union of two different /-itemset that are frequent and have
¢ — 1 common items. Different pairs can have the same union (for example the pairs
(AB, AC) and (AB, BC')). In order the candidate generation to be non-redundant we
take the union of those (-itemsets whose intersection is the (¢ — 1)-element prefix. Pairs
(I, 1) and (I, I;) generate the same candidate therefore we assume I; < I,. The
pseudo code of the candidate generation is found in Algorithm

Algorithm 2 candidate_generation
Require: F, frequent itemsets of size ¢
Ensure: Cyy; the set of candidates of size ¢

for all {’il, co T, ’ig}, {’il, el Z’E} € F, such that 7, < ’LIZ do
C < {i], .. .7:3,1,7:3,7:2}
if all_/_subsets_are_frequent(c, Fy) then
Cg+1 — C
end if
end for

After the candidate generation the supports of the candidates are calculated. This
is done by reading transactions one by one. A counter with 0 initial value is associated
with each candidate. For each transaction ¢ the algorithm decides which candidates are
contained in ¢. The counter of these candidates are incremented.
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A simple solution of this is to check each candidate if it is contained in the transac-
tion. This is an elementary operation (determining if an ordered sequence contains an
other ordered sequence) if the transaction and the candidates are stored ordered. The
drawback of this solution is that the transaction is checked and partially traversed as
many times as the number of candidates, which is quite slow at low support thresholds,
where there are many candidates.

To save numerous transaction traversals it is useful to store the candidates in a
special data structure. In the original paper [? | a hash-tree was proposed for this
purpose. The first trie-based Apriori implementation is reported Pasquier et al. [41].
For the sake of correctness we have to mention that a year earlier algorithm DIC [12],
which is an extension of Apriori, also used trie to store the candidates. Independent
from each other Borgelt, Goethals and Bodon (and maybe several others) published the
first open-source Apriori implementations. In [7] trie and hash-tree were compared, and
suggested that the trie is a better data structure in Apriori w.r.t run-time, memory
need but most importantly the flexibility. The main disadvantage of hash-tree is that
it is non-parametric, i.e., it requires a hash function. The efficiency of the hash-tree is
greatly influenced by the hash-function. Different hash-functions are suitable for differ-
ent databases and even different hash-functions are suitable for the same database with
different support threshold. There exists no available and efficient Apriori implementa-
tion that uses a hash-tree.

A vector trie middle-way solution was proposed in [37]. Candidates with the same 2-
element prefix are stored in a vector. The addresses of the vectors are directly accessible
by a triangular array. Vector of prefix 7, 7 belongs to the element at index 7,7 — 7 — 1
of the array. To save memory, the common 2-element prefixes are not stored in the
elements of the vectors. The authors declared that this solution is more efficient than
trie-based solution, because of the “pointerless” approach, the high data locality and
the predictable code branches. Our experiments do no support this claim.

The following plots show that although this is a much better solution than simply
storing the candidates in a list, it is still not competitive with trie-based solution at
medium or low support thresholds. This observation holds in all databases.

The fact that trie-based solution provides results in a faster Apriori than prefix-array
based solution in all cases, does not imply that trie is the best choice. Prefix-arrays are
exploited in the initial phases of DCI, therefore we have to compare the performance
of the two data structures at smaller candidates’ sizes. Our experiment — in which we
terminated the algorithms as soon as the candidates reached a certain size showed that
trie-based solution is always faster than prefix-array based solution at any candidates’
sizes.

Due to the outstanding efficiency of the trie-based solution, we restrict our attention
to this data structure.
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Figure 4.1: Comparison of simple vector, prefix-array and trie-based solution for storing
the candidates in Apriori

4.1 The trie of Apriori

Throughout the algorithm one child-linked trie is maintained. In this trie a counter
is associated with each node. This counter stores the support of the itemset the node
represents. In candidate generation phases new leaves are added with zero counters, in
support count phases the counters are updated, and when we eliminate infrequent sub-
sets (infrequent removal phase), leaves with counter value less than minsup are pruned.

Next, we examine Apriori’s main procedures from the perspective of the trie.

4.1.1 Support Counting

In the support counting phase, we take the transactions one-by-one. With a recursive
traversal we traverse some part of the trie. If a node is reached, then the itemset
represented by the leaf is contained in the transaction. The counters of such leaves are
increased. The traversal of the trie is driven by the elements of transaction ¢ and starts
in the root. No step is performed on edges that have labels which are not contained in
t. More precisely, if we are at a node at depth d by following a link labeled with the j
(let j be 0 in the root) item in ¢, then we move forward on those links that have the
labels i € t with index greater than j, but less than [t| — ¢ + d, if we denote the size of
the candidates by £ + 1. The upper bound is obtained by the fact that ¢ — d another
steps are required to reach a leaf from a child.

4.1.2 Removing Infrequent Candidates

After support counting, the leaves that represent infrequent itemsets have to be deleted
from the trie. Leaves are reached in a depth-first traversal.
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4.1.3 Candidate Generation

Here we make use of an other nice feature of tries; /-itemsets, that share the same (£/—1)-
prefix, are represented by sibling leaves. Consequently, the extender of a node must be
in the label set of edges pointing to a sibling. This is just a necessary requirement.
For an (¢ + 1)-itemset I to become a final new leaf, it has to meet Apriori’s pruning
condition: the (-subsets of I have to be frequent.

To obtain the itemsets represented by the nodes, we have to maintain a stack and
perform a depth first traversal. Whenever we step down along an edge we push its label
to the stack, and pop it when a backward step is performed.

4.2 Compactness of the trie and the run-time of
Apriori

The growth of available memory sizes follows Moore’s law. Today memory sizes are
so large that most of the databases fit in the main memory if the proper filtering and
compression is applied (in FIM setting this means removing infrequent items from the
transactions and recoding items to integers). The cheap and huge memorie devices
encourages the implementors of data mining algorithms to handle memory issues gen-
erously.

The reader will, however, observe the opposite in our case; we try to keep memory
consumption as small as we can, and we spend serious efforts on keeping the trie as
compact as possible. This has two main reasons. First, memory allocations and deal-
locations require processor resources, but more importantly they makes the processor
stall, which ruins efficiency. Second, by increasing compactness, we increase data lo-
cality, which improves the efficiency of the prefetching the caching features of modern
processors.

To illustrate this we have done the following experiment. We measured the run-
time and memory need of our Apriori. However, we manipulated the candidate trie a
little bit; a vector of uninitialized integers was inserted into each node. The size of the
vector was a parameter. The larger this parameter is, the more the nodes are scattered
from each other, and hence the worse the data locality is. The following plots show the
run-time and memory need.

The reason of the run-time increase is prompted by Fig. 4.3 which shows more infor-
mation about the utilization of the clockticks, the number of u-ops that were executed
on properly and improperly predicted branches, the total number of clockticks during
whose at least one read/write operation was pending on database BMS-Webview-2 with
minsup = 6. The left bar chart belongs to vector size 0 the right one belongs to the
vector size 50.

We see, that the two implementations perform approximately the same number of
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Figure 4.2: The influence of node’s size of the trie on run-time and memory need
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Figure 4.3: Complex hardware-friendliness diagram of two implementations
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instruction, and there is no significant difference in branch prediction efficiency. How-
ever, in the second implementation the processor stalls much more than in the first case,
which results the slowing down of the program. The processor stalls are caused by bad
data locality.

4.3 Inhomogeneous trie and a special block allocator

From programming point of view a trie can be declared in many ways. The simplest one
is the following: “Trie is a recursive structure; it has a counter and a list of edges. An
edge is pair of a label and a trie pointer”. A trie is called leaf if its list is empty. Another
definition is, that “A leaf is a counter. The trie is a leaf (a counter) or a counter and a
list of edges.”. The first type of trie is called homogeneous trie, because it is declared
by a singe data structure (not taking into consideration the data structure list). The
second is inhomogeneous trie because in the definition we use two data structures (leaf
and trie). Distinguishing the above definitions seems to have no meaning.

To understand the contrary, we have to dig down to implementation level. The main
point of the difference comes from the facts that:

1. the compactness of the trie is crucial, and greatly affects both run-time and mem-
ory need,

2. any list has some overhead (at least 8 bytes, but in the case of C++ STL’s vector
it is 12 bytes on a 32 bit processor), i.e., the size of an empty list is not zero.

An inhomogeneous trie spares memory by saving the overhead of the lists at the
leaves. Since tries of FIM algorithms are very large, and contain many leaves, the saving
may be significant. Note that the size of a leaf of an inhomogeneous trie is merely the
size of a counter, i.e. 4 bytes. On the contrary the leaf takes 124+4=16 bytes in a
homogeneous trie. The cache line (the block that is the basic unit in transferring data
from the memory to the cache) size is 32 bytes in the case of Pentium 4 processor, which
means 8 and 2 leaves fit in a cache-line in the case of inhomogeneous and homogeneous
trie, respectively. In 64 bit architectures (like Opteron) the difference is even larger (the
size of a leaf is the same, however, the size of a pointer is 8 bytes).

Notice, that if a transaction contains an itemset represented by a leaf, then it contains
its siblings many times. It is important that the siblings be as “close” to each other in
the memory as possible to obtain better data locality.

Leaves being generated in the candidate generation phase, deleted or converted into
inner node in the infrequent removal phase require a lot of allocations/deallocations. We
can reduce the overhead of this and improve data locality at the same time by applying
a special block allocation mechanism. The leaves are stored in a blockE and there is an

! Actually we used a list of medium-size blocks instead of one big block in our implementation.
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extra stack that stores pointers of the freed places. When a leaf is freed, a pointer to
its place is popped to the stack. When a new leaf is allocated, we check if the stack is
empty. If not, we reallocate the memory that is pointed by the top element of the stack.
If the stack is empty, then we simply allocate a new element in the current block. Since
a leaf is practically a counter (and integer), reallocation means a value assignment.

This solution can be further improved by merging together the stack and the blocks,
i.e., each position of a block is either a leaf or a pointer that points to the next empty
position (if there is any, otherwise its value is NULL). In C++ this solution is supported
by the union data structure and by the fact that a pointer and an integer needs the
same amount of memory in 32 bit processors.

Table [4.1 shows some experiments concerning this design detail.

. inhomogeneous
database minsup }Elr(;znogeneous 1trrlil:§0m0gene0us trie with block
allocator
T40T10D100K 220 670 653 518
pumsb 32600 184 161 133
retail 3 96 208 44
T10I5N1KP5KCO0 6 21 21 18
T30I15N1KP5KCO 360 622 557 395
run-time (sec.)
. inhomogeneous
database minsup }Elr(;znogeneous 1trrlil:§0m0gene0us trie with block
allocator
T40110D100K 220 342 128 128
pumsb 32600 19 14 14
retail 3 939 327 327
T10I5N1KP5KCO0 6 553 196 196
T30I15N1KP5KCO 360 296 204 203

memory need (MB)

Table 4.1: Inhomogeneous trie and a special block-allocation technique

An inhomogeneous trie with our special block allocator reduces both run-time and
memory need significantly. In the forthcoming experiments with Apriori we always use
inhomogeneous tries and our block-allocator.

4.4 Removing Dead-end Branches

Frequent itemsets of size ¢ are only needed in (1) writing out the results and (2) gen-
erating candidates of size £ + 1. The results can be written out either in candidate
generation or at the infrequent candidate removal phase. In candidate generation some
leaves are extended (if adding an item to its representation results in an itemset whose
all subsets are frequent) some are not. This means that there are leaves that represent
candidates and there are leaves that do not. We call the second kind of leaves dead-
end leaves and a subtrie is a dead-end branch if all its leaves are dead-end leaves.
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Dead-end branches are also generated in infrequent removal phase. If all (or all with
one exception) children of a node are infrequent, then the node becomes a leaf and is
never extended again.

The nodes of a dead-end branch are not needed for candidate generation thus its
nodes’ itemsets can be written out and such nodes can be purged from the trie. This
technique has many advantages. First, the trie gets smaller. Second, the support count
is faster. To illustrate this, let us assume that only one candidate (itemset ABC') is
generated. Figure shows two candidate tries. The second is obtained by applying
the dead-end branch pruning. The advantage of dead-end branch removal can be easily
seen if we consider finding the candidates in transaction (A, B,C, D, E). In both cases
the whole trie is traversed, which means visiting only half as many nodes in the second
case as in the first case.

Figure 4.4: Example: removing dead-end branches

Dead-end branch pruning does not require any movement in the trie, if the nodes
in the candidate generation phase are visited in a preorder depth first manner. This is
based on the following property.

Property 4.4.1 For a given depth d, the depth-first ordering of the nodes’ representa-
tion at depth d is the same as if we lexicographically order these representations, where
the order used in the lexicographical ordering corresponds to the ordering of the trie and
the lexicographic ordering of the presentations is based on a global item ordering.

Consequently, an itemset I can be a subset of those candidates whose generators
strictly precede I in the preorder traversal. Therefore a node can be pruned if no new
candidates are generated from any descendants of it.

Dead-end branch pruning does not necessarily speed up Apriori. If there exist no
dead-end paths, then the dead-end branch checks just deteriorate the branch prediction
facility of the processor and thus the run-time as well. For example if all maximal
candidates have the same size, then dead-end pruning is never used, and this technique
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neither results in a faster nor a more memory-efficient algorithm. Fortunately, in most
cases the negative border of frequent itemsets (i.e. the maximal candidates) is not
“straight” and the size of the maximal candidates varies. Figure shows the ratio of
run-time and memory need of Apriori that does not use the dead-end pruning and the
Apriori that does.
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Figure 4.5: Deadend pruning (ratio of run-times and memory-needs)
Some hardware friendliness diagrams is given in Figure 4.6.
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Figure 4.6: Hardware friendliness diagrams of Aprioris with and without dead-end prun-
ing

The experiments show that dead-end pruning is an efficient technique. It always
resulted in a faster and more memory-efficient algorithm.

The problem of traversing dead end paths was also considered in M] as an influence
of our earlier paper ﬂ%] The author of ﬁLO] has chosen an other solution. For each node
a boolean value was attributed (more precisely the uppermost bit of the counter was
dedicated for this purpose) whose value is true if the node is on a path to the deepest
level (i.e. to a candidate), otherwise false. Recursion during support counting proceeds
only on such children whose boolean value is true.
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This solution has two drawbacks. First, dead end branches are not erased and
therefore the space is not freed. Second, the boolean value check is just a second test
after a matching of items is found during support count (see routing strategy merge on
page . Thus the items with false boolean values are also considered in finding the
edges to follow. This problem could be solved by not just distinguishing the edges but
actually storing different edges in two different lists. This requires, however, more than
one bit overhead.

It is easy to see the consequence of the two drawbacks if we compare the experiments
(for details see [10]). It reached 20-40% speed-up at database BMS-Webview-1, while our
solution resulted in a more than twice so fast program.

In the rest experiments with Apriori we use dead-end pruning.

4.5 Routing strategies at the nodes

Routing strategy at an inner node refers to the principle used to select the edges to
follow during the recursive traversal of the support count method. Given a node with
a list of edges and a part of the transaction ¢ denoted by # we have to find the edges
whose labels are included in #'. This is the main step of support count in APRIORI,
it is called many times, and this is the step that primarily determines the run-time of
the algorithm. In this section we analyze some possible solutions. The number of edges
having the node we investigate (at depth d) is denoted by n. For the sake of efficiency
the elements of the transaction are ordered.

Different routing strategies can be applied with different edgelist representations (see
section [3.5.1). In an indexvector-based solution the edge that has a given label can be
found in one step, thus we adapt the simple method that checks for each element i of ¢’
if there exists an edge with label 7. In our implementation we skip those elements that
are smaller than the smallest label (this equals to the offset if the offset trick is applied),
and terminate the search if the actual element of ¢’ is larger than the largest label (i.e.
offset plus the size of the vector).

With an ordered list representation several solutions are applicable:

simultaneous traversal (merge): Two pointers are maintained; one goes through the
elements of ¢ and the other goes through on the n edges. Both pointers are
initialized to the first element of the corresponding list. The pointer that points
to the smaller item is increased. If the pointed items are the same, then a match
is found (recursive step is called), and both pointers are increased. We terminate
the search if any pointer reaches the end of its list. The worst case number of
comparisons (and pointer increases) is n + |t'|, the best case is min{n, |t'|}.

find corresponding edge: For each item in ¢ we find the corresponding edge (if there
is any). We can use a binary search for finding the proper label. Notice that the
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run-time of the binary search is proportional to log, n. Since the labels are ordered,
it is enough to perform binary search from the position that the previous binary
search returned.

find corresponding transaction item: For each label we find the corresponding trans-
action item. For this a binary search starting from the previously returned index
is applicable.

The logarithmic run-time need of the binary search can be reduced to constant
time by applying an offset-bitvector representation of #', whose value at index i
is true if item i+offset is the element of ¢’ otherwise false. The offset is the
smallest element of #'.

The problem with bitvectors is that they do not exploit the fact that at a certain
depth only a part of the transaction needs to be examined. For example, if the
item of the first edge is the same as the last item of the basket, then the other
edges should not be examined. The bitvector-based approach does not take into
consideration the positions of items in the basket.

We can easily overcome this problem if the indices of the items are stored in the
vector. For example transaction {2,4, 7} is stored as [1,0, 2,0, 0, 3] with offset 2.
The routing strategy with this vector is the following. First we step through those
edges whose labels are less than the offset. Then we take the remaining labels
one-by-one. If we reach for item i in ¢/, then we check the element i—offset of the
vector. There are three possibilities. If it is 0, then the item is not contained; we
proceed with the next label. If the element is smaller than |t| — ¢ + d + 1 then
match is found (and the support count procedure is continued with the next label).
Otherwise the procedure is terminated.

For each routing strategy we could give an upper bound on the number of com-
parisons in the worst case. Comparing these theoretical values, however, predict the
efficiency of the routing strategies much worse than the degree each method suits to
the features of the modern processor and memory structures. Now let us turn to the
experiments we have carried out.

4.5.1 Routing strategies in the case of ordered-list edge repre-
sentation

First we tested the routing strategies that can be applied when the edges are stored in
an ordered list. Two typical plots are depicted in Figure[4.7.

Some hardware friendliness diagrams is given in Figure 4.8.

Observations based on all the tests are the following:
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Figure 4.8: Hardware friendliness diagrams of some routing strategies
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. There exists no single routing strategy that outperforms all other routing strategies

on every database with every support threshold. The run-time differences between
routing strategies is sometimes up to ten-fold.

Except for merge, there exists a dataset for each routing strategy where its per-
formance is quite bad compared to the best one.

. merge outperforms the binary-search based approaches most of the cases by a

significant margin.

Binary search-based approaches always get faster if the position returned by the
previous binary search is stored and used to decrease the search space.

Bitvector based solutions performed poorly most of the times; it was always slower
than merge.

Let us explain the observations one-by-one.

1.

The efficiency of a routing strategy depends on n, the length of # and the number
of matches. Different data have different characteristics concerning these values,
thus different routing strategies perform well.

. The merge strategy produces the simplest code (its code contains the fewest lines)

and it does not wait for the data because the items are read sequentially and the
prefetch feature is very effective.

. If only the number of comparisons (in the worst /average case) is taken into consid-

eration then binary search is always faster than linear search. If we, however, also
consider the way modern processors’ features are utilized, we conclude that the
linear search outperforms binary search significantly when the lists we are search-
ing in are small. Notice that pipelining, prefetching performs poorly since the
element of the list to process depends on the outcome of the previous comparison.
This also results in an inefficient branch-prediction.

Storing the index that was returned form the previous binary search reduces the
average number of theoretical comparisons from nlog, n to log,n!. This simple
trick is also greatly supported by the modern processor’s cache system. Storing
and using the value that was returned by the last binary search is performed quite
fast most of the times since it is likely to be stored in the L1 cache.

. The bitvector-based approach does not take into consideration that only a part of

the transaction has to be examined. This results in many superfluous traversals.
Let us see an example. Assume that the only 4-itemset candidate is {D, E, F, G}
and we have to find the candidates in transaction {A, B,C, D, E, F'}. Except for
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the bitvector-based approach all the techniques considered will not visit any node
except the root, because there is no edge of the root whose label corresponds to
any of the first 6 — 4 + 1 = 3 items in the transaction. On the contrary, the
bitvector-based approach uses the whole transaction and starts with a superfluous
travel that goes down even to depth 3. The indexvector-based solution overcomes
this drawback.

4.5.2 Can we speed up binary search-based routing strategies?

The reasoning about the execution time of the linear and binary search brings up the
possibility of improving the performance of binary-search based routing strategies, i.e.
lookup_edge and lookup_trans. We know that under a threshold the linear search is
faster, and above this threshold the binary search. The value of this threshold depends
on the processor features (cache sizes, prefetching mechanism, length of the pipeline,
etc.), the way the binary search is coded and the type of the elements. In our experi-
mental environment (Pentium 4 2.8 Ghz processor — family 15, model 2, stepping 9 —,
using std: :lower _bound for the binary search, the size of a list element is 4 bytes) the
threshold is around 14.

The pure binary search-based approaches can be speed up if it is substituted by a
hybrid solution which chooses between linear and binary search according to the length
of the lists (length of #' in the case of lookup_trans).

In our implementation the threshold is set by a template parameter. Notice that as
soon as a linear search is selected, then the threshold check will prefer linear search in
the current node and in the descendants as well. Therefore in our implementation we
switch to merge routing strategy to avoid the threshold condition check and improve
the efficiency of branch prediction. The larger the threshold the sooner we switch to
merge.

In the next figure we plotted our expectation of run-time in the function of the
threshold.

run-time
binaryk
merge \_ﬁ
- threshold
ideal
thresﬁold

When the threshold is zero, then always binary search is employed, when it is more
than the number of frequent item then always linear search is used, which results practi-
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cally in the merge algorithm. The fastest solution is expected when the threshold equals
to the ideal threshold.

In reality we get a totally different characteristic, which applies in all databases.
This is plotted in the next figure.

run-time

binaryj
merge \

- threshold
ideal
thregﬁold

The runtime decreases as the threshold increases even if we cross the ideal threshold.
It seems that the sooner we switch to merge routing strategy the faster algorithm we
get.

To resolve the contradiction and understand the observation we have to examine the
characteristic of the data. The next two figures show some distributions of the steps
between two matches in the transaction. Zero step belongs to the case when the first
item in the ¢' is the same as the label of the first edge. With database T10I5N1KP5KCO
the merge was 2.5 times faster than look up_trans which is not far from the typical
case. The smallest advance was just 20% with database kosarak.
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Figure 4.9: distribution of distances between consecutive matches

We can see that the distribution is quite steep (notice the logarithmic scale). The
ideal threshold (14 in our environment) is equal to the 0.999989 and 0.645 quantile
respectively. This means that although the size of # might be long the distances between
consecutive matches are quite small in most of the cases it is smaller than the advantage
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of a binary search comes into play. Thus linear search (merge) is the fastest most of
the case and the extra condition check just ruins the efficiency of branch prediction.
The larger threshold we set the sooner we switch to merge and the fewer unnecessary
conditions are evaluated.

Also notice that the ratio of the number of consecutive steps under 14 to the number
of all matches has a strong correlation with the efficiency of speed-up lookup_trans.
The less this value the more efficient this routing strategy is.

Although in this section we neither presented a new approach neither speeded up the
existing routing strategies, we believe that this rationale shows a illuminating example
how deep we have to dig down to find the true reasons. To understand the behavior of the
routing strategies and their boundaries we have to consider (1.) theoretical possibilities,
(2.) hardware friendliness and (3.) the specialties/characteristics of the application
domain.

4.5.3 Routing strategies in the case of different edge represen-
tation

Next we compared the “winner” (i.e. merge) to the routing strategies that can be
applied when offsetindex-vector and hybrid edge representation is used. In the case
of hybrid edge representation (i.e. ordered list or offsetindex-based representation is
selected depending on the sizes, in other words, the node representation is not unique
but changes dynamically) a hybrid routing strategy is used: lookup_edge if the current
node uses offsetindex-vector, merge otherwise. For the sake of memory compactness we
used the uppermost bit of the nodes’ counter to store the type of representation of the
nodes’ edges.

The hybrid solution almost always outperformed the other two solutions concerning
both run-time and memory need. The offsetindex-vector approach performed quite
poorly in most of the cases. This is attributed to its large memory need. The correlation
between the memory need and run-time is quite apparent, the solution is competitive
in run-time only when it is competitive in memory-need.

Some hardware friendliness diagrams is given in Figure [4.11!

The hybrid solution is more efficient than the ordered-list edge representation with
the merge routing. The advantage is not very significant, the largest difference was 62%
in run-time and 37% in memory-need.

In the rest of the experiments we use hybrid edge representation and hybrid routing
strategy.
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Figure 4.10: Ratio of run-time and memory-need of ordered list-based Apriori compared
to hybrid edge representation-based Apriori
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Figure 4.11: Hardware friendliness diagrams of routing strategies merge and hybrid
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4.6 Determining the support of 2-itemset candidates

Using a trie seems unnecessary and complicated when determining the support of 2-
itemset candidates [50]. A simple array also does the trick. We know that the elements
of each candidate are frequent items coded by 0,1,2...and every pair that consists of
two frequent items is a candidate.

The array stores the counters that are initialized to 0. Counter of itemset {iy, iy} (we
can assume i; < iy) is at index iy,iy — 47 — 1 of the array (i.e. we us an upper-triangle
array). Notice that theoretically this solution is the same as trie based solution where
offset-index representation is used with offset equal to 0. Array-based solution (also
called direct count), however, spares the recursive step.

It is not necessary to allocate a counter for each candidate. In online candidate
generation [19] we allocate a counter only when the pair actually occurs in a transaction.
I databases, that contains many frequent items and most 2-element candidates do not
even occur, this solution reduces memory need significantly. In this solution the rows
of the array are empty at the beginning and item i, with counter 1 is added to row ;
when itemset {iy, iy} occurs in the first time. So the elements of the array are actually
pairs. For the sake of quick insertion the rows are sorted according to the items.

historical remark: Theoretically the same idea with some minor changes
was reinvented by Woon et al. [56]. First, they used a trie (called SOTrieT)
instead of an array. This is an unnecessary and over-complicated solution,
but most importantly it requires more memory, than a simple vector of
vectors. Second, the frequent items and the frequent pairs are found in the
same iteration. This awkward solution also suffers from a very bad memory
usage. All pairs that occur in a transaction require a counter even if they
contain infrequent items. For these reasons we use the vector-based on-line
candidate generation method in our experiments.

A hash-based technique DHP was proposed by Park et al. [40] in order to
reduce the number of candidates in particular the number of candidates
pairs. When determining the frequent items an other counter vector is also
maintained. Counter at index ¢ belong to the itempairs that has hash-value 7.
During the first scan at each transaction ¢ the hash-value of all subsets of ¢ of
size two are calculated and the corresponding counters are increased. After
the first scan, a candidate itempair is generated only if counter determined
by the hash-function is greater than minsup.

The problem of this solution is the lack of a universal good hash function.
It is easy to find a good hash function if the characteristic of the transaction
database is known, but this is not the case. Furthermore a hash-function that
works well at a database with a given support threshold performs poorly at
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the same database with an other support threshold. We believe that the sore
spot (and actually the applicability) of this technique is the hash-function,
which was never analyzed in the literature, i.e. no hash function was pro-
posed that works well at many databases with many support threshold.

The next figure shows ratio of run-time and memory-usage of the online and the
triangular array-based support count method.
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Figure 4.12: Ratio of run-time decrease and memory-need increase of online and static
support count of 2-itemsets

The disadvantage of online support count concerning run-time is significant at high
support thresholds, especially when the size of the maximal frequent sets is two. As
lowering the threshold the difference get insignificant when it is compared to the total
run-time.

4.7 Determining the support of 3-itemset candidates

The array-based technique can be naturally generalized to candidates of size ¢ by using
an /-dimension array of size (Vz‘), where I, denotes the set of frequent items . This
solution was chosen in the newest implementation of algorithm kDIC [38][44]. The
drawback of the array-based solution is straightforward, i.e. it requires 4 - (ng‘) bytes
of memory, which can be quite large. For example in the case of database retail with
support threshold equal to 3 the L; is 12889, therefore the array requires 1332 Thyte!
Actually in the case of 9 out of out 16 test databases (with minsup where our Apriori is
able to complete FIM task within reasonable time) the array needs more than 2Gbyte
of memory. This is not a safe solution.

Nevertheless, the array-based solution for candidates of size three speeds up Apriori
in many cases. A hybrid solution that chooses array-based technique if the number
of frequent items is small (let say smaller than 700) and trie-based solution otherwise,
seems to be a good solution.
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Chapter

Techniques for improving efficiency

The base algorithms can be greatly improved by algorithmic, data structure and im-
plementation related techniques. The literature is rich in this topic. In this section we
investigate the most important technique putting emphasize on the relationship between
them.

7.1 Pruning equisupport extensions

The search space pruning based on equisupport itemsets is perhaps the most widely
used speed-up trick in the FIM field. Omitting equisupport extension means excluding
from the support counting the proper supersets of those /-itemsets that have the same
support as one of their (¢ — 1)-subsets. This comes from the following simple property.

Property 7.1.1 Let X C Y CJ. If sup(X) = sup(Y), then sup(Y U Z) = sup(X U Z)
for any 7 C 7.

This property holds for all Z C J, nevertheless we restrict our attention to itemsets
Z CI\Y.

The connection between the equisupport pruning and closed itemset mining is ob-
vious. Itemset X is a non-closed set, with closure Y, if there exists no proper superset
of Y with support equal to sup(Y). An itemset X can be an antecedent of an exact
association rule (rule with confidence 100%) if and only if it is a non-closed itemset.
Itemset X is called a key pattern [5] if there exist no proper subset of X with the
same support.

If candidate Y has the same support as its prefix X, then it is not necessary to
generate any superset Y U Z of Y as a new candidate. Based on the above property its
support can be calculated directly from its subset X U Z [19].
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The support of the prefix is always available at bottom-up FIM algorithms, thus
prefiz equisupport pruning (i.e. X is the prefix of Y, such that [X|+ 1 = |Y]|) can
be applied at any time. The technique works the following way. After determining
the support of a children of itemset P, we check at the infrequent removal phase if
their support are equal to sup(P). Children with such supports are not considered as
generators in later phases and the extending items that belong to them are stored in
a set (called equisupport set) and associated with itemset P. Notice, that due to the
non-redundant traversal of the itemset lattice Y\X < z for all z € Z where < denotes
the order used to define the prefix.

When writing out a frequent itemset I, we also output the union of I with itemset
E' for all E' C E, where E is the union of all equisupport sets for the prefixes of I.

Example 7.1.2 Let us assume that the following itemsets of size two with prefiz A are
found to be frequent AB, AC, AD and sup(A) = sup(AB) = sup(AC) = 4,sup(AD) = 3.
Only itemset AD is considered as generator for further candidates with prefix A. At least
two itemsets are needed to generate a candidate in Apriori, Eclat and FP-growth, thus
processing prefix A terminates. When writing out itemsets AD and A we also append
all subsets of BC' to them, thus we write itemsets AD, ABD, ACD, ABC D with support
3, and A, AB, AC', ABC with support 4.

If the database contains only closed sets, then equisupport pruning is never used and
the large number of support equivalence checks just slows down the algorithm. Exper-
iments, however, show that in all algorithms the equisupport check can be performed
quite fast (for example in the case of Apriori it requires no traversal in the trie) and re-
sults no cache misses. Even at databases that contain insignificant number of non-closed
sets the run-time increase is absolutely insignificant.

7.2 Improvements used in Apriori

Before we turn to our methods that speed up algorithm Apriori, we have to find what
is worth improving, i.e. what takes significant time of the running. We have already
mentioned that in the beginning of the FIM research the efforts were focused on reducing
I/O costs and later reducing the number of candidates. Now, we know that these two
factors are not so important, but rather the data structure and its usage, the memory
management, and the level the implementation suits the architecture of the modern
processors are the issues that really matter.

The following table shows the distribution of processor time usage between the main
functions of Apriori. We measured the three main functions of Apriori (generating can-
didates, determining the supports and deleting infrequent candidates), the time required
for reading in, sorting and recoding (removing infrequent items and assign 0,1,. .. values
to the frequent items) the transactions and determining the support of the two element
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candidates. Methods that required less than half percent of the run-time are indicated
by blank entries. For the sake of readability numbers above 25 are rounded. To see
the correlation between the ratio of the methods and the characteristics of the database
and search space, we also provide some statistics about the data sets and the frequent
itemsets (see Tables[7.2 and [7.3). In these tests we have used a highly optimized Apri-
ori implementation, which is based on an inhomogeneous trie using our special block
allocator, dead-end branch removal, a triangular array-based solution to find efficiently
frequent pairs, and a sophisticated depth-first, buffered input/output manager perform-
ing the input/output routines.

counting generating input infrequent frequent
database minsup  sup- candi- sort Y pair
port date recode removal mining
T40T10D100K 3 000 14 53 31.0
kosarak 7 000 21 69 1.9
T10I14D100K 150 68 24 4.1
connect 65 000 73 25 1.4
accidents 210 000 7 21 1.4
pumsb 41 000 97 2.6
retail 65 64 22 10.6
BMS-POS 5 000 38 56 3.8
BMS-WebView-1 39 67 9.1 21 0.7
BMS-WebView-2 30 56 14.0 23.3 0.5 2.7
webdocs 700 000 1 93
mushroom 1600 95 1.3 3
T10I5N1KP5KCO 500 8 67 22.0
T20T10N1KP5KCO 2 000 76 17.8
T30T15N1KP5KCO 1 300 25 73.0
pumsb* 23 000 56 41 2.5
high support threshold
T40T10D100K 220 90 6.5 0.6 0.6
kosarak 860 94 2.0 2.0
T10T4D100K 3 33 63 0.7 1.0
connect 43 100 96 3.1 0.5
accidents 100 500 98 1.4
pumsb 32 600 96 1.6 1.9
retail 3 29 63 1.3 1.8 0.7
BMS-POS 67 84 13 0.8 0.5
BMS-WebView-1 33 44 54 0.7
BMS-WebView-2 4 12 83 1.4
webdocs 200 000 e 21.0 1.3
mushroom 250 86 12.5
T10I5N1KP5KCO0 4 53 39 1.8 0.7 0.8
T20I10N1KP5KCO0 90 84 13.0 1.7 0.6
T30T15N1KP5KCO 300 84 12.2 1.6 0.8
pumsb* 13 000 99 0.5

low support threshold

Table 7.1: The distribution of run-time of Apriori’s methods in %

The data show that Apriori is so fast at high support thresholds, that its opera-
tion require less time than processing the input. Thus we concentrate on low support

thresholds.
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average size
number of number of 8

database . . of the trans-
transactions 1tems .
actions
mushroom 8 124 119 23.0
pumsb* 49 046 2 088 50.4
pumsb 49 046 2113 74.0
BMS-WebView-1 59 602 497 2.5
connect 67 557 129 43.0
BMS-WebView-2 77 512 3 340 4.6
retail 88 162 16 470 10.3
T10I14D100K 100 000 870 10.1
T40T10D100K 100 000 942 39.6
T10I5N1KP5KCO0 193 373 3 950 10.3
T20T10N1KP5KCO 197 440 4 408 20.2
T30I15N1KP5KCO 199 095 4 599 30.0
accidents 340 183 468 33.8
BMS-POS 515 597 1657 6.5
kosarak 990 002 41 270 8.1
webdocs 1 692 082 5 267 656 177.2

Table 7.2: Some statistics about the databases

The tables support the widely-known observation, that determining the support of
the candidates takes most of the time of Apriori. This is, however, not always true. In
mining tasks where the number of frequent itemsets is high (databases BMS-WebView-1,
BMS-WebView-2, retail) but the size of the dataset is medium with modest average
transaction sizes (T10I5N1KP5KCO, T10I4D100K) the candidate generation contributes
significantly to the run-time. Consequently, we first focus on the support count proce-
dure and then turn to speed up the candidate generation method.

The distribution changes by employing certain heuristics, and then other parts may
become the bottleneck of the algorithm. For example if equisupport pruning is applied
(see section [7.2.4) then it becomes possible to process dense databases at much lower
support threshold, and subset enumeration and output writing dominates the run-time.
Nevertheless, we regard these issues of more advanced nature. We believe that our
data gives good indicators about the bottleneck of Apriori and possible targets for
improvement.

We see three principal ways to reduce the run-time of support counting.

1. We fine-tune and optimize the elementary operation of support counting, i.e. find-
ing the candidates that are contained in a given transaction.

2. We reduce the number of support count method calls.
3. We make use of the fact that some operations are done repeatedly (for example
traversing the same part of the tree several times) at different steps of the support

count phase, and by merging these support counts we may spare some redundant
work.
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average average

number number size size size of
number of fre- of fre- of the of the the fil-
database minsup of fre- quent quent, maximal fre- tered
guent item- item- frequent quent trans-
items pairs sets itemset item- ac-
sets tions
webdocs 700 000 8 14 34 4 2.0
T20I10N1KP5KC0 2 000 472 0 473 1 0.99 6.9
kosarak 7 000 93 249 772 6 2.6 3.3
T40110D100K 3 000 486 307 794 2 1.38 33.5
connect 65 000 15 72 916 7 4.2 14.8
pumsb* 23 000 34 126 1165 8 4.0 20.6
BMS-POS 5 000 145 408 1171 5 2.5 5.3
T10I5N1KP5KCO0 500 1494 90 1655 6 1.1 7.7
accidents 210 000 21 125 1685 8 4.17 17.0
T30T15N1KP5KCO 1 300 1667 3 1671 2 1.0 21.9
retail 65 2895 4958 11684 6 2.1 8.2
T10T4D100K 150 767 5549 19127 10 3.39 10.0
pumsb 41 000 25 249 36811 11 5.8 23.5
mushroom 1 600 43 380 53952 15 7.1 19.2
BMS-WebView-1 39 363 3802 69370 12 4.8 2.5
BMS-WebView-2 30 2122 6052 194262 15 6.5 4.4

high support threshold

webdocs 200 000 195 1 596 58 297 10 5.0

accidents 100500 32 408 160 874 12 6.7 22.1
pumsb* 13 000 63 900 1 293 829 17 8.8 31.8
T10I5NTKP5KCO 4 3924 49 0812 1 600 477 14 3.7 10.3
kosarak 860 1437 11 460 3 578 574 19 8.36 6.0
pumsb 32 600 36 536 6 061 656 20 10.0 31.6
T1014D100K 3 869 220 988 6 169 854 14 4.43 10.1
mushroom 250 82 1 684 9 944 484 17 8.9 22.6
T40T10D100K 220 901 104 161 10 174 500 20 8.48 39.6
connect 43 100 34 483 11 809 442 19 10.1 30.6
T30T15N1KP5KCO 360 3 489 13 037 15 747 841 20 9.7 29.0
BMS-POS 67 884 37 377 16 037 252 13 6.4 6.5
T20T10N1KP5KCO 90 4 021 86 776 16 964 579 20 8.3 20.1
retail 3 12 889 433 297 20 647 332 20 7.9 10.2
BMS-WebView-2 4 3185 106 070 60 193 074 23 9.8 4.6
BMS-WebView-1 33 372 5844 69 417 074 25 11.5 2.5

low support threshold

Table 7.3: Some statistics about the frequent itemsets
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First we investigate fine-tuning of the support count procedure by introducing a
special data structure, optimizing the routing strategies and applying dead-end pruning.
Then we turn to a technique that significantly reduces the number of support count
calls at many databases. Finally, we consider databases with many closed itemsets and
present equisupport pruning.

7.2.1 Caching the transactions

I/O and string to integer parsing costs are reduced if the transactions are stored in the
main memory instead of disk. It is useless to store the same transactions multiple times.
It is better to store them once and employ counters representing the multiplicities. This
way, memory is saved and run-time may be significantly decreased. This technique is
used in FP-growth and can be used in APRIORI as well.

The advantage of this idea is the reduced number of support count method calls.
If a transaction occurs n times, then the expensive procedure is called just once (with
counter increment n) instead of n times (with counter increment 1). Thus the number
of calls to the most expensive method may be considerably reduced. Unfortunately, the
data structure needs memory, and its build-up (i.e. collecting the same transactions)
requires processor time.

We refer to the data structure that stores the transactions together with the mul-
tiplicities as transaction cacher. The transactions are cached after the first scan, so
that infrequent items can be removed from the transactions. Different data structures
can be used as transaction cachers. We have three requirements:

1. inserting an itemset has to be fast,
2. the data structure has to be memory-efficient,

3. listing the transactions and the multiplicities has to be fast.

A simple solution is an ordered vector, each element stores an itemset and its mul-
tiplicity counter. Inserting a transaction becomes slow as the number of transactions
becomes large. A better solution is a vector of ordered vectors where the ;™ vector
stores transactions of size j. We refer to this solution as order-array based cacher.

The most famous Apriori implementation [11] uses trie and in our previous imple-
mentation we have used a red-black tree (denoted by RB-tree). In an RB-tree cacher
each node stores a transaction. Due to the success of Patricia-trees in FP-growth based
algorithms [43] we also tested this solution.

The experiments proved our expectation, that ordered-vector and vector of ordered-
vector solutions are not competitive with tree based solutions (the table does not even
include the order vector-based solution, since its run-time exceeded the acceptable run-
time threshold most of the cases). Tries slightly outperforms RB-trees concerning run-
time, but their memory need is much larger, even larger than the memory need of
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database  minsup ordered-array RB-tree trie patricia

I I 48 000 1.74 0.93 0.83 0.84

osara 840 212.8 279 2.26 1.68

accidents 3.96 3.49 1.13 0.90 0.8

R 100 500 94.4 1.88 1.48 1.23

5 000 126.09 1.40 0.89 0.65

BMS-POS 67 153.28 .55  1.10 0.72

ebdocs 700 000 27.05 25.92  25.08 24.98

W 200 000 1030.25 38.05  45.20 31.89

run-times

database minsup ordered-array RB-tree trie patricia

Kosarak 48 000 0.69 0.69 0.65 1.93

840 28.02 32.16  72.55 19.92

accidents 210 000 2.91 2.73 1.45 1.91

100 500 21.68 19.15  13.00 9.2

5 000 15.09 17.86 24.84 10.60

BMS-POS 67 23.31 22.87 3821  13.12
ebdocs 700 000 48.66 48.66

W 200 000 278.10  280.98 934.01  264.84

memory need

Table 7.4: Transaction caching with different data structures
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order-array solutions. Trie is said to be an efficient data structure in compressing data
sets because it stores the same prefixes once instead of the number of times it appears
(which is the case with ordered-arrays and RB-trees). Experiments, however, do not
support the statement about compression efficiency.

The reason for this comes from the fact that a trie has much more nodes — therefore
much more edges than an RB-tree has (except for one bit per node, RB-trees need the
same amount of memory as simple binary trees). In a trie each node stores a counter
and a list of edges. For each edge we have to store the label and the identifier of the
node the edge points to. Thus adding a node to a trie increases memory need by at
least 5 - 4 bytes (if items and pointers are stored in 4 bytes). In a binary tree, like an
RB-tree, the number of nodes equals to the number of transactions. Each node stores a
transaction and its counter.

When inserting the first /-itemset transaction in a trie, £ nodes are created. However
in an RB-tree we create only one node. Although the same prefixes are stored only once
in a trie, this does not reduce the memory difference so much. This is the reason for the
empirical fact we observed, that a binary tree consumes 3-10 times less memory than a
trie does.

A Patricia tree overcomes the defect of a trie that stems from the inefficient storage
of single paths. It substitutes a single path with one link with a label equal to the set
of labels that are on the path. This spares many pointers but more importantly, the
memory need caused by the overhead of a list is greatly reduced. Thus Patricia trees
keep the advantage of trie-based solution without suffering from large memory need.

In this section we avoid discussing the run-time and memory need effect of the
ordering used to convert itemsets to sequences. An in-depth analysis is provided in
section

After finding the best data structure for a transaction cacher, we investigated if
transaction caching really speeds up Apriori. In these experiments (see some results in
Figure[7.1) we have used a Patricia-tree as a transaction cacher.
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Figure 7.1: Caching the transactions
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Some hardware friendliness diagrams are given in Figure 7.2.
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Figure 7.2: Hardware friendliness diagrams of Aprioris with and without transaction
caching

Experiments show, that transaction caching is a great speed-up technique, it some-
times (in the case of connect, pumsb) decreases run-time by several orders of magni-
tude, sometimes the run-time “just” drops to its fraction (accidents, BMS-WebView-1,
T20I10N1KP5KCO.25D200K, pumsb*). Due to the fast tree-based solution, this technique
is regarded run-time safe, i.e. even at databases where the number of support count
method calls do not decrease significantly, building up the cacher does not reduce over-
all run-time. Building-up the cacher never takes significant time compared to frequent
itemset mining (the largest run-time increase was 10% and 5% at databases retail and
BMS-WebView-2 respectively) at low support thresholds.

This technique is obviously not memory safe. The cacher may need a lot of memory,
even more than the memory needed by the candidates. With most of the databases
the memory increase was not too large and we found no databases where the increased
memory assumption resulted in swapping. In the remaining experiments we will turn
transaction caching on.

7.2.2 Support count of Christian Borgelt

When the transactions are stored in a trie or in a Patricia tree then an other support
count technique can be applied. This clever idea was already mentioned in [11] and was
sketched in @] This technique is used in the recent versions of Borglet’s famous Apriori
implementation.

The observation behind the idea is that two transactions result in the same program
flow till the common element, i.e. till the common prefix. Storing the transactions in a
trie gives the necessary information about the common prefixes. It is possible to process
the same prefixes only once instead of the number of times it appears. The counter of
itemset I in the transaction trie stores the number of transaction whose prefix is itemset
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I. In this respect this solution differs from the one used in transaction caching (and
rather it resembles to an FP-tree that is deprived of cross-links.) Another difference is
that the ordering used in the transaction trie must correspond to the ordering used in
the candidate trie. In section [7.3 we will see, that this is a drawback since the two tries
prefer different orderings.

Unfortunately, the algorithm is not detailed in [9], but we believe it works as follows.
We simultaneously traverse the candidate trie and the transaction trie in a double re-
cursive manner. We maintain two node pointers respectively that are initialized to the
roots. We go through on the edges of both node. If the label belong to the transaction
trie is smaller or equal than the other label, then the recursion is continued on the child
of the given transaction node, and with the same candidate node. If the two labels are
equal, then the recursion is continued with the pointed children. A slightly optimized
version is found in Algorithm

Algorithm 3 BORGELT_SUPPCOUNT
Require: n.: a node of the candidate trie,
n;: a node of the transaction trie,
£: number of step from n, that needs to be done to reach a leaf,
1:, the smallest index of the edge of n. that is larger than the label of edge that led
to ny.

if / =0 then
Nne.counter <— n..counter + n;.counter
else

for 5 = 0 to n;.edge_number — 1 do
while i < n..edge number AND n..edge[i].label < n;.edge[j].label do
11+ 1
end while
if i < n..edge_number AND n..edgel[i].label > n;.edge[j].1abel then
BORGELT_SUPPCOUNT(n,, ns.edge[j].child, ¢, i)
if n..edgeli].label = n,;.edgelj].1abel then
BORGELT_SUPPCOUNT (n..edgeli].child, n;.edge|j].child, £ — 1, 0)
14—1+1
end if
else
break
end if
end for
end if

The solution above suffers from the disadvantage of many redundant traversal in
the transaction trie. It does not take into consideration the fact that only a part of a
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transaction needs to be evaluated. To overcome this problem we can employ a counter
for each node n; of the transaction trie that stores the length of the longest path that
starts from node n;. During the support count we do not proceed the recursion on a
node whose counter is less than £ — 1. Several other optimizations can be applied that is
based on removing unvisited or unimportant paths from the transaction trie. For more
details the reader is referred to [9].

7.2.3 Filtering unimportant items from the transactions

Filtering unimportant items from the transactions means removing those items from
each transaction that do not play role in determining the support of the candidates.
Obviously as the algorithm proceeds more and more items can be filtered from the
transactions. We have already mentioned a very simple filtering, i.e. after the first scan
we remove infrequent items from the transactions. A similarly simple filtering is when
we delete the transactions of size smaller than ¢ at iteration /.

Further filtering can be applied. To illustrate this imagine that the candidates of
size two are AB, AC, BC and DFE and transaction ABC D is processed. Item D is not
contained in candidates of size 2 that are contained in the transaction, therefore it can be
deleted from the transaction. In general an element of the transaction can be removed
at iteration £ if it is not contained in any candidate that occurs in the transaction [9].

A more sophisticated solution was proposed by Park et al. [40]. Tt is based on the
fact that for a candidate I of size £+ 1 to occur in a transaction each element of [ must
be contained in at least ¢ candidates of size ¢ that occur in the transaction. This is
a necessary condition, therefore an item in the transaction can be trimmed if it does
not appear in at least ¢ of the candidates in the transaction. For example transaction
ACDE is deleted if the candidates are the same as used in our previous example. Notice
that the previous simple filtering does not remove any element from the transaction.

This technique often results in a large number of item erase, however, to evaluate its
efficiency we have to take into consideration the overhead of removing an item from the
transaction, which depends on the way the transactions are handled. There are different
solutions in the literature.

Algorithm DCI [36] processes and filters each transaction one-by-one and writes
them out to the disk, i.e. the database is reduced progressively. It uses optimized I/O
operations for the efficient disk usage. If we employ an ordered vector, ordered array
or a binary tree as a transaction cacher, then removing an item from a transaction can
be replaced by removing the original transaction and inserting the filtered transaction.
These transaction cacher, however, are not competitive with red-black tree, trie or pa-
tricia tree based solutions. Unfortunately, removing an item from a stored transaction
is not an easy task in the case of trie and patricia tree, and it is a slow operation in the
case of red-black tree (deletion may need the expensive rotation operation).

This drawback was also observed in [9] where the following heuristics were proposed.
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Rebuild the transaction cacher if the filtering result in a significant node decrease, oth-
erwise use the original transaction cacher. The threshold of rebuild was determined
experimentally.

7.2.4 Equisupport pruning

We have seen that prefix equisupport pruning can be applied in all bottom-up FIM
algorithms, where candidates are generated on the basis of prefixes. From a Apriori’s
trie point-of-view, each node has to be extended with a list that stores equisupport items.
In the infrequent candidate removal phase we check if a leaf has the same support as
its prefix generator. If it has, then the leaf is purged from the trie and the label of the
link is added to the parent’s equisupport set. Each item 7 in an equisupport set can be
regarded as a loop edge with label 7. Loop edges are not considered in support count,
but must be considered in the complete pruning step of candidate generation.

Example 7.2.1 Let itemsets AB, AC, BC be the only frequent pairs, sup(AB) # sup(A) #
sup(AC) and sup(B) = sup(BC) = sup(BD). Figure|7.5 shows the trie obtained after
infrequent candidates removal phase. Notice that if loop edges were not considered in
the previous step of the candidate generation, then itemset ABC would not be generated
as a candidate even though all its subsets are frequent.

Figure 7.3: Example: removing equisupport leaves

This example draws attention to the connection between equisupport pruning and
dead-end branch removal. We see that node B does not lead to a leaf at depth 2
therefore dead-end branch removal would erase this node, and itemset ABC would not
be generated. The depth of a node for dead-end branch removal must be redefined so
that it does not purge leaves that may be needed for a proper complete pruning. We
have to see, that an itemset obtained by taking the union of a leaf X and any item that
is in the equisupport set of some prefix of X has the same support as X. Thus when
considering the depths of node X during dead-end branch removal, we have to add to
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the actual depth of X the size of the equisupport sets that are on the path from the
root to X. For example the depth of node B in Figure is 3 instead of one.

The astute reader may notice that edge that points to node B from the root is
considered in support count, however it does not lead to any candidate. We have
seen the run-time impact on the support count method of ignoring such nodes when we
analyzed dead-end pruning (see section/4.4). If they cannot be pruned (so that complete
pruning can be applied), then they should be distinguished. Edges that are on a path to
a candidate should be type one (let us call them normal edges), while the rest including
the equisupport loops should be of type two (denoted by dashed edges). Such “colored
trie” is depicted in Figure 7.4l The frequent pairs are AB, AC, AD, BC, BD, CD,CFE
and sup(A) = sup(AD), sup(B) = sup(BD), sup(C) = sup(C'D). The upper trie stores
the frequent two itemsets. Below, on the left a trie is depicted, which is obtained after
candidate generation if equisupport pruning and coloring is used. The trie on the right
is generated if no equisupport pruning is used.

Figure 7.4: Example: distinguishing dead-end edges when equisupport pruning is ap-
plied

Notice that when determining which candidates are contained in transaction (ABCDEFGH),
only four nodes are visited in the colored trie, nine in the original equisupport and 13
in the non-equisupport case.
Although distinguishing the edges seems to be a good practice, it also has some draw-
backs. Each node stores two lists of edges, that means double overhead. In databases
that do not contain non-closed itemsets, the second type of edges are never used. We
have seen (in section [4.2) that increasing the size of the trie nodes deteriorates run-time
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and memory need. With an other solution we may get rid of large part of the over-
head. Instead of this technique, here we propose a different solution that we call level
2 equisupport pruning.

7.2.5 Level 2 equisupport pruning

It seems contradictory to restrict our equisupport pruning to prefixes in the case of
Apriori since all subsets together with the supports are available and the equisupport
Property [7.1.1] (see page[47) is fulfilled for every subset. To understand why we can not
apply a general equisupport pruning we have to understand, that

e complete pruning does not allow simple removing of equisupport leaves. A loop
edge can be regarded as a classic edge that leads to a node that is fairly similar to
its parent. It is like copying an identical subtree of a child to the node itself. Thus
a node with many self loops is a compact representation of a whole imaginary
subtrie, which is traversed during the complete pruning.

e for efficient support counting and candidate generation the trie has to store ordered
sequences, i.e. the labels on all paths that start from the root and lead to a leaf
have to be ordered. In other words when an inclusion of an itemset X is checked we
start from the root and check if there exist a link with label equal to the smallest
element of X . If there exists we follow the link, and then check the second smallest
element, etc.

Based on a non-prefix subset equivalence, removing a leaf and adding a loop link,
however, may invalidate the second assumption. Let us consider the example, where
F, ={AB,AC,BC,BD,CD} and sup(BC) = sup(C). Since leaf BC has same support
as its subset, it can be removed, and a loop edge with label B has to be added to node

C. This is seen in Figure

Figure 7.5: Example: nonprefix equisupport pruning ruins ordering

The trie obtained by a nonprefix equisupport pruning does not meet the ordering
requirement. Node BC' cannot be reached from the root, by first checking item B and
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then C'. Therefore, itemset ABC' is not generated as a candidate because its subset BC'
can not be verified.

Fortunately, there exists a set of subsets that allows a second type of equisupport
technique, because it does not invalidate the ordering.

Here we propose a new equisupport pruning technique, which meets the ordering re-
quirement of the trie, thus it can be applied. It can be used only if the prefix equisupport
pruning is used as well.

Property 7.2.2 Let Y be the prefiz of itemset Y U z, where |z| = 1. If there exists a
subset X of Y such that | X|+1 = |Y| and sup(X U z) = sup(X), then sup(Y U z) =
sup(Y').

The above property is a special case of the general equisupport pruning property. We
emphasized on the purpose to better illustrate which itemsets play role in this pruning
technique. To use the pruning, it requires that we know the equisupport sets of all
subsets. This information is only available in Apriori.

This special equisupport pruning can be easily adapted in the candidate generation
phase. The second step of the candidate generation is checking all /-subsets if they are
frequent. These are reached by the (¢ — 1)-element prefixes of them. We can add an
extra check to apply the equisupport pruning. If the largest item of the candidate is
in the equisupport set of a subset of the prefix, then the candidate is pruned and this
largest item is placed in its generator’s equisupport set.

Example 7.2.3 The set of frequent two itemsets are {AB, AC, AD, BC, BD} and the
only equisupport is sup(BC') = sup(C). We do not generate ABC' as a candidate because
it has a 2-element subset that contains C in the equisupport set of its prefir. Figure
depicts the trie before and after the candidate generation. Please keep in mind, that
dead-end branch pruning (with the virtual depth modification) is applies during candidate
generation.

The example also shows that this technique may also reduce the number of itera-
tions of Apriori. Consider the above example except that itemset BD is not frequent.
Three iterations are needed in non-equisupport case because ABC would be a candi-
date. Equisupport pruning, however, prevents us from generating ABC' as a candidate,
and terminates Apriori after the second iteration.

7.2.6 Level 2 equisupport pruning and further dead-end prun-
ing

Further pruning can be applied if level 2 equisupport pruning is used. This is based on
the following lemma.
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Figure 7.6: Example: special prefix equisupport pruning

Lemma 7.2.4 In the candidate generation phase when checking all subsets of an ({+1)-
itemset, no equisupport sets of nodes at depth d for all d < ¢ — 1 need to be considered,
if level 2 equisupport pruning is used.

ProOOF: We prove this statement by contradiction. Let us assume the prefix of the
candidate is denoted by P and item i; of subset @ = {iy,49,...,4;,...0}, is in the
equisupport set of itemset Py = {iy,4s,...,4;_1}. We claim that itemset Q' = PoU (P'\
()) could not have been generated as a candidate at iteration j. If i; < P\ @), then the
prefix equisupport check prunes @' (because it prevents extending Pp), otherwise the
level 2 pruning does this work, because the largest item of @)’ is in the equisupport set
of its subset Py. [

Table [7.5] illustrates the rationale of the proof (P = {ABCD}). The table contains
the subset of P that is not generated as a candidate, if the items corresponding to the
indices of the row and column, are 7; and @ respectively. For example item B cannot
be in the equisupport set of itemset A because it contradicts to the fact that ABC was
a candidate. Also, if item C'is in the equisupport list of itemset B, then equisupport
pruning in candidate generation prevents generating itemset ABC' as a candidate. In
general, the existence of itemsets above the diagonal as a candidate contradicts to prefix
equisupport pruning, while under the diagonal the itemset contradicts to equisupport
pruning in the candidate generation phase.

Lemma [7.2.4 allows us to (1.) simplify the code (equisupport sets need to be con-
sidered only at level £ — 1) and (2.) remove some dead-end branches. Nodes at depth
¢ — 1 with no children can be removed after the candidate generation, even if their
equisupport sets are not empty. This pruning does not require any extra movement in
the trie. The preorder traversal of the trie ensures that any /-itemset can be a subset
of an (¢ + 1)-itemset that is generated by the preceding nodes. This corresponds to the
property (see page used in dead-end pruning. We call level 2 pruning together
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ij
PNQ Q] , C D
ABC D|AD ABD ABCD
ABD C|AC ABC -  ABCD
ACD B|AB -  ABC ABCD
BCD A AB  ABC ABCD

Table 7.5: Illustration of the proof of Lemma [7.2.4

with dead-end pruning presented in this section as level 3 equisupport pruning.

Example 7.2.5 The Figure tllustrates level 3 equisupport pruning. The trie on
the left side is obtained after infrequent removal phase at iteration 2. After candidate
generation and the new dead-end pruning, we get the trie that is depicted on the right side
of the figure. Notice that nodes A and B are present in the next iteration if equisupport

Figure 7.7: Example: removing dead-end branches when level 3 equisupport pruning is
applied

pruning in candidate generation is not applied because their virtual depth is 4 and 3.
These unnecessary branches slow down support count throughout two iterations.

The example also shows that this dead-end pruning also reduces the number of iteration
in Apriori. The virtual depth of node A is 4, therefore this node is removed during the
candidate generation in iteration 5. Dead-end branch removal, however, terminates the
algorithm before the support count of the 4/ iteration begins.

Experiments with equisupport pruning

Equisupport pruning is not necessarily run-time safe. If the database does not contain
non-closed itemsets, then the memory allocations of the never used equisupport lists
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require extra processor operations. Furthermore, this technique is not necessarily mem-
ory safe. The equisupport sets need memory even if they are empty and never used.
Experiments, however, show that the performance deterioration is not significant. The
highest run-time and memory need degradation were 26% and 20%, respectively. We
believe that this is attributed to the fact that equisupport check does not require any
extra movement in the trie and can be performed quickly. In the experiments, whose
results are shown in Figure [7.8] level 3 equisupport pruning was employed.
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Figure 7.8: Equisupport pruning
Some hardware friendliness diagrams are given in Figure[7.9.
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Figure 7.9: Hardware friendliness diagrams of Aprioris with different equisupport prun-
ing techniques

The results meet our expectation. In dense datasets the run-time and memory need
drop to their fraction. The decrease may be of several orders of magnitude. Please
notice the logarithmic scale.

Next, we tested if the speed-up is attributed to prefix equisupport or the other two
prunings also play significant role. The answer is found in Fig. [7.10L

Experiments show that equisupport pruning proposed in candidate generation and
this special dead-end pruning do not only possess a nice theoretical foundation but it is
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Figure 7.10: prefix equisupport pruning vs. level 3 equisupport pruning

an efficient speed-up technique in practice as well. In some cases the run-time dropped
to its half.

historical remark: Similar pruning technique based on itemsets with equal
support was first presented in algorithm PASCAL proposed by Bastide et al.
[5]. Their solution differs from our in many respective. First of all, they ap-
ply full equisupport pruning, i.e. they do not calculate the support of any
proper superset of itemset I if sup(7) = sup(I') for any I' C I. They use
the term key pattern for those itemset that have no proper subsets with the
same support. The authors of PASCAL describe full equisupport removal in
conceptual terms. This description suggests a naive/straightforward imple-
mentation that keeps the whole combinatorial set of equisupport expansions.
The edges may be distinguished so that many of them are not considered
during support count, but the nodes have to exist in order to perform full
pruning. We declare that the main merit of equisupport pruning is the fact
that many nodes can be deleted and even more need not be generated. In
dense databases the main bottleneck of Apriori is the heavy memory need of
the large candidate trie. This is not reduced by the PASCAL technique. On
the contrary, our solution solves this problem. The results of the experiments
shown in Figure 7.8 justifies this argumentation.

7.2.7 Intersection-based pruning

The classical candidate generation consists of two steps. First taking the union of two
frequent itemsets that have common (¢ — 1)-prefix, and then we check the subsets. This
latter step is called the complete pruning of Apriori. From a trie point of view, each
itemset that fulfills the complete pruning requirement can be obtained by taking the
union of the representations of two sibling nodes in the trie. In the so called simple
pruning we go through all nodes at depth ¢/ — 1, take the pairwise union of the children
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and do the complete pruning check. Two straightforward modifications can be applied
to reduce unnecessary work. On one hand, we do not check those subsets that are
obtained by removing the last and the one before the last elements of the union (the
resulting sets are the generators). On the other hand, the prune check is terminated as
soon as a subset is infrequent, i.e. not contained in the trie.

A problem with the simple pruning method is that it unnecessarily traverses some
parts of the trie many times. We illustrate this by an example. Let ABCD, ABCFE,
ABCF, ABCG be the four frequent 4-itemsets. When we check the subsets of potential
candidates ABCDFE, ABCDF, ABCDG, then we travel through nodes ABD, ACD
and BCD three times. This gets even worse if we take into consideration all potential
candidates that stem from node ABC'. We travel to each subset of ABC 6 times.

To save these superfluous traversals, we propose an intersection-based pruning
method [8]. Let us assume that we want to add new leaves to node P U x, where P
denotes the prefix. When checking the subsets of itemset P U {x,y}, we check P U =z,
PUy and QU{x,y} where @ C P and |Q|+1 = |P|. PUx, PUy are the generators, they
have to be frequent. Therefore when checking the subsets of P U {x,y} it is enough to
examine if item y extends nodes QUx for all () subsets. Similarly, when checking subsets
of PU{x,z} we examine if item z extends nodes @) U z for all ) C P. Consequently
node P U z is extended by those sibling items that extend all ) U z nodes, i.e. the
extending set equals to the intersection of labels of edges that start from nodes QQ U x.
This is the point where we save the traversals. If nodes that represent () itemsets are
stored, then checking the subsets of P U {x, z} means determining the child nodes of @)
nodes that are reached by label z and doing the intersection. Furthermore, if the edges
are stored ordered and we memorize the index of edges used in the actual search (and
it at a starting point in the next search), then in determining the items that extend the
children of p the edges of all () nodes are traversed at most once.

In intersection-based candidate generation when extending the children of P, we first
find nodes @), where Q C P, |Q] + 1 = |P|. Then we take each label i of nodes that
start from P and determine if x extends all ) nodes. If not, then P U z can not be
extended, otherwise we take the intersection of the extender labels of () U x and the
label of siblings P U x. The elements of the result set are the items that extend P U x,
because they meet the complete pruning requirement.

Note the real advantage of this method. The (¢ —2)-subset nodes of the P are reused,
hence the paths representing the subsets are traversed only once, instead of (72‘), where
n is the number of the children of the prefix.

Example 7.2.6 Let us assume that the trie obtained after removing infrequent itemsets
of size 4 and dead-end paths is depicted in Fig. |7.11,

To get the children of node ABCD that fulfill the complete pruning requirement (all
subsets are frequent), we find the nodes that represent the 2-subsets of the prefir (ABC').
These nodes are denoted by (Q1, QQ2, Q3. Next, we find their children that are reached
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Figure 7.11: Example: intersection-based pruning

by edges with label D. These children are denoted by Q, Q) and QY in the trie. The
intersection of the label sets associated to the children of the prefiz, Q, Q) and QY is:
{D,E,F,G}n{E,F,G}n{F,G} N {F} ={F}, hence only one child is added to node
ABCD, and F is the label of this new edge.

When determining the extender items of node ABCE, we find the new Q); node,
i.e. children of nodes ();, that are reached by edge with label E. The lack of any such
node indicates that ABCE cannot be extended, because it has a proper subset that is
infrequent.

Intersection-based candidate generation is not necessarily faster than the traditional
candidate generation. If the first, non-generator subset of the candidate is infrequent,
then the traditional method terminates quickly. On the contrary intersection-based
method first determines the nodes for all subsets of the prefix. Therefore the intersection-
based method is faster under the negative border, and the traditional method may be
the better solution when the elements of the negative border are generated. The distance
from the negative border, however, is not know in advance.

We tested intersection-based pruning with and without the equisupport technique
(Figure [7.12).

Some hardware friendliness diagrams are given in Figure[7.13

Obviously at databases where support count dominates, the overall run-time decrease
is insignificant. Experiments shows that at databases where candidate generation takes
a significant time of the overall run-time, the intersection-based candidate generation is
an efficient technique.

Equisupport pruning influences efficiency of intersection-based pruning at databases
which contain non-closed itemsets. Equisupport pruning reduces the number of support
count and candidate generation calls, because it replaces these operations with subset
enumeration. It is not known, however, how does the ratio of support count and can-
didate generation changes (this depends on the characteristics of the database). If the
candidate generation becomes more significant, then the advantage of the intersection-
based pruning grows.
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Figure 7.12: Speed-up ratios of intersection-based candidate generation without and
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7.2.8 Omitting complete pruning

Complete pruning is declared to be an inherent and important step of algorithm Apriori.
It seems to be natural to use pruning, since — in contrast to the DFS algorithms — all
subsets of a potential candidate are available. The main merit of Apriori against DF'S
algorithms is that Apriori generates a smaller number of candidates. In [8] it was
shown that the efficiency of Apriori is not necessarily attributed to complete pruning,
furthermore, complete pruning slows down Apriori most of the times. In the rest of the
paper we refer to Apriori that does not apply complete pruning (i.e. the second step of
the candidate generation is omitted) as Apriori-Noprune.

The advantage of the pruning is to reduce the number of candidates. The number
of candidates in Apriori equals to the number of frequent itemsets plus the number
of infrequent candidates, i.e. the negative border of the frequent itemsets. If pruning
is not used, then the number of infrequent candidates becomes the size of the order-
based negative border of the frequent itemsets, where the order corresponds to the order
used in converting the sets to sequences (An itemset I is an element of the order-based
negative border of F'if it is not in F', but its prefix P\’TH and the subsequent subset of 1
of the same size are in F'). It follows, that if we want to decrease the redundant work (i.e
determining a support of the infrequent candidates), then we have to use the order that
results in the smallest order-based negative border. This issue is further investigated in
Section|7.3, here let us accept that the ascending order according to supports is expected
to result in the minimal negative border.

The disadvantage of the pruning strategy is simple: we have to traverse some part
of the trie to decide if all subsets are frequent or not. Obviously this needs some time.

Here we state that pruning is not necessarily an important part of Apriori. This
statement is supported by the following observation, that applies in most cases:

INB=4(F)\ NB(F)| < |F|.

The left-hand side of the inequality gives the number of infrequent itemsets that
are not candidates in the original Apriori, but are candidates in Apriori-Noprune. So
the left-hand side is proportional to the extra work to be done by omitting pruning.
On the other hand, |F| is proportional to the extra work done by pruning. Candidate
generation with pruning checks all the maximal proper subsets of each element of F,
while Apriori-Noprune does not. The outcomes of the two approaches are the same for
frequent itemsets, but the pruning-based solution determines the outcome with much
more effort (i.e. traverses the trie many times).

Although the above inequality holds for most cases, this does not imply that pruning
is unnecessary, and slows down Apriori. The extra work is just proportional to the quan-
tities in the formulas above. Extra work caused by omitting pruning means determining
the support of some candidates. The resource requirement of this is affected by many
factors, such as the size of these candidates, the number of transactions, the number
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of elements in the transactions, and the length of matching prefixes in the transaction.
The extra work caused by pruning comes in a form of redundant traversals of the tree
during checking the subsets. This also depends on many other parameters.

As soon as the pruning strategy is omitted, Apriori can be further tuned by merging
the candidate generation and the infrequent node deletion phases. After removing the
infrequent children of a node, we extend each child the same way as we would do in
candidate generation. This way we spare an entire traversal of the trie. This solution
combines candidate generation and infrequent candidates removal phases.

This trick can also be used in the original Apriori, however as opposed to the
application of Apriori-Noprune — it does not necessarily speed up the algorithm. To
understand this, we have to observe that candidate generation is always after the in-
frequent node deletion phase, in which some leaves and even entire branches of the trie
may be removed. Since the trie is traversed many times during the complete pruning
checks of the candidate generation, this trie purge may result in a significant run-time
decrease. If the second step, and thus the numerous trie traversals are omitted, then
we can merge infrequent candidate removal and candidate generation phase without the
threat of causing performance degradation.

Figure|7.14 shows the performance gain of Apriori-Noprune compared to Apriori with
classical pruning. We also check the results when equisupport pruning was turned on.
This means full equisupport pruning in the case of classic Apriori and prefix equisupport
pruning in Apriori-Noprune.

Some hardware friendliness diagrams are given in Figure 7.15.

Experiments show that complete pruning is not necessarily an important step of
Apriori, furthermore it increases run-time most of the times. The highest difference
was at database BMS-WebView-1, where the run-time dropped to its quarter as soon as
complete pruning was omitted Similar to intersection-based candidate generation, the
equisupport pruning also changes the importance of complete pruning.

7.2.9 Summary of the techniques

We have presented many techniques that aim to reduce run-time or memory need.
The following table summarizes our results. The tick in the second (third) column
denotes that the technique is run-time (memory) safe. The sign S stands for the strict
safeness, i.e. for all databases the technique did not result in a slower (less memory-
efficient) implementation. If no sign is found, then this technique has no influence on
that measurement. For example routing strategies, when the edges are stored in an
ordered vector do not have effect on memory need.

The fourth column stores the largest run-time drop. For example if the run-time
of the base algorithm was 20 sec, and with the technique it dropped to 10 sec., then
this value is 2. Therefore higher numbers here mean more efficient algorithms. If the
technique resulted in a slower algorithm — for example the run-time increased to 30 sec
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Figure 7.14: Omitting complete pruning
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Figure 7.15: Hardware friendliness diagrams of Apriori and Apriori-Noprune
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then the fifth column stores the largest performance degradation (2/3 in this case).
The last two columns store the same indicators but for the memory consumption.

largest largest smallest
technique run- memory run- Smil.lem' memory  memory
d time need time Tunbime - eed need
. ratio . .
ratio ratio ratio
inhomogeneous trie
with special block S S 2.18 2.86
allocator
dead-end pruning S S 4.24 2.56
hybrid edge repre- S 1.62 0.94 1.37 0.97
sentation
transaction caching v/ 706 0.94 0.17
level 3 equisupport
. v v 105 0.77 42 0.88
pruning
prefix vs. level 3
equisupport prun- S S 3.35 1.9
ing
mter'sectlon—based v 6.12 0.98
pruning
omitting complete 7.36 0.81 0 0.76

pruning

Table 7.6: Summary of the techniques

7.3 The influence of item ordering

At the theoretical level we work with sets. In the implementations there exist no sets
but vectors, lists, arrays, trees. Sets are converted to sequences using a total order on
the items. The lexicographic order according to this order defines a total order on the
itemsets. The order greatly affects the algorithms and the speed-up techniques. Till
this point we carefully avoided this issue, but this subsection is dedicated to this topic.

7.3.1 The order-preserving assumption

In many FIM papers certain algorithms and speed-up techniques are explained with
the independence assumption. Independence assumption states that if the frequencies
of disjoint itemsets I; and Iy are respectively freq(l;) and freq(ly), then the frequency
of itemset I; U I is (or at least close to) freq(ly) - freq(13). This tries to encapsulate the
independence of two binary random variables, but the probabilities are substituted by
frequencies (relative supports). The assumption seems to contradict to our original goal
which is discovering unusual, unexpected, correlated patterns in the form of association
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rules. If independence holds then the itemset that consists of the most frequent items
would be largest itemset with the highest support. If we assume that item frequencies are
freq(iy) > freq(iy) > -+ - > freq(iy), then the size of the largest itemset would be k where
freq(iy) freq(iy) - - - freq(ix) > min_freq but freq(iy) freq(is) - - - freq(ixy1) < min_freq.
In general the number of frequent itemsets of size ¢ would be [{I = {i,is,... 0} :
freq(iy) freq(iz) - - - freq(iy) > min_freq}|.

We compared the distribution of frequent itemsets of real databases to their “inde-
pendent version”. The latter has the same item frequencies ad the original one, and
the frequencies for larger sets are derived from the independence assumption (formula).
The results of two randomly selected databases are seen in Figure[7.16.

Database: pumsb*, minsupp 13000 Database: kosarak, minsupp 840
1e+06 — - T . 1e+07 — .
independence —— independence ——
real real
100000 le+06
100000
10000
10000
1000 < ~
/ 1000 ¢-f
100 |
) 100 \
/ / \
10 ‘ \
/ 10 ¢
/ /
/
1 1
(o] 2 4 6 8 10 12 14 16 (0] 5 10 15 20

Figure 7.16: Distribution of the size of the frequent itemsets and the distribution of
frequent itemsets under independence assumption

We can see that reality is quite far form the assumption. We get similar consequences
when we compare the number of frequent sets, the size of the largest frequent set, the
average size of a frequent sets, etc.

When using a model we expect the consequences drawn from the model to be close
to reality. It seems that almost all observable consequences that are drawn from the
independence assumption have nothing to do with reality.

Does there exist a model that suits the characteristics of the frequent itemsets and
at the same time it can be used to make further consequences?

Here we propose the following assumption.

Definition 7.3.1 The order-preserving assumption requires that sup(X UY) <
sup(X U Z) holds whenever sup(Y') < sup(Z) for any disjoint sets X,Y, 7.

We get an equivalent definition if support is substituted with frequency. The order-
preserving assumption follows from the independence assumption, but not conversely.
An immediate consequence of the independence assumption is that sup(X UY) =
sup(X U Z), if sup(Y) = sup(Z). If we want that the relative orders according to
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frequencies of two itemsets are not changed when adding certain items to both itemsets,
then we have to modify slightly the definition.

Definition 7.3.2 The soft order-preserving assumption requires that sup(X UY) <
sup(X U Z) holds whenever sup(Y') < sup(Z) for any disjoint sets X,Y, Z.

Some immediate consequences for later use are listed in the following.

Corollary 7.3.3 Let I = {iy,ia,...,0s}. If sup(iy) < sup(iz) < --- < sup(ip), then
sup({i1,d9,...,ip1}) <sup(I') forallI' C I, with |I'| = (—1. Also, sup({is, is,...,i¢}) >
sup(I") for all I" C I, |I"| =0 — 1.

Proor: If I' = I\ {i;} then set X = I\ {i;,4}, Y = {i;} and Z = {i;}. The
order=preserving assumption gives the first claim. The second claim can be obtained
similarly. [

The soft order-preserving assumption version of the above corollary is the following.

Corollary 7.3.4 Let I be a set of items of size £. If soft order-preserving assumption,
holds, then the subset of size  — 1 that consists of the most (least) frequent items, that
has the largest (smallest) support among the subset of I of size £ — 1.

The corollary claims, that the subset of I that contains the most (least) frequent
items has the largest (smallest) support among all the subsets of I of the same size.

According to the following corollary (which gives an equivalent version of definition
7.3.6), the order-preserving assumption is hereditary to the projected databases, i.e.,
the ordering based on the supports of the items is equal to the ordering based on the
supports of the items in projected databases.

Corollary 7.3.5 Let T be a set of itemsets in which the order-preserving assumption
holds. Then supg x(Y) < supq x(Z) if and only if sups(Y) < supy(Z) holds for any
disjoint sets X, Y, Z.

PROOF: Using the fact that the support of XUY in T equals to the support of ¥ in T|X
we get the claim, since the definition of order-preserving assumption can be rewritten

such as: supq y(Y) < supgx(Z) holds whenever sup;(Y) < supg(Z) for any disjoint
sets X, Y, 7. [

The property, however, does not hold to the complement of the projected database.
This is proven by the following example. Let T = (Y, XZ, XWZ). It is easy to ver-
ify that the order-preserving assumption holds. Nevertheless sup(Y’) < sup(Z) while

supgx(Y) > supyx(Z).

74



CHAPTER 7. TECHNIQUES FOR IMPRTHENNFHRHNUENOK ITEM ORDERING

The order-preserving assumption is quite rigid, and its validity is sensitive to noise,
which is always present in real-world databases. If the probabilities of the occurrences
of two itemsets are equal, then it is quite likely that in their support in a dataset will be
close to each other but the chance of equality is small and converges to 0 as the number of
transactions increases. This applies to all of their extensions with independent itemsets.
Consequently, half of the extension does not fulfill the order preserving assumption.
Here we propose a relaxation of our assumption.

Definition 7.3.6 Let 0 < a <1 be a given constant. The « order-preserving assump-
tion requires that o - sup(X UY) < sup(X U Z) holds whenever sup(Y) < sup(Z) for
any disjoint sets X,Y, 7.

Obviously, if & = 1, then we get the soft order-preserving assumption.

It is quite easy to verify the validity of the o order-preserving assumption in a set
of itemsets S, in which downward closure property holds, in a sequence of itemset 7.
We check all different itemset pairs I, I’ € S if their intersection is nonempty. For such
itemset pairs we calculate I; = I\I', I, = I'\I. If the order of supports according to I, I
differs from the order of support according to I, I then the order-preserving assumption
fails, otherwise holds. The order-preserving ratio is then given by the number of itemset
pairs that result a positive check divided by the number of itemsets pairs considered (i.e.,
I and I are not disjoint sets). The order-preserving ratio can similarly be calculated
for the v order-preserving assumption. Table contains the order preserving ratio of the
frequent itemsets in our benchmark databases.

The figures show that the order-preserving assumption holds in most of the cases.

Now let us turn to the consequences of the order-preserving assumption that are
quite valuable in frequent itemset mining.

7.3.2 The number of candidates

The number of candidates is independent of the ordering in the case of Apriori. In
contrast, it depends on the prefixes and thus on the ordering as well in the case
of Eclat, Fp-growth and Apriori-Noprune. The set of infrequent candidates is equal to
the order based negative border of the frequent itemsets. An /-itemset is an element
of the order-based negative border if it is infrequent and its (¢ — 1)-element prefix and
the subsequent (with respect to the ordering) subset of the same size are frequent. The

following lemma indicates which ordering results in the smallest order based negative
border.

Lemma 7.3.7 If the order-preserving assumption holds, then the ascending order with
respect to the supports results in the smallest order based negative border.
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order-preserving ratio

database minsup 1 0.95 0.9
T40110D100 900 0.912 0.998  0.999
kosarak 1800 0.817 0.980  0.998
T1014D100K 8 0.690 0.693  0.726
connect 56 000 0.725 1.000  1.000

X 41 000 0.863 0.994  1.000
putns 38000 0.219 0.974  0.999
accidents 114 000 0.882 0.960 0.988
retail 11 0.870 0.876  0.909
BMS.POS 400 0.809 0.860  0.901

350 0.116 0.354  0.544

37 0.857 0.942  0.984
36 0.351 0.802 0.961

BMS-WebView-2 30 0.790 0.819  0.833
webdocs 220 000 0.877 0.966  0.990

1600 0.910 0.955  0.990

BMS-WebView-1

mushroom 900 0.868 0.896  0.913

100 0915 0.961  0.967

T10I5N1KP5KCO 10 0.790 0.809  0.819

8 0.714 0.729  0.739

T20I10N1KP5KC0 400 0.963 0.999  0.999

T30I15N1KP5KC0.25D200K 650 0.999 1.000 1.000

i 17000 0.850 0.963  0.986
pumsb

15000 0.434 0.833  0.928

Table 7.7: The order-preserving ratio of the frequent itemsets
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PROOF: For each element I = {iy,is,...4,} of the order-based negative border the
proper prefixes of I are frequent. Without loss of generality we can assume that #; <
iy < -+ <ig. If sup(i;) < sup(ij4) for all j =1,2,...,f — 1 and the order-preserving
assumption holds, then the corollary states that sup({iy,ia,..., 70 1}) < sup(I')
for all I' C I, where |I'| = ¢ — 1. Ttemset {iy,ia,...% 1} is the prefix which is frequent
and hence all proper subsets of I are frequent. Consequently NB~(F) = NB(F) if
< denotes the ascending order according to frequencies. By Corollary 2.0.8 (see page
no other ordering results in smaller number of candidates, hence the lemma follows.

O

Corollary 7.3.8 If order-preserving assumption holds, then
NB(F) = NB*45¢(F),

where F' denotes the set of frequent itemsets, and <asc denotes the ascending ordering
according to the supports.

7.3.3 Size of the trie

Itemsets inserted into a trie are first converted to sequences based on an ordering. The
ordering affects the shape and the number of nodes of the trie. This is illustrated by
the tries depicted in Figure[7.17. Both tries stores sets AB and AC. The first trie uses
ordering A < B < C the second uses the reverse.

Figure 7.17: tries storing the same sets but using different orderings

For the sake of reducing the memory need which has strong correlation to the traver-
sal times (see page(27), it would be useful to use the ordering that results in a trie with
minimal size. The size of the trie is given by the number of nodes. Comer and Sethi
proved in [13] that the minimal trie problem, i.e., to determine the ordering which gives a
minimal trie (denoted by Topr), is NP-complete. On the other hand, a simple heuristic
(which was employed in FP-growth) performs very well in practice: use the descending
order according to the frequencies. This is inspired by the fact that tries store any given
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prefix only once, and there is a higher chance of itemsets having the same prefixes if the
more frequent items are closer to the root.

Different orderings may result isomorphic tries (and different orderings can result in
a minimum-size trie). For example tries that store sets A, B, AB, AC' and use ordering
A< B < Cand A < C < A are isomorphic and minimal. Furthermore different
ordering may result different, non-isomorphic minimal tries. This is shown in Figure
7.18.

Topr T opr

Figure 7.18: Example: minimal non-isomorphic tries

Note that we have to distinguish two frequencies of the items; frequency in the
database, and frequency among the itemsets inserted into the trie. We call this latter
frequency as unweighted frequency. Obviously ordering based on the two values are
not necessary equal. If the elements of the database AB, AC, AD, BC, BC, BC then
A is the most frequent according to unweighted frequency, but according to database
frequency it is only in third place. Next we prove that under the order-preserving
assumption the two orderings are equal.

is obtained from T by keeping only the different elements (i.e. T* contains the same
itemsets as T but with multiplicity exactly one). The unweighted support of itemset
I in T equals to the support of I in T*, i.e.

uw_supq(I) = supq.(I).

Lemma 7.3.10 Let T be a sequence of itemsets over J. If order-preserving assumption
holds, then the ordering with respect to the unweighted support equals to the ordering with
respect to the support, i.e. if sup({i;} < sup({ix}) then uw_sup({i;} < uw_sup({ix}).

PROOF: We prove the statement by contradiction. Let us assume that sup(i) > supp(i')
but uw_sup(i) < uw_sup(i’). Let us denote the elements of the cover of i’ in T* by
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thothy, ...t (i €ty t; € T ), # t)). According to the order-preserving assumption
sup((t\)i'Ui) > sup(t) for all ¢ € cover’(i'). This is a contradiction, because the number
of (t\ ") Ui sets is smaller or equal than ww_supp(i'), they are different and all contain
i, therefore the size of uw_sup(i) cannot be less than uw_sup(s’). O

T=DESC TopT

Figure 7.19: Example: descending order does not result in the smallest trie

The failure of the descending order producing the minimum size trie stems from
the fact that the order-preserving assumption does not hold. Note that in the example
sup(Z) > sup(A), but sup(ZB) < sup(AB).

Conjecture 7.3.11 Let T be a set of itemsets and denote <prsc the descending order
of items according to the number of occurrences of the items in T. If order-preserving

T, i.e., there exists no ordering < such that T=(T) has fewer nodes than T=P#sc(T).

If the conjecture follows, then we know that the heuristic works fine under ideal
circumstances (the order-preserving assumption holds for all sets). Table[7.7 shows that
the real-world is “close” to the ideal, but still slightly different. One of the most valuable
knowledge of frequent itemset mining would be a formula about the relationship of the «
order-preserving ratio of a set of itemset T and the ratio of |T=*2£s¢(T)| and |Topr(7T)],
where Topr denotes a minimum-size trie.

7.3.4 Techniques in Apriori
Support count

One may tend to follow the observation a smaller memory need results in better data
locality and hence faster algorithms. Therefore we should use the descending order
according to the frequency when building the candidate trie. This is, however, just one
side of the problem.
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To understand the other side we have to recall the support count procedure. To
decide which candidates are contained in a given transaction, a part of the trie has to
be traversed. Each path of the traversals starts from the root. Some paths reach a leaf,
others do not. The number and the length of paths that reach a leaf is independent of
the ordering. This, however, does not apply to the length of the remaining paths. To
reduce the expected number of unnecessarily visited nodes, first we have to check if the
transaction contains the least frequent item since this is likely to provide the strongest
filtering among the items of the candidate, i.e. this is the item that is contained in the
least amount of transactions. Next, the second least frequent is advised to check, then
the third, and so on. The edges are checked from the root to the leaves, hence we expect
the least amount of redundant checks and thus the best run-time, if the order of items
corresponds to the ascending order according to the supports.

Figure 7.20: Example: Tries with different orders

7.20. The two tries store the same sets, but one in the left uses the descending
order (A < B < C < D) and the other the ascending order according to unweighted
frequencies. When determining the candidates in transaction {A, B, E, F'}. Nodes 0,1
and 2 are visited if descending order is used, while the search is terminated immediately
at the root in the case of the ascending order.

We know, that transaction caching using a trie or a patricia tree requires descending
order according to the frequencies in order to be storage efficient. In contrast, the
minimal number of redundant steps in the candidate trie during the support count
prefers ascending order. These two requirements can be satisfied at the same time by
a little trick. The items are recoded according to ascending order according to the
supports, but the items are stored descending in each transaction when inserting into
the cacher. Since the efficient support count (i.e. merge) requires the items of the
transaction to be stored ascendingly, we simply reverse each transaction when it is
retrieved from the cacher.

In summary, descending order is good for the compactness (and does not require
to reverse the transactions before being processed), while ascending order results in a
fewer redundant steps in the trie. Experiments show also that there is no absolute
winner; most of the times the ascending order results in the faster algorithm, sometimes
the descending order. For some results pertaining to this dichotony, see Figure [7.21.
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Values less than one mean that the Apriori that uses descending order according to the
frequencies is the faster.
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Figure 7.21: Ascending vs. Descending order according to the frequencies

Some hardware friendliness diagrams are given in Figure

In all experiments the transaction caching does not changes which ordering results
in the first place. This is attributed to the fact that we used low support threshold.
In such cases the memory need of a transaction cacher and the run-time of building it
are insignificant comparing to the memory need of the candidate trie and the run-time
of support count. Different ordering may be a better choice if we raise the support

threshold.
Pruning efficiency

There is a strong connection between the ordering and efficiency of the Apriori that
does not use complete pruning. We want to use the ordering that minimizes the num-
ber of false candidates. Candidates in Apriori-Noprune are the same as candidates in

81



7.3.

THE INFLUENERA PFHR EM ORTHRIGES FOR IMPROVING EFFICIENCY

all uops on BMS-POS at 200
300

3 uopsltick 3 uopsitick
2 uopsftick 2 uopsftick
250 | 1 uop/tick 4 600 1 uopttick &
stall m— stall m—
bogus uops bogus uops

nbogus uops
prefetch pending
r/w pending

GClockticks

Ase

DESC

700

all uops on accidents at 140000

500

GClockticks

nbogus uops
prefetch pending &
r/w pending ¢

Asc

DESC

Figure 7.22: Hardware friendliness diagrams of Aprioris with ascending and descending
order according to the frequencies

Eclat or FP-growth (see section [7.3.2) therefore the fastest Apriori-noprune is expected
when ascending order according to the frequencies is used. Experiments support this

conclusion.

Table [7.8 shows the ratio of the number infrequent candidates and the number of
frequent itemsets in the case of complete pruning, Apriori-Noprune with ascending and
descending order according to the supports.

database complete NOPRUNE NOPRUNE |GPESC\ p|
prune ASC DESC [CASC\F|
T40I110D100K 0.98 1.05 3.20 3.04
kosarak 0.05 0.74 1.61 2.16
T1014D100K 6.62 15.57 27.98 1.79
connect 0.0001 0.002 2.07 766.83
pumsb 0.008 0.03 0.82 22.71
accidents 0.03 0.03 2.90 86.78
retail 4.82 5.71 578.54 101.15
BMS-POS 0.56 0.59 30.98 52.10
BMS-WebView-1 0.002 0.02 0.09 3.53
BMS-WebView-2 0.05 0.16 3.28 20.18
webdocs 0.21 0.22 12.91 58.41
mushroom 0.001 0.005 2.87 515.85
T10I5N1KP5KC0.25D200 42.31 51.94 194.90 3.75
T20T10NTKP5KC0.25D200K 0.009 0.06 0.24 3.71
T30I15N1KP5KC0.25D200K 0.07 0.26 0.16 0.61
pumsb* 0.002 0.05 0.62 12.42

Table 7.8: Ratio of the number of infrequent candidates and the

itemsets

number of frequent

We can see that the number of infrequent candidates is much larger when the de-
scending order is used (check the values in the last column).

It follows from the rational that Apriori differs from Apriori-Noprune in terms of
sensitivity of the ordering. Both orderings has their advantage in Apriori, but in Apriori-
Noprune the drawback of descending order is dominating.
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FEvalutation

8.1 The battle of Apriori implementations

We have enrolled our three selected implementations (Apriori, Apriori-Noprune and
Apriori-MEMSAFE) in a competition with three known Apriori codes. Apriori-MEMSAFE
employs on-line candidate 2-itemset generation [19] and does not use transaction caching.
Apriori-Noprune omits the complete pruning phase. Apriori and Apriori--MEMSAFE
adapt the intersection-based candidate generation. Apriori-Noprune and Apriori use
transaction caching and apply a diagonal array for determining the supports of candi-
dates of size two. All three implementations use inhomogeneous trie with the special
block allocator, dead-end branch pruning, hybrid edge representation and full equisup-
port pruning.

We compared our implementation to three C/C++ implementations coded by Chris-
tian Borgeltﬁ , Bart Goethals? and Tingshao Zhu? respectively. This later was finally
excluded from the race, because it ran extremely slow, several orders of magnitude slower
than the others. We used the latest versions that are available on the authors’ website
at 15" December 2005.

We have tested two implementations from Christian Borgelt, the one that was sub-
mitted to FIMI'04 (Apriori-Borgelt-FIMI) and other that can be downloaded from the
webpage. We ran this implementation with two different parameters, in order to test the
speed- and memory-optimized version respectively (denoted by Apriori-Borgelt-Speed
and Apriori-Borgelt-Mem respectively). Apriori-Borgelt-Speed always consumed
the same amount of memory as Apriori-Borgelt-FIMI but sometimes ran slower.

In the memory optimized version hybrid edge representation is used and transactions
are not stored in the memory. The speed-optimized version uses a trie with offset-index

]http://fuzzy.cs.uni—magdeburg.de/Nborgelt/apriori.html
thtp://www.adrem.ua.ac.be/Ngoethals/software/
3http://www.cs.ualberta.ca/~tszhu/software.html
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edge representation, and a trie storing the transactions. It adapts a novel support
counting method, (the basis of which was described in section together with the
simple unimportant item filtering technique (see section [7.2.3).

Due to the space restrictions we show only a small number of test results. We up-
loaded all results to the page http://www.cs.bme.hu/~bodon/fim/test.html. Three
typical run-time plots are depicted in Figure

Database: T40110D100K Database: kosarak Database: BMS-WebView-1
1000 1400 T 1000 T T T T
Apriori-Goethals —— Apriori-Goethals —— Apriori-Goethals ——
900 Aprior-Borgelt \ Apriori-Borget N Apriori-Borgelt
Apriori-Bodon - wop | Apriori-Bodon -~ Apriori-Bodon -+

800 Apriori-Bodon-Noprune \ Apriori-Bodon-Noprune & \ Apriori-Bodon-Noprune &
Apriori-Bodon-owmenm \ Apriori-Bodon-owmen Apriori-Bodon-owmen
0 Apriori-Borgett-lowmem 1000 o ‘\ Apriori-Borgelt-lowmem 10 k riori-Borgelt-lowmem
f g g
g W 8w \ &
o500 ] 1 ] |
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215 1000 3 2 ke) 34 3% % kil
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Figure 8.1: Battle of the Apriori implementations, run-times

Goethals’ implementation is not competitive in speed with the other Apriori im-
plementations. Concerning just the lowest support threshold, Apriori-Borgelt-FIMI
finished in the first place in 5 cases and our Apriori in 11 cases. The following figure
shows the advantage of Apriori over Apriori-Borgelt-FIMI. Positive value means
that Apriori was faster than Apriori-Borgelt-FIMI.
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Figure 8.2: Borgelt vs. Bodon (run-times)

The highest advantage of Apriori-Borgelt-FIMI is at database T10I5N1KP5KCO0.-
25D200K where it is two times faster than Apriori. On the contrary, our Apriori often
outperformed Apriori-Borgelt-FIMI with an order of magnitude, and in several cases
Apriori-Borgelt-FIMI could not even cope with the task.
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Concerning memory-optimized versions, our implementation outperformed Borgelt’s
implementation in run-time in 13 cases.

The advantage of our solution is quite clear if we take a look at the memory need.
Our implementations consumed only a fraction of the memory need of Borgelt’s im-
plementation. This applies to all databases at all support thresholds. Three typical

memory-need plots are in Figure (8.3.
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Figure 8.3: Battle of the Apriori implementations, memory need

The comparison of the two main rivals, i.e. Apriori and Apriori-Borgelt-FIMI is

found in Fig. 8.4.
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Figure 8.4: Borgelt vs. Bodon (memory needs)

In summary, our code results in the fastest Apriori implementation in most of the
cases, and its memory requirement is outstanding in the field.

85



8.2. THE BATTLE OF ECLAT IMPLEMENTATIONSIAPTER 8. EVALUTATION

8.2 The battle of Eclat implementations
8.3 The battle of FP-growth implementations

8.4 Comparing Aprior, Eclat and FP-growth

In compared the three algorithms we endeavored to be as fair as possible. Common
methods (like frequent item mining, input/output operations, coding/decoding subset
enumeration) use the same code. We spend many efforts on making these common
methods as efficient as possible in order the algorithm specific codes be dominant in
run-time and memory need.

We determine the supports of the items by using a simple vector. The element at
index 7 belong to item 7. Initially all elements are zero, we take the transactions one-
by-one and increase the counter of those elements that occur in the actual transaction.

In input and output routines we use buffering (with a carefully chosen buffer size)
manual integer to string (and backward) conversion and low level file operation. To
further reduce the output of the result, which is quite dominant in dense datasets with
low support threshold (like database mushroom with minsup = 30000), we used a depth-
first output manager, which caches the string representation of the previously frequent
itemset written out. For further information and experiment results of this sophisticated
solution the reader is referred to [46].

TEST RESULTS COME HERE!!

The test results immediately proves that the often cited misbelief “The numerous
database scan is the reason for ineffectiveness of algorithm Apriori” has nothing to do
with the reality. Our Apriori implementation uses transaction caching (see section|7.2.1
thus Apriori scans the entire dataset only twice, the same times as Eclat and FP-growth
do. Apriori is still much slower than the counterparts in many cases.

8.5 The bottleneck of Apriori, Eclat and FP-growth

We have seen that there is no single best algorithm that outperforms the other algorithms
at every databases with every support thresholds. Each algorithm has its bottleneck.

On the contrary to the believes (see section[1.2), the reason why Apriori falls behind
in efficiency from Eclat and Fp-growth is that Apriori does not utilize the information
gained in the previous iteration. Although it determines the cover of all subsets of a
candidate in the previous iteration, this information is not used in determining the
support of the candidate. Eclat and FP-growth are smarter in this respect, i.e. only
those transactions are considered in determining the support of a candidate that contain
the prefix of the candidate.
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TO BE CONTINUED!
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Chapter

The furure: toward hybrid algorithms

The fact that each algorithm has its drawback, opens the gate toward hybrid algorithms.
The first hybrid algorithm AprioriHybrid appeared quite early. It is a combination of
Apriori and AprioriTid, based on the observation that Apriori performs better in the
initial phases while AprioriTid is a better choice in the later phases. The difference
between Apriori and AprioriTid lies in the support count method. AprioriTid uses a
table, each row of a table belongs to a transaction and a row at iteration ¢ contains
the candidates of size ¢ that occurs in the transaction (empty rows are removed from
the table). Both the support of a candidate and the table of the next iteration can be
counted directly from the table. The reason AprioriTid runs faster in the final iteration
is not the always emphasized property that it does not use the input data (IO operations
requires insignificant time compared to the other operations in the support count) but
the simplified support determination of a candidates.

The switch point depends on the size of the table. If the number of candidates
decreases and the size of the table fits into the memory then Apriori switches to Aprior-
iTid. In [18] is was shown that this heuristic does not necessarily works (with our words
it is neither memory nor run-time safe), because the number of candidates may grow
again, which may prevent the table fitting into the memory. This results in a significant
performance deterioration.

The second hybrid solution was proposed in [26] where the authors proposed to use
Apriori is the beginning and then switch to Eclat. Unfortunately, the main question,
i.e. when to do the switch is not answered and can be simply set by a parameter. In [19]
it was shown that the hybrid algorithm that switches to Eclat after the second iteration
and uses the array-based technique to determine the support of the pairs outperforms
Apriori and Eclat at many databases.Since the efficiency of Apriori and Eclat fall far
behind from the efficiency of our Apriori and Eclat, this observation does not necessarily
hold. Also to understand this hybrid solution we don’t have to know anything about
Apriori and its speed-up techniques, hence we do not regard this solution as a hybrid
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method, but rather a modification of Eclat.

We believe that the first remarkable hybrid solution is algorithm DCI [36] whose
improvement kDCI [38] turned out to be one of the most successful FIM implementations
in 2003. In the beginning it works as an Apriori that used prefix-array to store the
candidates and applies the unimportant item filtering technique in order to reduce the
size of the database. As soon as the database fits into the memory it switches to a
novel intersection-based counting method. Moreover, it uses a heuristics to decide if the
input database is dense or sparse and chooses the counting procedure that is expected
to perform better.

9.1 Conclusion
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