
A Survey on Frequent Itemset Mining

A Survey on Frequent Itemset Miningin preparation
by Feren
 Bodon

Department of Computer S
ien
e and Information TheoryBudapest University of Te
hnology and E
onomi
sBudapestApril 28, 2006

Prefa
e
The frequent itemset mining problem �rst has been formulated in 1993 as the
ompu-tational relevant step in asso
iation rule mining. Given a sequen
e of itemsets, we haveto �nd itemsets that are
ontained as a subset in more than a given number of elementsof the sequen
e. More than 180 papers have been published about algorithms to solvethis task, most of them de
lared to be the most eÆ
ient. The open-sour
e
ompetition,whi
h was organized ten years after the problem's birth, proved that the truth is farfrom the
laims and the data stru
ture and implementation issues need to be polishedeven for the basi
 algorithms.In this survey we investigate data stru
ture and implementation details of the threemost important FIM algorithms Apriori, E
lat, FP-growth, examine their advantagesand disadvantages. Besides, we present new te
hniques to speed-up the basi
 algorithms.

v

Contents
1 Introdu
tion 11.1 The arena of FIM algorithms; a short history 31.2 Common misbelieves . 31.3 Algorithmi
 aspe
ts of the modern pro
essors' features 51.3.1 Memory hierar
hies, data lo
ality: 51.3.2 Pipeline pro
essing, bran
h predi
tion: 61.4 A Frequent Pattern Mining Template Library 62 The Frequent Itemset Mining Problem 93 Base Algorithms 133.1 Bottom-up FIM algorithms . 133.2 Breadth-�rst, iterative vs. depth-�rst, re
ursive algorithms 143.3 Te
hniques . 153.4 Graphi
al presentation of the experiments 153.5 The trie and its variants . 173.5.1 The representation of the list of edges 173.5.2 Index vs. pointer-based trie . 193.5.3 Patri
ia trie . 204 Algorithm Apriori 234.1 The trie of Apriori . 264.1.1 Support Counting . 264.1.2 Removing Infrequent Candidates 264.1.3 Candidate Generation . 274.2 Compa
tness of the trie . 274.3 Inhomogeneous trie . 294.4 Removing Dead-end Bran
hes . 30vii

4.5 Routing strategies at the nodes . 334.5.1 Routing strategies in the
ase of ordered-list edge representation . 344.5.2 Can we speed up binary sear
h-based routing strategies? 374.5.3 Routing strategies in the
ase of di�erent edge representation . . . 394.6 Determining the support of 2-itemset
andidates 414.7 Determining the support of 3-itemset
andidates 425 Algorithm E
lat 436 Algorithm FPgrowth 457 Te
hniques for improving eÆ
ien
y 477.1 Pruning equisupport extensions . 477.2 Improvements used in Apriori . 487.2.1 Ca
hing the transa
tions . 527.2.2 Support
ount of Christian Borgelt 557.2.3 Filtering unimportant items from the transa
tions 577.2.4 Equisupport pruning . 587.2.5 Level 2 equisupport pruning . 607.2.6 Level 2 equisupport pruning and further dead-end pruning 617.2.7 Interse
tion-based pruning . 657.2.8 Omitting
omplete pruning . 697.2.9 Summary of the te
hniques . 707.3 The in
uen
e of item ordering . 727.3.1 The order-preserving assumption 727.3.2 The number of
andidates . 757.3.3 Size of the trie . 777.3.4 Te
hniques in Apriori . 798 Evalutation 838.1 The battle of Apriori implementations 838.2 The battle of E
lat implementations . 868.3 The battle of FP-growth implementations 868.4 Comparing Aprior, E
lat and FP-growth 868.5 The bottlene
k of Apriori, E
lat and FP-growth 869 The furure: toward hybrid algorithms 899.1 Con
lusion . 90

Chapter1Introdu
tionFrequent itemset mining (FIM) is a very young resear
h �eld born in 1993 [3℄. It aimsto �nd frequently o

urring subsets in a sequen
e of sets. The FIM problem appearsas a subproblem in many other data mining �elds like asso
iation rule dis
overy [3℄,
orrelations,
lassi�
ation [27℄,
lustering [28℄, Web mining [55℄, [34℄. The fa
t thatalgorithms and te
hniques developed in FIM are also used su

essfully in �nding frequentpatterns of other types (like sequen
es, episodes, rooted ordered/unordered trees, labeledgraphs and boolean formulas) also proves the signi�
an
e of the �eld. The frequent setsplay an important role in many appli
ation su
h as
ustomers relationship management,improving the eÆ
ien
y of ele
troni

ommer
e [48℄, bioinformati
s, DNA and proteinanalysis, indu
tive databases [31℄, query expansion [39℄, network intrusion dete
tion [29℄,et
.After the problem was born, many algorithms were proposed, the authors of ea
halgorithms
laimed that their algorithms are the fastest. The eÆ
ien
y was shownby run-time plots on a few databases and for the
omparisons the authors
oded the
ounterpart algorithms as well. Unfortunately, neither the proposed algorithm, nor theimplementation of the
ounterpart algorithm were publi
 available therefore the
laimedresults were not reprodu
ible.Those, who wanted to �nd the real values, the real
ontributions were not satis�edwith la
k of reprodu
ibility. The �rst step toward the quality assuran
e was the pub-li
ation of some independent authors who implemented and
ompared some publishedalgorithms [25℄ [19℄ [26℄ [9℄ [17℄. Unfortunately, these implementations are less e�e
tivethan the best implementations (if there exists su
h)of the same algorithms, and oftenthey do not even show the same performan
e
hara
teristi
s. This is the reason, webelieve that the
onsequen
es drawn form the experiments of su
h implementations arenot ne
essarily attributed to the algorithms themselves, but rather to the non-optimizedimplementation.A better and less time-
onsuming solution was published by Zheng et al. [59℄, where1

CHAPTER 1. INTRODUCTIONindependent referees
olle
ted the implementations from the authors themselves, andrun the experiments. The
ase of Apriori, E
lat and FP-growth has shown the mosteÆ
ient implementation of an algorithm is not ne
essarily developed by the inventors ofthe algorithm, therefore the
omparison should be open to everybody. This lead to thepubli
, open-sour
e
ompetitions of FIM implementation [16℄ in 2003 and 2004. The im-portan
e of the FIMI
ontests is inevitable; it stressed the requirement of reprodu
ibilityand provided some baseline implementation and test datasets for the resear
h
ommu-nity. The most important question, however, is not answered. We still don't know thereal reasons of the eÆ
ien
y, the borders and the bottlene
k of some implementations.Does the eÆ
ien
y of best implementation stems from the algorithm itself or from thesophisti
ated data stru
ture? Or the outstanding run-time is attributed to the brilliantprogramming te
hnique?Although we agree with the view \Exposition,
riti
ism, appre
iation, is work forse
ond-rate minds."1 we believe that the publishing of data mining algorithms hasrea
hed the point when a theoreti
al analysis and a
omprehensive studies are moreuseful to the
ommunity than new algorithms. It seems that we have moved from the\We are drowning in information, but starving for knowledge" to the \We are drowningin methods, but starving for solutions" era.Even now, after the numerous publi
ation there are many misbelieves, misunder-standing about the eÆ
ien
y of
ertain algorithms. Most reasoning in textbooks areeither not true or they are not the real reason of an algorithm's eÆ
ien
y.Frequent itemset mining is fortunate
ompared to other the data mining �elds like
lassi�
ation and
lustering, be
ause the problem
an be easily formulated. It su�ers,however, from the la
k of evaluation method, and from the fa
t that it is easy to
reatea database whi
h is suitable to demonstrate arbitrary ineÆ
ient algorithm.In the beginning this was fortunate, be
ause the opportunity of the easy publi
ationattra
ted many resear
hers, and this has raised frequent itemset mining as one of themost popular �eld of the 90s. Unfortunately the high number of published algorithms,the la
k of standard terminology,
omparisons and theoreti
al results led to a
haos andresulted in an unexpressed loss of
redibility of the �eld.An eÆ
ient FIM program is an implementation of a widely known and basi
 FIMalgorithm together with many data stru
ture and implementation te
hnique. The basealgorithm alone is not
ompetitive with its
ounterpart that adapts speed-up te
hniques.This is the reasons we believe that speed-up te
hniques and the base algorithm areinseparable and there is no point stating anything about the base algorithm withoutexamine the in
uen
e of the statement to the te
hniques. The FIM world is further
ompli
ated by the fa
t that the te
hniques are not independent of ea
h other, i.e. oneredu
es, the other in
reases the in
uen
e of a third te
hnique. A
tually, the eÆ
ien
yof almost any arbitrary simple idea,
an be veri�ed by
arefully
hoosing the other1G H Hardy. A Mathemati
ian's Apology (London 1941).2

CHAPTER 1. INTRODUCTION1.1. THE ARENA OF FIM ALGORITHMS; A SHORT HISTORYte
hniques, whi
h resulted in the large number of publi
ations. To reveal the truth, wehave to examine the base algorithms, the te
hniques alone and their in
uen
e on ea
hother, and the theoreti
al statements have to be veri�ed with a
omprehensive set ofexperiments. Su
h publi
ation has not born yet.Our goal is twofold. First we would like to
larify the three most important al-gorithms of the �eld, i.e. Apriori, E
lat and FP-growth. We believe that the imple-mentation of the fastest Apriori, E
lat and FP-growth, the most
omprehensive set ofexperiments and the development of a template FIM library entitles us. Se
ond, e wetry to provide a notation and terminology that is as
on
ise,
ompa
t and
oherent aspossible. In the literature, often di�erent names have been used. But as the same enti-ties often got di�erent names and there
learly is no
onvergen
e in notation moreover,the histori
al terminonolgy sometimes obs
ures more than it helps. So we felt obligedto provide a base for further
ommon understanding. For referen
e, we always providethe most
ommon histori
al names in apostrophes.1.1 The arena of FIM algorithms; a short historyThe �rst FIM algorithm AIS was published in the paper that presented the problemitself [3℄. A year later the same authors published Apriori, whi
h is the widest-knownalgorithm even nowadays. In the next few years many Apriori modi�
ations were pro-posed, DHP [40℄, DIC [12℄, Partition [49℄ and the sampling algorithm [52℄ are the mostfamous ones. These algorithms are regarded obsolete; there exists no publi
 implemen-tation of any of them that is
ompetitive with today's algorithms. In 1996 Zaki et al.[58℄ published algorithm E
lat and four years later Han et al. [22℄ presented FP-growth.Sin
e FP-growth was shown not to perform well on sparse datasets, the authors im-proved their solution and published H-mine [42℄. A very eÆ
ient Apriori mutant DCI,whi
h adapts hybrid support
ount was presented by Orlando et al. [36℄.2003 was a milestone in the history of frequent itemset mining. The �rst openFIM
ompetition was organized [16℄. Two FP-growth implementations (FP-growth* byGrahne and Zhu [20℄ and Patri
ia by Pietra
aprina and Zandolin [43℄), a modi�
ationof DIC [38℄ and a highly optimized E
lat
alled l
m by [53℄ were standing out fromthe �eld of
ompetitors. L
m was further improved and submitted to the se
ond FIMI
ompetition, where a brand new FP-growth implementation by R�a
z [45℄ overtook the�rst pla
e from FP-growth* and Patri
ia.1.2 Common misbelievesIn this se
tion we list some
ommon believes that are false and led the resear
hes intowrong dire
tion. 3

1.2. COMMON MISBELIEVES CHAPTER 1. INTRODUCTION� The eÆ
ien
y is not primarily determined by the number of s
an of the database.In the early era of the FIM many e�orts fo
used on redu
ing the number ofdatabase s
an of Apriori. This led to algorithms DIC [12℄, Partition [49℄, et
.Although there exists no publi
 implementation of these algorithms that outper-form the most widespread Apriori [11℄[9℄, they are quite favored in textbooks.� Algorithm FP-growth do generates
andidates, furthermore it generates more
an-didates than Apriori. An itemset is
alled
andidate if its support is determined,i.e. a spa
e for
ounter is reserved in the memory. A
tually FP-growth determinesthe supports of only 1-itemsets, but then it does it re
ursively in the proje
teddatabase. For example if item B o

urs in a transa
tion that is proje
ted to itemA, then the support of itemset AB is determined.� The number of
andidates is not the primary fa
tor that determines the eÆ
ien
yof an algorithm. We will see that E
lat and FP-growth generates more
andidatethan Apriori, nevertheless they outperform Apriori most of the
ases. The sameapplies to Apriori and DHP, it is easy to present databases where DHP generatesfewer
andidates, but runs slower. Analysis that use only these numbers (like [24℄)have nothing to do with the real performan
e. To understand the performan
e, wehave take into
onsideration the number of
andidates, the way they are generatedand their support are determined.� FP-tree (or trie) is not ne
essarily a
ondensed representation of the database.Worst-
ase the size of the FP-tree is four times as mu
h as the size of the database.In many
ases a simple ve
tor that stores the transa
tions that are deprived of theinfrequent items needs less memory than an FP-tree. See Se
tion 7.2.1 for furtherdetails.� Support
ount is always the most time-
onsuming fun
tion in Apriori. In dense,medium-size databases the
andidate generation dominates the run-time.� Generating
andidates of size two is not the bottlene
k of algorithm Apriori. Thismight have been true in 1997 when the available memories were mu
h smallerand fewer
andidates �t into the memory. With todays' memory
apa
ities thisrestri
tion no longer lives. See se
tion 7.2 for more details about the bottlene
k ofApriori.� The numerous database s
an is not the bottlene
k of algorithm Apriori. We knowthat Apriori s
ans the database as many times as the size of the largest
andidates.The time required by the I/O operations is only a small fra
tion of time requiredby the support
ount and almost never dominates the run-time of Apriori.4

CHAPTER 1. INTRODUCTION1.3. ALGORITHMIC ASPECTS OF THE MODERN PROCESSORS' FEATURES1.3 Algorithmi
 aspe
ts of the modern pro
essors'featuresMany resear
hers tend to analyze their algorithms by using the external memory model.Due to the huge memory sizes, most databases �t into the main memory, whi
h leads tothe usage of the simpler random a

ess model (RAM) (also
alled von Neumann model[54℄ named after the Hungarian born John von Neumann who proposed �rst this ar
hi-te
ture). The pre
ise model of the modern pro
essors, however, is more sophisti
atedthan the RAM model, whi
h is the reason that the analysis has often nothing to do withthe real run-times. For an ex
ellent overview about the
hanges in
lassi
al algorithmrequired by the new model, the reader is referred to [33℄. The most important featuresof modern pro
essors, whi
h have to be kept in mind by a data mining programmer, arethe memory hierar
hy and the pipeline pro
essing.1.3.1 Memory hierar
hies, data lo
ality:The memory is not one big blo
k but rather a hierar
hy of memories with di�erentsizes, a

ess laten
ies and a

ess numbers. The larger the memory the longer it takesto a

ess it. The members of the hierar
hy are registers, (few kilobytes of) L1
a
he,(few megabytes of) L2
a
he, sometimes L3
a
he, (few gigabytes of) main memory andhard disk. The data are
opied from the main memory to the L2
a
he and from L2 toL1
a
he in blo
ks. The size of blo
k (also
alled
a
he line size) for
opying from L2 toL1
a
he is 128 bytes in the
ase of Pentium 4 pro
essors.The blo
k pro
essing brings in some important algorithmi
 aspe
ts. Rea
hing a singlebit from a slower memory takes the same time as rea
hing a whole blo
k. Pro
essing thedata that is in the same blo
k does not require an other slow memory a

ess operation.Therefore data lo
ality, the requirement that data items whi
h are pro
essed
lose toea
h other in time, should be lo
ated
lose to ea
h other in memory, is a immenselyimportant issue, whi
h a�e
t signi�
antly the running time. Data near the
urrentlypro
essed data should
ontain many items, whi
h will be pro
essed in the near future.When a data has to be pro
essed, it has to be moved into the registers. Sometimesit is already there, be
ause it was used in the previous instru
tions. Due to the limitednumber of registers, it is more probably that the data is lo
ated in L1, L2
a
he or inmain memory. It may even be lo
ated on the hard disk, if the memory usage of thealgorithm is so large, that the operating system has to swap. We say a data a

ess
auses
a
he miss if it is lo
ated in L2
a
he or main memory. Although the pro
essor mayperform another operations while the data is fet
hed, the performan
e of the pro
essorget far from its maximum. The pro
essor is
apable to do 1000 basi
 operations (likeaddition) during the time the data is fet
hed from the main memory. In summary, whendesigning the data stru
ture { algorithm pair, we have to endeavor to rea
h high data5

1.4. A FREQUENT PATTERN MINING TEMPLATE LIBRARYCHAPTER 1. INTRODUCTIONlo
ality so that
a
he misses are avoided.1.3.2 Pipeline pro
essing, bran
h predi
tion:The instru
tions a programmer works with are exe
uted as a sequen
e of many mi
roop-erations (u-ops). The operations are not pro
essed individually, one-by-one after ea
hother. Instead, a parallel pro
essing is done by using a pipeline. Unfortunately, thedata dependen
y and the
onditions ruin the eÆ
ien
y of parallelism. Data dependen
yo

urs when an instru
tion depends on the results of a previous instru
tion. Bran
hpredi
tion means predi
ting the output of a
ondition and loading the predi
ted opera-tions into the pipeline. If the predi
tion turns out to be false, then the pipeline has tobe
ushed and the
orre
t values have to be reloaded to the registers. These problems
an be often over
ome by di�erent te
hniques (like
ode reordering), whi
h are doneautomati
ally by the
ompiler. We still have to take data independen
e and bran
hpredi
tion into
onsideration when designing a
omputation intensive algorithm.The pipeline pro
essing makes it possible to exe
ute more than one instru
tion dur-ing a
lo
kti
k. The problems mentioned above are the reasons for being the averageperforman
e of the pro
essor mu
h less than the optimal. We say the pro
essor stalls,if it
an not exe
ute an operation in the a
tual
lo
kti
k.Unne
essary
onditions may ruin eÆ
ien
y, but this is not always the
ase. Thebran
h predi
tion is \intelligent" in the sense that it learns if the out
ome of the
on-dition never
hanges, and sets the predi
tion a

ordingly. Therefore, a 100% true (or)false
ondition never ruins eÆ
ien
y at all.1.4 A Frequent Pattern Mining Template LibraryThose who believe that their work is of high value, often say, that the main problem offrequent pattern mining is the la
k of reprodu
ibility and the impossibility of veri�
ation.In the beginning of the FPM era a typi
al paper proposed some new te
hniques,reasoned with some intuitive, informal thoughts and showed its eÆ
ien
y on some
are-fully generated datasets. This pro
edure led to indignation, be
ause the eÆ
ien
y ofthe implementation of the rival algorithm was often signi�
antly below the eÆ
ien
y ofthe implementation done by the original authors. The generality, drawba
ks, limits ofthe proposed algorithm were rarely dis
ussed.Fortunately, this era qui
kly
losed after some famous implementations were madepubli
ly available, and at the
onferen
es of high standards it was required that theproposed algorithms be
ompared with the known implementations. The level was raisedfurther by the two FIMI
ompetitions. Now we have ultrafast FIM implementations,nevertheless nobody exa
tly knows why do they perform so well, what are the limitationsof the solutions, what kind of input data they prefer. They are like bla
k-boxes, and6

CHAPTER 1. INTRODUCTION1.4. A FREQUENT PATTERN MINING TEMPLATE LIBRARYonly the authors
an
hange the parts of the implementation, whi
h is attributed tothe highly optimized, non-obje
t oriented
odes, whi
h are almost impossible to read byother resear
hers.If we would like to understand the performan
e e�e
t of all parts of a
ode, we haveto make it modularized. This is not a trivial task in a highly optimized environment. In[46℄ we presented some te
hniques, whi
h are based on templated and in-line fun
tions,to make a
ode obje
t-oriented without sa
ri�
ing eÆ
ien
y. To a
hieve a perfe
t FPMworld, obje
t oriented
odes are not enough yet. The
odes have to be in a library,where any part of an implementation
an be repla
ed by an other element of the samefun
tionality and any te
hnique
an be swit
hed on and o�. This way ea
h part ofan algorithm
an be tested separately and together with other te
hniques. We
anmeasure how does a
ertain solution
ontribute to the �nal performan
e, how do di�erentte
hniques assist or hold ba
k ea
h other.These prin
iples were followed in building up our FPM template library, whi
h
on-tains our fully pluggable Apriori, E
lat and FP-growth implementations that are
om-petitive with (and in most of the
ases outperform) the bla
k-box implementations. Forexample in our Apriori algorithm di�erent template
lasses are responsible for doingthe support
ounting, the
andidate generation,
oding and de
oding the items,
a
hingthe transa
tion. All te
hniques like, dead-end pruning, equisupport extension, et
.
anbe turned on and o� by a template parameter. The data stru
ture is also a templateparameter. If it is a trie, then the representation of the list of edges is given by an othertemplate
lass, in whi
h even the ve
tor representation is pluggable, therefore we
an
hose STL ve
tor or our lightweight, self-made ve
tor.The FPM template library made possible to
ondu
t a
omprehensive set of exper-iments with reasonable e�ort. In a bla
k-box system this would have required a lot oflaborious and error-prone work. The library is made publi
ly available and started tobe used by other resear
hers.

7

1.4. A FREQUENT PATTERN MINING TEMPLATE LIBRARYCHAPTER 1. INTRODUCTION

8

Chapter2The Frequent Itemset Mining ProblemLet I be a set of uninterpreted symbols
alled items. Any subset I � I is
alled anitemset.Let T = ht1; : : : ; tni be a sequen
e of itemsets
alled data (also
alled as transa
tiondatabase). Its elements t 2 T will be
alled data itemsets or transa
tions1. For anyitemset I � I we de�ne the set
overT(I) := ft 2 T j I � tgof data itemsets
ontaining I as the
over of I. The size of the
oversupT(I) := j
overT(I)jis
alled support. Given a lower support threshold minsup
alledminimum support,the set FT;minsup := fI � I j supT(I) � minsupgis
alled the set of frequent itemsets.The frequent itemset mining (FIM) task then is, given data T and a lowersupport threshold minsup, to
ompute the set F of all frequent itemsets.Histori
ally, the support threshold was de�ned as a relative measure to the numberof transa
tions, i.e j
overT(I)jjTj and a relative support threshold in interval [0; 1℄ was given.The data mining
ommunity tended to
hange the de�nition, and by today, the absolutesupport is the default. In the rest of the paper we refer to the relative support asfrequen
y and denote supT(I)jTj by freqT(I) and minsupjTj by minfreq.1A large part of the resear
h
ommunity de�nes the data as a multi-set of itemsets or as a binaryrelation over a set of items and a set of transa
tion (bipartite graph-based de�nition). It is a
tually amatter of taste sin
e the three de�nitions result in an equivalent problem statement. We have de
idedfor sequen
e-based de�nition be
ause, in pra
ti
e, the data is a
tually given as sequen
e .9

CHAPTER 2. THE FREQUENT ITEMSET MINING PROBLEMWe will often illustrate de�nitions and methods by examples where the items aredenoted by
apital letters of the English alphabet. For the sake of simpli
ity, we oftenomit bra
es and
ommas when denoting an itemset. For example, we write AEDGinstead of the pre
ise form fA;E;D;Gg.There are some notions that are heavily used throughout the paper. Next, we givethe de�nitions for them.In a set of itemsets S the downward
losure property holds, if I 0 2 S for allI 0 � I and all I 2 S. A frequent itemset I is maximal if there exist no proper supersetof I in I that is frequent. An itemset I is
losed [41℄[57℄ if there exist no proper supersetof I that has the same support as I.Corollary 2.0.1 All maximal frequent itemsets are
losed.De�nition 2.0.2 The negative border of a set of itemsets F (denoted by NB(F))
ontains the itemsets that are not elements of F , but all their proper maximal subsetsare in F . FormallyNB(F) := fIjI 62 F and I 0 2 F for all I 0 � I su
h that jI 0j+ 1 = jIjg:In poset theory the negative border is
alled the minimal, proper upper bound.Example 2.0.3 Let I = fA;B;C;Dg and F = f;; A; B; C;AB;AC; g. Then NB(F) =fBC;Dg.De�nition 2.0.4 Let � denote a total order on I. The `-element pre�x of itemset I(` � jIj), whi
h is denoted by PÌ , is the `-element subset of I that
ontains the ` smallestelements of I with respe
t to the ordering �.By de�nition P 0I = ; for any I itemset, i.e. the empty set is the zero-size pre�x of allitemsets.Example 2.0.5 Let I = fA;B;C;D;Eg and � denote the alphabeti
 order over I.Here, P 2ABC = AB and P 1BDE = B.De�nition 2.0.6 The order based negative border of a set of itemsets F
ontainsthe itemsets I that are not elements of F , but their pre�x of size jIj�1 and the subsequentsubset of size jIj � 1 are elements of F . Here, subsequent is understood with respe
t tothe ordering de�ned on the power set of I. Formally:NB�(F) := fIjI 62 F and P jIj�1I 2 F;Q 2 F , where P jIj�1I � Q � Q0 (2.1)for all Q0 � I su
h that jQ0j+ 1 = jIj; Q0 6= P jIj�1I ; Q0 6= Qg:(2.2)By de�nition item i is in NB�(F) if fig is not in of F and the empty set is in F .10

CHAPTER 2. THE FREQUENT ITEMSET MINING PROBLEMExample 2.0.7 Let I = fA;B;C;D;Eg , F = f;; A; B; C;AB;ACg and for any item-sets of the same size I; J let I � J if I lexi
ographi
ally pre
edes J. Then NB�(F) =fABC;BC;Dg.Corollary 2.0.8 For any itemset I, F � 2I and � we haveNB(F) � NB�(F):In depth-�rst like algorithms the notion proje
ted database plays an importantrole.De�nition 2.0.9 Let T be a transa
tion database over I. The I-proje
ted database ofT (whi
h is denoted by TjI)
onsists of the elements of T that
ontain I.The sequen
e of transa
tions that are not
ontained in the I proje
ted database isdenoted by TjI and
alled the
omplement of the proje
ted database. Obviously,no element of TjI
ontains I.For example hABC;AE;BCE;BCEijfBg = hABC;BCE;BCEi, hABC;AE;BCEijfAEg =hAEi and hABC;AE;BCEijfAEg = hABC;BCEi.

11

CHAPTER 2. THE FREQUENT ITEMSET MINING PROBLEM

12

Chapter3Base AlgorithmsThere have been many di�erent algorithms proposed for frequent itemset mining. Al-though most of these algorithms are variants of other algorithms, sometimes small orobvious, sometimes larger or more intri
ate, for marketing purposes most of them
omeby their own names, making it rather hard to see the
ommon features as well as thespe
i�
 di�eren
es.All these algorithms
an be
ategorized as variants of one of three di�erent basealgorithms, Apriori, E
lat and FP-growth. Furthermore, E
lat and FP-growth arethe same algorithms ex
ept that they use a di�erent data stru
ture. Nevertheless, wedistinguish them for histori
al reasons.3.1 Bottom-up FIM algorithmsThe initial step is
ommon in all algorithms. We s
an the database on
e to determinethe support of every item, and then sele
t the frequent ones. Without loss of generality,we assume that frequent items are denoted by
onse
utive integers starting from 0.In the latter phases of the algorithms ea
h transa
tion is �ltered before being pro-
essed, i.e. infrequent items are removed. Most of the te
hniques make the assumptionthat the (frequent) items are
oded with nonnegative integers. Therefore ea
h transa
-tion is �ltered, and re
oded. Obviously, before writing out the results the items have tobe
oded ba
k.Apriori, E
lat and FP-growth perform a bottom-up traversal of the sear
h spa
e,i.e. starting from the empty set they determine the frequent itemsets in a growingmanner. To avoid dupli
ate
he
king of the same itemset all FIM algorithm are basedon an ordering of the items. The lexi
ographi
 extension of this ordering makes itpossible to order the itemsets. It would be impossible to determine the support of everypossible itemset (their number is exponential in jIj) therefore the algorithms restri
t13

3.2. BREADTH-FIRST, ITERATIVE VS. DEPTH-FIRST, RECURSIVEALGORITHMS CHAPTER 3. BASE ALGORITHMStheir attention to the so
alled
andidates. In general a
andidate is an itemset whosesupport is determined.Bottom-up sear
h algorithms turned out to be more eÆ
ient algorithms than thosethat perform top-down or a middle-way top-down bottom-up sear
h (su
h as algorithmsPin
er [30℄ and CBW [51℄). This is attributed to the fa
t that the maximal frequentitemset border is
loser to the empty set than to I, i.e. in general the size of the largestfrequent set is mu
h less than jIj.3.2 Breadth-�rst, iterative vs. depth-�rst, re
ursivealgorithmsApriori is an iterative, breadth-�rst algorithm. In the iteration step ` it determines thefrequent itemsets of size `. E
lat and FP-growth, on the
ontrary, are re
ursive, depth-�rst-like algorithms. Given a set of frequent itemsets (denoted by F+P) with a
ommonmaximal proper pre�x P and of size jP j + 1, it takes the itemsets I 2 F+P one-by-oneand determines the frequent itemsets whose pre�x is I. The sear
h is done re
ursively;initially the emptyset is
onsidered as a pre�x and the set of frequent 1-itemsets is thegiven set.The de�nition of a
andidate in Apriori di�ers from the de�nition in E
lat andFP-growth. In Apriori the set of
andidates at iteration ` is equal to the negativeborder of frequent itemsets found till the iteration step `. In E
lat and FP-growththe set of
andidates in the next re
ursive step belonging to itemset I 2 F+P is thesubset of the order-based negative border of F+P whose element's pre�x is I (formallyfI 0jI 0 2 NB�(F+P) su
h that P jI0j�1I0 = Ig). The re
ursive step is terminated if no
andidate is generated.It would be ineÆ
ient to
he
k all itemsets of a given size if they meet the de�nitionfor
andidates. Instead, we generate the
andidates. Here we make use of the fa
t thatin all three algorithms the smallest and the subsequent subset of the
andidate must befrequent. The itemsets form a latti
e, therefore ea
h
andidate is a union of two frequentitemsets, that have same pre�x of size ` � 1. This is the reason the maximal properpre�x and the subsequent itemset are
alled the generators of the
andidate. The itemthat is added to get the
andidate (i.e. the largest item of the se
ond generator) is
alledthe extender.The set of infrequent
andidates is the the negative border of the frequent itemsetsin Apriori and is the order-based negative border of the frequent itemsets in the
ase ofE
lat and FP-growth. It follows from Corollary 2.0.8 that the number of
andidates isnever less in E
lat and FP-growth than in Apriori.histori
al remark: FP-growth has been viewed as an algorithm operationon the data trie by its inventors [22, 21, 23℄ that is augmented by so-
alled14

CHAPTER 3. BASE ALGORITHMS 3.3. TECHNIQUES"header lists" that sequentially link nodes with the same item label. Fromthis perspe
tive, FP-growth looks like a depth-�rst algorithm that is quitedi�erent from E
lat. We argue here (and it was also noted by Goethals[19℄), that this is a queer view on the algorithm, and that a
tually the maindata stru
ture is the set of pre�xes (i.e., the \header lists"), while the datatrie is nothing else than a means to
ompute the relation startsWith eÆ-
iently. Then, the e�e
tive di�eren
e between E
lat and FP-growth is thatFP-growth works on pre�xes, while E
lat works on single transa
tion. Thatmeans, that FP-growth
an take advantage from data that
an
onsiderably
ompressed by a trie, while it has to pay the overhead of a more
omplexinterse
tion method that has to take into a

ount the relation startsWith.3.3 Te
hniquesMost published algorithms are the modi�
ations of the base algorithms. A typi
al FIMpaper presents some te
hnique that de
reases the run-time, memory need or I/O demandof a known method. In fa
t, there is mu
h more to dis
uss about te
hniques and datastru
ture issues than about the base algorithms.In the next se
tions we des
ribe the three most important FIM algorithms. Ea
halgorithm is �rst des
ribed at semanti
 level, and then we
he
k what kind of datastru
ture supports best the fun
tions of the algorithm. Then we give a
omprehensivedes
ription of the te
hniques.We
all a te
hnique memory safe if it never in
reases the memory need of thealgorithm signi�
antly (let us say more than 25%). A memory-safe te
hnique is
alledstri
tly memory-safe if it required the same or less amount of memory than thealgorithm without the te
hnique in all test databases with every support threshold.Similarly a te
hnique is run-time safe if it never results in a signi�
ant run-timedegradation. We
all a te
hnique dangerous if the performan
e drops to its fra
tion atsome ben
hmark dataset.3.4 Graphi
al presentation of the experimentsThis work is based on thorough theoreti
al analysis and on a very
omprehensive set ofexperiments. To in
rease readability we avoid using tables of numbers but rather tryingto visualize the experiments. In the literature the authors present their experiments byrun-time and memory plots. Displaying the plots for all databases takes too mu
h spa
e,therefore only a few (unfortunately the ones that give a favorable view of the proposedte
hnique) are sele
ted. The FIMI
ontests showed that the published algorithms donot perform so well in general as they do in
ertain,
arefully
hosen databases. For15

3.4. GRAPHICAL PRESENTATION OF THE EXPERIMENTSCHAPTER 3. BASE ALGORITHMSfairness, we test ea
h te
hnique on 16 well-known test databases, most of them
an bedownloaded from http://fimi.
s.helsinki.fi. To avoid spa
e problems, we restri
tour attention to test results at low support thresholds.In many experiments we
ompare two solutions (s and snew), one (snew) is expe
tedto be faster. The advantage of the faster solution is presented on 16 databases mainlyat very low support thresholds. We use bar-
harts, where the height of a bar is m(s)m(snew) ,where m denotes the measurement (in most of the
ases it is run-time and memory-need). Sometimes the new te
hnique results in an improvement of a several orders ofmagnitude. To present su
h
ases we use the logarithm of the measurements.In many
ases we are not only interested in the run-times but we would like tovisualize the way the te
hnique suits to the features of the modern pro
essor. For thiswe use a diagram like the following.
 0

 200

 400

 600

 800

 1000

 1200

 1400

500

GC
loc

kti
ck

s

all uops on BMS−WebView−2 at 6

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

The height of the wide bars
entered around the ti
ks show the a
tual run-time (thetotal
lo
kti
ks used by the program). The
olors/patterns of these bars show how wellthe program utilized these
lo
kti
ks: the top-most part shows the amount of
lo
kti
ksduring whi
h three u-ops were exe
uted, while the bottom-most part shows the timeduring whi
h the program exe
ution was stalled for some reason (i.e., no operationswere exe
uted during that
lo
kti
k).The narrow bars
entered around the ti
ks show the total number of u-ops that wereexe
uted. The bar is divided into two, the upper part show the bogus u-ops, those u-opsthat were spe
ulatively exe
uted on a mispredi
ted bran
h, and thus were rolled ba
k.The ratio of the lower-to-upper part of this bar shows the bran
h predi
tion ineÆ
ien
y.The narrow bars beside the wide ones show the front-side bus a
tivity, the totalnumber of
lo
kti
ks during whose at least one read/write operation was pending (i.e.,data transfer time in
luding memory laten
y). The upper part of these bars show thetime
onsumed by prefet
h reads (when the pro
essor spe
ulatively transfers data fromthe memory into the
a
he for further availability), while the lower part shows a
tualreads or writes. The main di�eren
e is that the delivery of data during a
tual readsand writes presumably stalls the exe
ution pipeline (these are the
a
he misses). If theratio of prefet
h (top part) to a
tual wait (bottom part) is high, then a huge amount16

http://fimi.cs.helsinki.fi

CHAPTER 3. BASE ALGORITHMS 3.5. THE TRIE AND ITS VARIANTSof
a
he misses are avoided by the prefet
h me
hanism, thus a
hieving a
onsiderableperforman
e gain.3.5 The trie and its variantsSin
e the trie (pre�x-tree) data stru
ture
omes into play in Apriori, FP-growth andmany other FIM algorithms (like MaxMiner [47℄ and TreeProje
tion [1℄), we begin withthe des
ription this
entral data stru
ture.The data stru
ture trie was originally introdu
ed by de la Briandais [14℄ and Fredkin[15℄ to store and eÆ
iently retrieve words of a di
tionary. Mueller [35℄ was the �rst touse trie in a FIM algorithm.A trie is a rooted, labeled tree. Ea
h label is a
hara
ter and ea
h node represents aword (sequen
e of
hara
ters) whi
h is the
on
atenation of the
hara
ters that are onthe path from the root to the node. The root is de�ned to be at depth 0, and a node atdepth d
an point to nodes at depth d+ 1. A pointer is also referred to as edge or link.We will use the notations parent,
hild, sibling, an
estor and des
endant as theyare de�ned in the
lassi
al oriented tree data stru
tures.Tries are suitable for storing and retrieving not only words, but any �nite sequen
esover arbitrary alphabet as well. In the FIM setting a link is labeled by a frequent item,and a node represents a sequen
e of items. To obtain a sequen
e from a set, we have tode�ne a total order on the items. For this, we always use the same order that is usedto order the edges. In this
ase the preorder depth-�rst sear
h traversal
orresponds tothe as
ending lexi
ographi
al ordering of the itemsets.If the trie stores sequen
es of di�erent lengths, then a boolean value is also asso
iatedto ea
h inner node. A true value denotes that the sequen
e that is represented by theinner node is also
ontained in the di
tionary not just the sequen
es represented by theleaves. Figure 3.1 presents a trie that stores the itemsets A, C, F , AC, AF , EF , AEF .The order used to
onvert sets to sequen
es
orresponds to the alphabeti
 order. Innernodes with false and true boolean values are denoted by squares and
ir
les, respe
tively.A trie that stores all subsets of a given set is quite unbalan
ed. The following pi
tureshows the trie that stores all subsets of itemset fABCDEg.Originally the tries are
hild-linked, i.e. from ea
h node only its
hildren
an berea
hed with one step. In
ase of a parent-linked trie we
an only rea
h the parentsdire
tly. Obviously, the two approa
hes
an be
ombined. For example, in FP-growththe
hild linked-trie is
onverted to parent-linked tree after all itemsets are inserted.3.5.1 The representation of the list of edgesThe list of edges
an be represented in many ways. The representation used in thealgorithms greatly a�e
ts both run-time and memory-need. Let us assume that we have17

3.5. THE TRIE AND ITS VARIANTS CHAPTER 3. BASE ALGORITHMS
A C E F

C E F FFFigure 3.1: Example: a trie that stores sets fAg,fCg,fFg,fACg, fAFg, fEFg, fAEFg
T(2ABCDE)

A B C D E
B C DE C DE D E EC DE DE E D E E EDE E E EEFigure 3.2: Example: a trie that stores all subsets of itemset fABCDEg

18

CHAPTER 3. BASE ALGORITHMS 3.5. THE TRIE AND ITS VARIANTSa node u with n
hildren. This means that n edges start out from u. Denote the smallestand largest label of these edges by lmin and lmax respe
tively. The most frequently usedrepresentations are:ordered list: Ea
h edge is represented by a pair, whose �rst element is the label, andthe se
ond is a pointer to the
hild. The edges are stored in a ve
tor, whi
h isordered a

ording to the labels. The memory need of this solution (ignoring theoverhead of a list) is 2n
ells.indexve
tor: The
hild pointers are stored in a ve
tor whose length equals to thenumber of frequent items. A node at index i is the endpoint of the edge whoselabel is item i. If there is no edge with su
h label, then the element is NIL.Obviously the elements at index less than the smallest label and greater than thelargest label are NIL. We save memory if these elements are not stored. In o�setindexve
tor representation the smallest element (the o�set) and a pointer ve
torof size lmax� lmin+1 is stored. The
hild pointer of label i is given by the elementat index i� lmin.hybrid solution: Noti
e, that neither of the above representations needs always lessmemory than the other. If 2n < lmax� lmin+1+1, then the ordered list needs lessmemory, otherwise the o�set-indexve
tor. In the hybrid edge representation wedynami
ally
hoose the edge representation based on the memory requirements.3.5.2 Index vs. pointer-based trieThe nodes of the trie (together with the lists of edges)
an be stored
onse
utively ors
attered in the memory. We distinguish two types of Trie a

ording to the memorylayout (su
h tries are depi
ted in Figure 3.3).167123 102B D
ontiguous-memory based:[2,167,B,6,D,8,0,123,0,102℄ pointer-based:167,[B,�,D,�℄123,[℄102,[℄Figure 3.3: di�erent representations of the same trie19

3.5. THE TRIE AND ITS VARIANTS CHAPTER 3. BASE ALGORITHMSpointer-based trie : The nodes are s
attered in the memory. The
ounter and the listof edges are asso
iated with the node. The nodes are identi�ed by their addressin the memory, and a link is represented by a pointer. When adding a new leafinto the tree we sear
h for a free spa
e in the memory and reserve it to the newleaf. Deleting a leaf means simply freeing the memory o

upied by the leaf andremoving the pointer (together with the label) from the edgelist of its parent.If we store the edges in an ordered ve
tor, then the memory need of a node isthe memory need of a
ounter and a list. The total memory need of a trie isnsi+nsov+(n�1)si+(n�1)sp, where n is the number of nodes in the trie, sov isthe memory need of the overhead of the ve
tor, si; sp is the size of an integer anda pointer respe
tively. If the ve
tor of C++ STL is used then the overhead of ave
tor equals three times the size of the pointer, therefore the total memory needis approximately 2n(si + sp) whi
h is 26n bytes in a Pentium 4 and 40n bytes inan Opteron.
ontiguous-blo
k trie : The trie is represented by one big ve
tor. The
ounter, thenumber of edges and the list of edges are asso
iated with the node. Ea
h nodeis identi�ed by the position in the ve
tor. Adding (and erasing) a leaf is quite alaborious work. We expand the ve
tor, then insert a new edge into the edgelist ofthe parent. This results in an in
rease of the positions of the nodes
oming afterthe parent, therefore the indi
es have to be updated. This requires a total s
an ofthe ve
tor.It may be diÆ
ult to �nd a free big blo
k in the memory, hen
e a list of medium-size blo
ks are used in pra
ti
e. The blo
ks are of the same size, therefore we
anqui
kly determine the blo
k (and the o�set) of a node it has been pla
ed into.If the edgelists are stored in an ordered ve
tors, then the memory need of a nodeequals to the memory need of the
ounter the memory need of the variable thatstores the number of
hildren, and the edges (without overhead). The total mem-ory need is sov +n(si+ si+2si) � 4nsi whi
h is 16n in a Pentium and Opteron aswell. Note, that we assume that the size of the ve
tor that stores the trie is notgreater that 28si , otherwise we
annot address an element by an integer value.In our implementation leaves are added and deleted from the trie, therefore we usethe pointer-based approa
h.3.5.3 Patri
ia trieA dire
ted path is
alled
hain if all inner nodes on the path have only one
hild. Atree that is obtained from a trie by
ollapsing maximal
hains to a single edge is
alledpatri
ia tree. The new edge points to the last node of the
hain and its label is the20

CHAPTER 3. BASE ALGORITHMS 3.5. THE TRIE AND ITS VARIANTSsequen
e of the labels on the
hain. If
hain
ollapse is restri
ted to
hains that end inleaves then we talk about leaf-patri
ia tree.Patri
ia trees
onsume less memory if the trie
ontains many
hains. Otherwise, itneed more memory, be
ause the labels are represented by ve
tors, whi
h is an ineÆ
ientsolution when it
ontains just one element.

21

3.5. THE TRIE AND ITS VARIANTS CHAPTER 3. BASE ALGORITHMS

22

Chapter4Algorithm AprioriAPRIORI is regarded to be the �rst FIM algorithm that
an
ope with large datasetsand large sear
h spa
e. It was proposed by Agrawal and Srikant [2℄ and Mannila et al.[32℄ independently at the same time. Their
ooperative work was presented in [4℄.The algorithm s
ans the transa
tion datasets several times. After the �rst s
an thefrequent 1-itemsets are found, and in general after the `th s
an the frequent `-itemsetsare extra
ted. The method does not determine the support of every possible itemset. Inan attempt to narrow the domain to be sear
hed, before every pass it generates
andidateitemsets and only the support of the
andidates are determined. An itemset be
omesa
andidate if all its proper subsets of are frequent. Due to the bottom-up sear
h, allfrequent itemsets of size smaller than the
andidate are already determined, therefore itis possible to do the subset validations.After all the
andidate (` + 1)-itemsets have been generated, a new s
an of thetransa
tions is e�e
ted and the pre
ise support of the
andidates are determined. The
andidates with low support are dis
arded. The algorithm ends when no
andidates aregenerated. The pseudo
ode of Apriori is given below.The intuition behind
andidate generation is based on the following simple fa
t:Property 4.0.1 Every subset of a frequent itemset is frequent.This is immediate, be
ause if a transa
tion t
ontains an itemset X, then t
ontainsevery subset Y � X.Using the fa
t indire
tly, we infer that, if itemset I has a subset that is infrequent,then I
annot be frequent. In the algorithmAPRIORI only those itemsets are
andidateswhose all subsets are frequent. It is not ne
essary to
he
k all subsets; if all maximalproper subsets are frequent, then the anti-monotone property of the support fun
tionguarantees that all subsets are frequent as well.It would be ineÆ
ient to go through on all itemsets of size (`+1) and do the subset
he
k, instead, we generate the
andidates. All itemsets that meet the subset
he
k23

CHAPTER 4. ALGORITHM APRIORIAlgorithm 1 algorithm AprioriRequire: D : database over the set of items I,minsup support thresholdEnsure: F : the set of frequent itemsets` 1C` Iwhile jC`j 6= 0 dosupport
ount(D;C`)for all
 2 C` doif
:support � minsup thenF`
end ifend forC`+1
andidate generation(F`)` `+ 1;end whileF = Sj̀=1 Fjrequirement must be the union of two di�erent `-itemset that are frequent and have` � 1
ommon items. Di�erent pairs
an have the same union (for example the pairs(AB;AC) and (AB;BC)). In order the
andidate generation to be non-redundant wetake the union of those `-itemsets whose interse
tion is the (`� 1)-element pre�x. Pairs(I1; I2) and (I2; I1) generate the same
andidate therefore we assume I1 � I2. Thepseudo
ode of the
andidate generation is found in Algorithm 2.Algorithm 2
andidate generationRequire: F` frequent itemsets of size `Ensure: C`+1 the set of
andidates of size `for all fi1; : : : i`�1; i`g; fi1; : : : i`�1; i0̀g 2 F` su
h that i` � i0̀ do
 fi1; : : : i`�1; i`; i0̀gif all ` subsets are frequent(
; F`) thenC`+1
end ifend forAfter the
andidate generation the supports of the
andidates are
al
ulated. Thisis done by reading transa
tions one by one. A
ounter with 0 initial value is asso
iatedwith ea
h
andidate. For ea
h transa
tion t the algorithm de
ides whi
h
andidates are
ontained in t. The
ounter of these
andidates are in
remented.24

CHAPTER 4. ALGORITHM APRIORIA simple solution of this is to
he
k ea
h
andidate if it is
ontained in the transa
-tion. This is an elementary operation (determining if an ordered sequen
e
ontains another ordered sequen
e) if the transa
tion and the
andidates are stored ordered. Thedrawba
k of this solution is that the transa
tion is
he
ked and partially traversed asmany times as the number of
andidates, whi
h is quite slow at low support thresholds,where there are many
andidates.To save numerous transa
tion traversals it is useful to store the
andidates in aspe
ial data stru
ture. In the original paper [? ℄ a hash-tree was proposed for thispurpose. The �rst trie-based Apriori implementation is reported Pasquier et al. [41℄.For the sake of
orre
tness we have to mention that a year earlier algorithm DIC [12℄,whi
h is an extension of Apriori, also used trie to store the
andidates. Independentfrom ea
h other Borgelt, Goethals and Bodon (and maybe several others) published the�rst open-sour
e Apriori implementations. In [7℄ trie and hash-tree were
ompared, andsuggested that the trie is a better data stru
ture in Apriori w.r.t run-time, memoryneed but most importantly the
exibility. The main disadvantage of hash-tree is thatit is non-parametri
, i.e., it requires a hash fun
tion. The eÆ
ien
y of the hash-tree isgreatly in
uen
ed by the hash-fun
tion. Di�erent hash-fun
tions are suitable for di�er-ent databases and even di�erent hash-fun
tions are suitable for the same database withdi�erent support threshold. There exists no available and eÆ
ient Apriori implementa-tion that uses a hash-tree.A ve
tor{trie middle-way solution was proposed in [37℄. Candidates with the same 2-element pre�x are stored in a ve
tor. The addresses of the ve
tors are dire
tly a

essibleby a triangular array. Ve
tor of pre�x i; j belongs to the element at index i; j � i � 1of the array. To save memory, the
ommon 2-element pre�xes are not stored in theelements of the ve
tors. The authors de
lared that this solution is more eÆ
ient thantrie-based solution, be
ause of the \pointerless" approa
h, the high data lo
ality andthe predi
table
ode bran
hes. Our experiments do no support this
laim.The following plots show that although this is a mu
h better solution than simplystoring the
andidates in a list, it is still not
ompetitive with trie-based solution atmedium or low support thresholds. This observation holds in all databases.The fa
t that trie-based solution provides results in a faster Apriori than pre�x-arraybased solution in all
ases, does not imply that trie is the best
hoi
e. Pre�x-arrays areexploited in the initial phases of DCI, therefore we have to
ompare the performan
eof the two data stru
tures at smaller
andidates' sizes. Our experiment { in whi
h weterminated the algorithms as soon as the
andidates rea
hed a
ertain size { showed thattrie-based solution is always faster than pre�x-array based solution at any
andidates'sizes.Due to the outstanding eÆ
ien
y of the trie-based solution, we restri
t our attentionto this data stru
ture. 25

4.1. THE TRIE OF APRIORI CHAPTER 4. ALGORITHM APRIORI
 1

 10

 100

 1000

 100 1000

ru
n-

tim
e

(s
ec

.)

minsup

Database: BMS-POS

vector
prefix-array

trie

 0.1

 1

 10

 100

 1000

 100 1000

m
em

or
y

ne
ed

 (M
B

)

minsup

Database: BMS-POS

vector
prefix-array

trie

Figure 4.1: Comparison of simple ve
tor, pre�x-array and trie-based solution for storingthe
andidates in Apriori4.1 The trie of AprioriThroughout the algorithm one
hild-linked trie is maintained. In this trie a
ounteris asso
iated with ea
h node. This
ounter stores the support of the itemset the noderepresents. In
andidate generation phases new leaves are added with zero
ounters, insupport
ount phases the
ounters are updated, and when we eliminate infrequent sub-sets (infrequent removal phase), leaves with
ounter value less than minsup are pruned.Next, we examine Apriori's main pro
edures from the perspe
tive of the trie.4.1.1 Support CountingIn the support
ounting phase, we take the transa
tions one-by-one. With a re
ursivetraversal we traverse some part of the trie. If a node is rea
hed, then the itemsetrepresented by the leaf is
ontained in the transa
tion. The
ounters of su
h leaves arein
reased. The traversal of the trie is driven by the elements of transa
tion t and startsin the root. No step is performed on edges that have labels whi
h are not
ontained int. More pre
isely, if we are at a node at depth d by following a link labeled with the jth(let j be 0 in the root) item in t, then we move forward on those links that have thelabels i 2 t with index greater than j, but less than jtj � ` + d, if we denote the size ofthe
andidates by ` + 1. The upper bound is obtained by the fa
t that ` � d anothersteps are required to rea
h a leaf from a
hild.4.1.2 Removing Infrequent CandidatesAfter support
ounting, the leaves that represent infrequent itemsets have to be deletedfrom the trie. Leaves are rea
hed in a depth-�rst traversal.26

CHAPTER 4. ALGORITHM APRIORI 4.2. COMPACTNESS OF THE TRIE4.1.3 Candidate GenerationHere we make use of an other ni
e feature of tries; `-itemsets, that share the same (`�1)-pre�x, are represented by sibling leaves. Consequently, the extender of a node must bein the label set of edges pointing to a sibling. This is just a ne
essary requirement.For an (` + 1)-itemset I to be
ome a �nal new leaf, it has to meet Apriori's pruning
ondition: the `-subsets of I have to be frequent.To obtain the itemsets represented by the nodes, we have to maintain a sta
k andperform a depth �rst traversal. Whenever we step down along an edge we push its labelto the sta
k, and pop it when a ba
kward step is performed.4.2 Compa
tness of the trie and the run-time ofAprioriThe growth of available memory sizes follows Moore's law. Today memory sizes areso large that most of the databases �t in the main memory if the proper �ltering and
ompression is applied (in FIM setting this means removing infrequent items from thetransa
tions and re
oding items to integers). The
heap and huge memorie devi
esen
ourages the implementors of data mining algorithms to handle memory issues gen-erously.The reader will, however, observe the opposite in our
ase; we try to keep memory
onsumption as small as we
an, and we spend serious e�orts on keeping the trie as
ompa
t as possible. This has two main reasons. First, memory allo
ations and deal-lo
ations require pro
essor resour
es, but more importantly they makes the pro
essorstall, whi
h ruins eÆ
ien
y. Se
ond, by in
reasing
ompa
tness, we in
rease data lo-
ality, whi
h improves the eÆ
ien
y of the prefet
hing the
a
hing features of modernpro
essors.To illustrate this we have done the following experiment. We measured the run-time and memory need of our Apriori. However, we manipulated the
andidate trie alittle bit; a ve
tor of uninitialized integers was inserted into ea
h node. The size of theve
tor was a parameter. The larger this parameter is, the more the nodes are s
atteredfrom ea
h other, and hen
e the worse the data lo
ality is. The following plots show therun-time and memory need.The reason of the run-time in
rease is prompted by Fig. 4.3, whi
h shows more infor-mation about the utilization of the
lo
kti
ks, the number of u-ops that were exe
utedon properly and improperly predi
ted bran
hes, the total number of
lo
kti
ks duringwhose at least one read/write operation was pending on database BMS-Webview-2 withminsup = 6. The left bar
hart belongs to ve
tor size 0 the right one belongs to theve
tor size 50.We see, that the two implementations perform approximately the same number of27

4.2. COMPACTNESS OF THE TRIE CHAPTER 4. ALGORITHM APRIORI

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200

ru
n-

tim
e

(s
ec

)

size of the vector in bytes

Database: BMS-WebView-2, minsupp 6

pentium 4
opteron

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

m
em

or
y

ne
ed

 (M
B

)

size of the vector

Database: BMS-WebView-2, minsupp 6

pentium 4
opteron

Figure 4.2: The in
uen
e of node's size of the trie on run-time and memory need

 0

 200

 400

 600

 800

 1000

 1200

 1400

500

GC
loc

kti
ck

s

all uops on BMS−WebView−2 at 6

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 4.3: Complex hardware-friendliness diagram of two implementations
28

CHAPTER 4. ALGORITHM APRIORI 4.3. INHOMOGENEOUS TRIEinstru
tion, and there is no signi�
ant di�eren
e in bran
h predi
tion eÆ
ien
y. How-ever, in the se
ond implementation the pro
essor stalls mu
h more than in the �rst
ase,whi
h results the slowing down of the program. The pro
essor stalls are
aused by baddata lo
ality.4.3 Inhomogeneous trie and a spe
ial blo
k allo
atorFrom programming point of view a trie
an be de
lared in many ways. The simplest oneis the following: \Trie is a re
ursive stru
ture; it has a
ounter and a list of edges. Anedge is pair of a label and a trie pointer". A trie is
alled leaf if its list is empty. Anotherde�nition is, that \A leaf is a
ounter. The trie is a leaf (a
ounter) or a
ounter and alist of edges.". The �rst type of trie is
alled homogeneous trie, be
ause it is de
laredby a singe data stru
ture (not taking into
onsideration the data stru
ture list). These
ond is inhomogeneous trie be
ause in the de�nition we use two data stru
tures (leafand trie). Distinguishing the above de�nitions seems to have no meaning.To understand the
ontrary, we have to dig down to implementation level. The mainpoint of the di�eren
e
omes from the fa
ts that:1. the
ompa
tness of the trie is
ru
ial, and greatly a�e
ts both run-time and mem-ory need,2. any list has some overhead (at least 8 bytes, but in the
ase of C++ STL's ve
torit is 12 bytes on a 32 bit pro
essor), i.e., the size of an empty list is not zero.An inhomogeneous trie spares memory by saving the overhead of the lists at theleaves. Sin
e tries of FIM algorithms are very large, and
ontain many leaves, the savingmay be signi�
ant. Note that the size of a leaf of an inhomogeneous trie is merely thesize of a
ounter, i.e. 4 bytes. On the
ontrary the leaf takes 12+4=16 bytes in ahomogeneous trie. The
a
he line (the blo
k that is the basi
 unit in transferring datafrom the memory to the
a
he) size is 32 bytes in the
ase of Pentium 4 pro
essor, whi
hmeans 8 and 2 leaves �t in a
a
he-line in the
ase of inhomogeneous and homogeneoustrie, respe
tively. In 64 bit ar
hite
tures (like Opteron) the di�eren
e is even larger (thesize of a leaf is the same, however, the size of a pointer is 8 bytes).Noti
e, that if a transa
tion
ontains an itemset represented by a leaf, then it
ontainsits siblings many times. It is important that the siblings be as \
lose" to ea
h other inthe memory as possible to obtain better data lo
ality.Leaves being generated in the
andidate generation phase, deleted or
onverted intoinner node in the infrequent removal phase require a lot of allo
ations/deallo
ations. We
an redu
e the overhead of this and improve data lo
ality at the same time by applyinga spe
ial blo
k allo
ation me
hanism. The leaves are stored in a blo
k1 and there is an1A
tually we used a list of medium-size blo
ks instead of one big blo
k in our implementation.29

4.4. REMOVING DEAD-END BRANCHESCHAPTER 4. ALGORITHM APRIORIextra sta
k that stores pointers of the freed pla
es. When a leaf is freed, a pointer toits pla
e is popped to the sta
k. When a new leaf is allo
ated, we
he
k if the sta
k isempty. If not, we reallo
ate the memory that is pointed by the top element of the sta
k.If the sta
k is empty, then we simply allo
ate a new element in the
urrent blo
k. Sin
ea leaf is pra
ti
ally a
ounter (and integer), reallo
ation means a value assignment.This solution
an be further improved by merging together the sta
k and the blo
ks,i.e., ea
h position of a blo
k is either a leaf or a pointer that points to the next emptyposition (if there is any, otherwise its value is NULL). In C++ this solution is supportedby the union data stru
ture and by the fa
t that a pointer and an integer needs thesame amount of memory in 32 bit pro
essors.Table 4.1 shows some experiments
on
erning this design detail.database minsup homogeneoustrie inhomogeneoustrie inhomogeneoustrie with blo
kallo
atorT40I10D100K 220 670 653 518pumsb 32600 184 161 133retail 3 96 208 44T10I5N1KP5KC0 6 21 21 18T30I15N1KP5KC0 360 622 557 395run-time (se
.)database minsup homogeneoustrie inhomogeneoustrie inhomogeneoustrie with blo
kallo
atorT40I10D100K 220 342 128 128pumsb 32600 19 14 14retail 3 939 327 327T10I5N1KP5KC0 6 553 196 196T30I15N1KP5KC0 360 296 204 203memory need (MB)Table 4.1: Inhomogeneous trie and a spe
ial blo
k-allo
ation te
hniqueAn inhomogeneous trie with our spe
ial blo
k allo
ator redu
es both run-time andmemory need signi�
antly. In the forth
oming experiments with Apriori we always useinhomogeneous tries and our blo
k-allo
ator.4.4 Removing Dead-end Bran
hesFrequent itemsets of size ` are only needed in (1) writing out the results and (2) gen-erating
andidates of size ` + 1. The results
an be written out either in
andidategeneration or at the infrequent
andidate removal phase. In
andidate generation someleaves are extended (if adding an item to its representation results in an itemset whoseall subsets are frequent) some are not. This means that there are leaves that represent
andidates and there are leaves that do not. We
all the se
ond kind of leaves dead-end leaves and a subtrie is a dead-end bran
h if all its leaves are dead-end leaves.30

CHAPTER 4. ALGORITHM APRIORI4.4. REMOVING DEAD-END BRANCHESDead-end bran
hes are also generated in infrequent removal phase. If all (or all withone ex
eption)
hildren of a node are infrequent, then the node be
omes a leaf and isnever extended again.The nodes of a dead-end bran
h are not needed for
andidate generation thus itsnodes' itemsets
an be written out and su
h nodes
an be purged from the trie. Thiste
hnique has many advantages. First, the trie gets smaller. Se
ond, the support
ountis faster. To illustrate this, let us assume that only one
andidate (itemset ABC) isgenerated. Figure 4.4 shows two
andidate tries. The se
ond is obtained by applyingthe dead-end bran
h pruning. The advantage of dead-end bran
h removal
an be easilyseen if we
onsider �nding the
andidates in transa
tion hA;B;C;D;Ei. In both
asesthe whole trie is traversed, whi
h means visiting only half as many nodes in the se
ond
ase as in the �rst
ase.
A B CB C CC

ABCFigure 4.4: Example: removing dead-end bran
hesDead-end bran
h pruning does not require any movement in the trie, if the nodesin the
andidate generation phase are visited in a preorder depth �rst manner. This isbased on the following property.Property 4.4.1 For a given depth d, the depth-�rst ordering of the nodes' representa-tion at depth d is the same as if we lexi
ographi
ally order these representations, wherethe order used in the lexi
ographi
al ordering
orresponds to the ordering of the trie andthe lexi
ographi
 ordering of the presentations is based on a global item ordering.Consequently, an itemset I
an be a subset of those
andidates whose generatorsstri
tly pre
ede I in the preorder traversal. Therefore a node
an be pruned if no new
andidates are generated from any des
endants of it.Dead-end bran
h pruning does not ne
essarily speed up Apriori. If there exist nodead-end paths, then the dead-end bran
h
he
ks just deteriorate the bran
h predi
tionfa
ility of the pro
essor and thus the run-time as well. For example if all maximal
andidates have the same size, then dead-end pruning is never used, and this te
hnique31

4.4. REMOVING DEAD-END BRANCHESCHAPTER 4. ALGORITHM APRIORIneither results in a faster nor a more memory-eÆ
ient algorithm. Fortunately, in most
ases the negative border of frequent itemsets (i.e. the maximal
andidates) is not\straight" and the size of the maximal
andidates varies. Figure 4.5 shows the ratio ofrun-time and memory need of Apriori that does not use the dead-end pruning and theApriori that does.
 0

 1

 2

 3

 4

 5

 6

 7

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed

pentium 4
opteron

Figure 4.5: Deadend pruning (ratio of run-times and memory-needs)Some hardware friendliness diagrams is given in Figure 4.6.
 0

 50

 100

 150

 200

 250

 300

deadend−on
deadend−off

G
C

lo
ck

tic
ks

all uops on BMS−WebView−2 at 12

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 20

 40

 60

 80

 100

 120

 140

deadend−on
deadend−off

G
C

lo
ck

tic
ks

all uops on BMS−POS at 350

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 4.6: Hardware friendliness diagrams of Aprioris with and without dead-end prun-ingThe experiments show that dead-end pruning is an eÆ
ient te
hnique. It alwaysresulted in a faster and more memory-eÆ
ient algorithm.The problem of traversing dead end paths was also
onsidered in [10℄ as an in
uen
eof our earlier paper [6℄. The author of [10℄ has
hosen an other solution. For ea
h nodea boolean value was attributed (more pre
isely the uppermost bit of the
ounter wasdedi
ated for this purpose) whose value is true if the node is on a path to the deepestlevel (i.e. to a
andidate), otherwise false. Re
ursion during support
ounting pro
eedsonly on su
h
hildren whose boolean value is true.32

CHAPTER 4. ALGORITHM APRIORI4.5. ROUTING STRATEGIES AT THE NODESThis solution has two drawba
ks. First, dead end bran
hes are not erased andtherefore the spa
e is not freed. Se
ond, the boolean value
he
k is just a se
ond testafter a mat
hing of items is found during support
ount (see routing strategy merge onpage 33). Thus the items with false boolean values are also
onsidered in �nding theedges to follow. This problem
ould be solved by not just distinguishing the edges buta
tually storing di�erent edges in two di�erent lists. This requires, however, more thanone bit overhead.It is easy to see the
onsequen
e of the two drawba
ks if we
ompare the experiments(for details see [10℄). It rea
hed 20-40% speed-up at database BMS-Webview-1, while oursolution resulted in a more than twi
e so fast program.In the rest experiments with Apriori we use dead-end pruning.4.5 Routing strategies at the nodesRouting strategy at an inner node refers to the prin
iple used to sele
t the edges tofollow during the re
ursive traversal of the support
ount method. Given a node witha list of edges and a part of the transa
tion t denoted by t0 we have to �nd the edgeswhose labels are in
luded in t0. This is the main step of support
ount in APRIORI,it is
alled many times, and this is the step that primarily determines the run-time ofthe algorithm. In this se
tion we analyze some possible solutions. The number of edgeshaving the node we investigate (at depth d) is denoted by n. For the sake of eÆ
ien
ythe elements of the transa
tion are ordered.Di�erent routing strategies
an be applied with di�erent edgelist representations (seese
tion 3.5.1). In an indexve
tor-based solution the edge that has a given label
an befound in one step, thus we adapt the simple method that
he
ks for ea
h element i of t0if there exists an edge with label i. In our implementation we skip those elements thatare smaller than the smallest label (this equals to the o�set if the o�set tri
k is applied),and terminate the sear
h if the a
tual element of t0 is larger than the largest label (i.e.o�set plus the size of the ve
tor).With an ordered list representation several solutions are appli
able:simultaneous traversal (merge): Two pointers are maintained; one goes through theelements of t0 and the other goes through on the n edges. Both pointers areinitialized to the �rst element of the
orresponding list. The pointer that pointsto the smaller item is in
reased. If the pointed items are the same, then a mat
his found (re
ursive step is
alled), and both pointers are in
reased. We terminatethe sear
h if any pointer rea
hes the end of its list. The worst
ase number of
omparisons (and pointer in
reases) is n+ jt0j, the best
ase is minfn; jt0jg.�nd
orresponding edge: For ea
h item in t0 we �nd the
orresponding edge (if thereis any). We
an use a binary sear
h for �nding the proper label. Noti
e that the33

4.5. ROUTING STRATEGIES AT THE NODESCHAPTER 4. ALGORITHM APRIORIrun-time of the binary sear
h is proportional to log2 n. Sin
e the labels are ordered,it is enough to perform binary sear
h from the position that the previous binarysear
h returned.�nd
orresponding transa
tion item: For ea
h label we �nd the
orresponding trans-a
tion item. For this a binary sear
h starting from the previously returned indexis appli
able.The logarithmi
 run-time need of the binary sear
h
an be redu
ed to
onstanttime by applying an o�set-bitve
tor representation of t0, whose value at index iis true if item i+o�set is the element of t0 otherwise false. The o�set is thesmallest element of t0.The problem with bitve
tors is that they do not exploit the fa
t that at a
ertaindepth only a part of the transa
tion needs to be examined. For example, if theitem of the �rst edge is the same as the last item of the basket, then the otheredges should not be examined. The bitve
tor-based approa
h does not take into
onsideration the positions of items in the basket.We
an easily over
ome this problem if the indi
es of the items are stored in theve
tor. For example transa
tion f2; 4; 7g is stored as [1; 0; 2; 0; 0; 3℄ with o�set 2.The routing strategy with this ve
tor is the following. First we step through thoseedges whose labels are less than the o�set. Then we take the remaining labelsone-by-one. If we rea
h for item i in t0, then we
he
k the element i�o�set of theve
tor. There are three possibilities. If it is 0, then the item is not
ontained; wepro
eed with the next label. If the element is smaller than jtj � ` + d + 1 thenmat
h is found (and the support
ount pro
edure is
ontinued with the next label).Otherwise the pro
edure is terminated.For ea
h routing strategy we
ould give an upper bound on the number of
om-parisons in the worst
ase. Comparing these theoreti
al values, however, predi
t theeÆ
ien
y of the routing strategies mu
h worse than the degree ea
h method suits tothe features of the modern pro
essor and memory stru
tures. Now let us turn to theexperiments we have
arried out.4.5.1 Routing strategies in the
ase of ordered-list edge repre-sentationFirst we tested the routing strategies that
an be applied when the edges are stored inan ordered list. Two typi
al plots are depi
ted in Figure 4.7.Some hardware friendliness diagrams is given in Figure 4.8.Observations based on all the tests are the following:34

CHAPTER 4. ALGORITHM APRIORI4.5. ROUTING STRATEGIES AT THE NODES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 120000 140000 160000 180000 200000 220000

ru
n-

tim
e

(s
ec

.)

minsup

Database: accidents

merge
indexvector

lookup_edge
lookup_edge_prev_mem

lookup_tr
bitvector

 0

 50

 100

 150

 200

 250

 300

 350

 3 9 27

ru
n-

tim
e

 (s
ec

.)

minsup (log scale)

Database: retail

merge
lookup_edge

lookup_edge_prev_mem
lookup_tr
bitvector

indexvector

Figure 4.7: Routing strategies in the
ase of ordered edgelist representation

 0

 100

 200

 300

 400

 500

 600

indexvector
bitvector

lookup−tr
lookup−edge−prev−mem

lookup−edge
merge

G
C

lo
ck

tic
ks

all uops on accidents at 140000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

 300

 350

indexvector
bitvector

lookup−tr
lookup−edge−prev−mem

lookup−edge
merge

G
C

lo
ck

tic
ks

all uops on retail at 4

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 4.8: Hardware friendliness diagrams of some routing strategies
35

4.5. ROUTING STRATEGIES AT THE NODESCHAPTER 4. ALGORITHM APRIORI1. There exists no single routing strategy that outperforms all other routing strategieson every database with every support threshold. The run-time di�eren
es betweenrouting strategies is sometimes up to ten-fold.2. Ex
ept for merge, there exists a dataset for ea
h routing strategy where its per-forman
e is quite bad
ompared to the best one.3. merge outperforms the binary-sear
h based approa
hes most of the
ases by asigni�
ant margin.4. Binary sear
h-based approa
hes always get faster if the position returned by theprevious binary sear
h is stored and used to de
rease the sear
h spa
e.5. Bitve
tor based solutions performed poorly most of the times; it was always slowerthan merge.Let us explain the observations one-by-one.1. The eÆ
ien
y of a routing strategy depends on n, the length of t0 and the numberof mat
hes. Di�erent data have di�erent
hara
teristi
s
on
erning these values,thus di�erent routing strategies perform well.2. The merge strategy produ
es the simplest
ode (its
ode
ontains the fewest lines)and it does not wait for the data be
ause the items are read sequentially and theprefet
h feature is very e�e
tive.3. If only the number of
omparisons (in the worst/average
ase) is taken into
onsid-eration then binary sear
h is always faster than linear sear
h. If we, however, also
onsider the way modern pro
essors' features are utilized, we
on
lude that thelinear sear
h outperforms binary sear
h signi�
antly when the lists we are sear
h-ing in are small. Noti
e that pipelining, prefet
hing performs poorly sin
e theelement of the list to pro
ess depends on the out
ome of the previous
omparison.This also results in an ineÆ
ient bran
h-predi
tion.4. Storing the index that was returned form the previous binary sear
h redu
es theaverage number of theoreti
al
omparisons from n log2 n to log2 n!. This simpletri
k is also greatly supported by the modern pro
essor's
a
he system. Storingand using the value that was returned by the last binary sear
h is performed quitefast most of the times sin
e it is likely to be stored in the L1
a
he.5. The bitve
tor-based approa
h does not take into
onsideration that only a part ofthe transa
tion has to be examined. This results in many super
uous traversals.Let us see an example. Assume that the only 4-itemset
andidate is fD;E; F;Ggand we have to �nd the
andidates in transa
tion fA;B;C;D;E; Fg. Ex
ept for36

CHAPTER 4. ALGORITHM APRIORI4.5. ROUTING STRATEGIES AT THE NODESthe bitve
tor-based approa
h all the te
hniques
onsidered will not visit any nodeex
ept the root, be
ause there is no edge of the root whose label
orresponds toany of the �rst 6 � 4 + 1 = 3 items in the transa
tion. On the
ontrary, thebitve
tor-based approa
h uses the whole transa
tion and starts with a super
uoustravel that goes down even to depth 3. The indexve
tor-based solution over
omesthis drawba
k.4.5.2 Can we speed up binary sear
h-based routing strategies?The reasoning about the exe
ution time of the linear and binary sear
h brings up thepossibility of improving the performan
e of binary-sear
h based routing strategies, i.e.lookup edge and lookup trans. We know that under a threshold the linear sear
h isfaster, and above this threshold the binary sear
h. The value of this threshold dependson the pro
essor features (
a
he sizes, prefet
hing me
hanism, length of the pipeline,et
.), the way the binary sear
h is
oded and the type of the elements. In our experi-mental environment (Pentium 4 2.8 Ghz pro
essor { family 15, model 2, stepping 9 {,using std::lower bound for the binary sear
h, the size of a list element is 4 bytes) thethreshold is around 14.The pure binary sear
h-based approa
hes
an be speed up if it is substituted by ahybrid solution whi
h
hooses between linear and binary sear
h a

ording to the lengthof the lists (length of t0 in the
ase of lookup trans).In our implementation the threshold is set by a template parameter. Noti
e that assoon as a linear sear
h is sele
ted, then the threshold
he
k will prefer linear sear
h inthe
urrent node and in the des
endants as well. Therefore in our implementation weswit
h to merge routing strategy to avoid the threshold
ondition
he
k and improvethe eÆ
ien
y of bran
h predi
tion. The larger the threshold the sooner we swit
h tomerge.In the next �gure we plotted our expe
tation of run-time in the fun
tion of thethreshold. run-time
threshold

binarymerge
idealthresholdWhen the threshold is zero, then always binary sear
h is employed, when it is morethan the number of frequent item then always linear sear
h is used, whi
h results pra
ti-37

4.5. ROUTING STRATEGIES AT THE NODESCHAPTER 4. ALGORITHM APRIORI
ally in the merge algorithm. The fastest solution is expe
ted when the threshold equalsto the ideal threshold.In reality we get a totally di�erent
hara
teristi
, whi
h applies in all databases.This is plotted in the next �gure.run-time
threshold

binarymerge
idealthresholdThe runtime de
reases as the threshold in
reases even if we
ross the ideal threshold.It seems that the sooner we swit
h to merge routing strategy the faster algorithm weget.To resolve the
ontradi
tion and understand the observation we have to examine the
hara
teristi
 of the data. The next two �gures show some distributions of the stepsbetween two mat
hes in the transa
tion. Zero step belongs to the
ase when the �rstitem in the t0 is the same as the label of the �rst edge. With database T10I5N1KP5KC0the merge was 2.5 times faster than look up trans whi
h is not far from the typi
al
ase. The smallest advan
e was just 20% with database kosarak.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20

Database: T10I5N1KP5KC0, minsupp 5

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 100 200 300 400 500 600 700 800 900

Database: kosarak, minsupp 870

Figure 4.9: distribution of distan
es between
onse
utive mat
hesWe
an see that the distribution is quite steep (noti
e the logarithmi
 s
ale). Theideal threshold (14 in our environment) is equal to the 0.999989 and 0.645 quantilerespe
tively. This means that although the size of t0 might be long the distan
es between
onse
utive mat
hes are quite small in most of the
ases it is smaller than the advantage38

CHAPTER 4. ALGORITHM APRIORI4.5. ROUTING STRATEGIES AT THE NODESof a binary sear
h
omes into play. Thus linear sear
h (merge) is the fastest most ofthe
ase and the extra
ondition
he
k just ruins the eÆ
ien
y of bran
h predi
tion.The larger threshold we set the sooner we swit
h to merge and the fewer unne
essary
onditions are evaluated.Also noti
e that the ratio of the number of
onse
utive steps under 14 to the numberof all mat
hes has a strong
orrelation with the eÆ
ien
y of speed-up lookup trans.The less this value the more eÆ
ient this routing strategy is.Although in this se
tion we neither presented a new approa
h neither speeded up theexisting routing strategies, we believe that this rationale shows a illuminating examplehow deep we have to dig down to �nd the true reasons. To understand the behavior of therouting strategies and their boundaries we have to
onsider (1.) theoreti
al possibilities,(2.) hardware friendliness and (3.) the spe
ialties/
hara
teristi
s of the appli
ationdomain.
4.5.3 Routing strategies in the
ase of di�erent edge represen-tationNext we
ompared the \winner" (i.e. merge) to the routing strategies that
an beapplied when o�setindex-ve
tor and hybrid edge representation is used. In the
aseof hybrid edge representation (i.e. ordered list or o�setindex-based representation issele
ted depending on the sizes, in other words, the node representation is not uniquebut
hanges dynami
ally) a hybrid routing strategy is used: lookup edge if the
urrentnode uses o�setindex-ve
tor, merge otherwise. For the sake of memory
ompa
tness weused the uppermost bit of the nodes'
ounter to store the type of representation of thenodes' edges.The hybrid solution almost always outperformed the other two solutions
on
erningboth run-time and memory need. The o�setindex-ve
tor approa
h performed quitepoorly in most of the
ases. This is attributed to its large memory need. The
orrelationbetween the memory need and run-time is quite apparent, the solution is
ompetitivein run-time only when it is
ompetitive in memory-need.Some hardware friendliness diagrams is given in Figure 4.11.The hybrid solution is more eÆ
ient than the ordered-list edge representation withthe merge routing. The advantage is not very signi�
ant, the largest di�eren
e was 62%in run-time and 37% in memory-need.In the rest of the experiments we use hybrid edge representation and hybrid routingstrategy. 39

4.5. ROUTING STRATEGIES AT THE NODESCHAPTER 4. ALGORITHM APRIORI

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
es

pentium 4
opteron

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed
s

pentium 4
opteron

Figure 4.10: Ratio of run-time and memory-need of ordered list-based Apriori
omparedto hybrid edge representation-based Apriori

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

hybridmerge

G
C

lo
ck

tic
ks

all uops on T10I4D100K.dat at 4

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

hybridmerge

G
C

lo
ck

tic
ks

all uops on kosarak.dat at 1100

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 4.11: Hardware friendliness diagrams of routing strategies merge and hybrid
40

CHAPTER 4. ALGORITHM APRIORI4.6. DETERMINING THE SUPPORT OF 2-ITEMSET CANDIDATES4.6 Determining the support of 2-itemset
andidatesUsing a trie seems unne
essary and
ompli
ated when determining the support of 2-itemset
andidates [50℄. A simple array also does the tri
k. We know that the elementsof ea
h
andidate are frequent items
oded by 0,1,2. . . and every pair that
onsists oftwo frequent items is a
andidate.The array stores the
ounters that are initialized to 0. Counter of itemset fi1; i2g (we
an assume i1 < i2) is at index i1; i2 � i1 � 1 of the array (i.e. we us an upper-trianglearray). Noti
e that theoreti
ally this solution is the same as trie based solution whereo�set-index representation is used with o�set equal to 0. Array-based solution (also
alled dire
t
ount), however, spares the re
ursive step.It is not ne
essary to allo
ate a
ounter for ea
h
andidate. In online
andidategeneration [19℄ we allo
ate a
ounter only when the pair a
tually o

urs in a transa
tion.I databases, that
ontains many frequent items and most 2-element
andidates do noteven o

ur, this solution redu
es memory need signi�
antly. In this solution the rowsof the array are empty at the beginning and item i2 with
ounter 1 is added to row i1when itemset fi1; i2g o

urs in the �rst time. So the elements of the array are a
tuallypairs. For the sake of qui
k insertion the rows are sorted a

ording to the items.histori
al remark: Theoreti
ally the same idea with some minor
hangeswas reinvented by Woon et al. [56℄. First, they used a trie (
alled SOTrieT)instead of an array. This is an unne
essary and over-
ompli
ated solution,but most importantly it requires more memory, than a simple ve
tor ofve
tors. Se
ond, the frequent items and the frequent pairs are found in thesame iteration. This awkward solution also su�ers from a very bad memoryusage. All pairs that o

ur in a transa
tion require a
ounter even if they
ontain infrequent items. For these reasons we use the ve
tor-based on-line
andidate generation method in our experiments.A hash-based te
hnique DHP was proposed by Park et al. [40℄ in order toredu
e the number of
andidates in parti
ular the number of
andidatespairs. When determining the frequent items an other
ounter ve
tor is alsomaintained. Counter at index i belong to the itempairs that has hash-value i.During the �rst s
an at ea
h transa
tion t the hash-value of all subsets of t ofsize two are
al
ulated and the
orresponding
ounters are in
reased. Afterthe �rst s
an, a
andidate itempair is generated only if
ounter determinedby the hash-fun
tion is greater than minsup.The problem of this solution is the la
k of a universal good hash fun
tion.It is easy to �nd a good hash fun
tion if the
hara
teristi
 of the transa
tiondatabase is known, but this is not the
ase. Furthermore a hash-fun
tion thatworks well at a database with a given support threshold performs poorly at41

4.7. DETERMINING THE SUPPORT OF 3-ITEMSET CANDIDATESCHAPTER 4. ALGORITHM APRIORIthe same database with an other support threshold. We believe that the sorespot (and a
tually the appli
ability) of this te
hnique is the hash-fun
tion,whi
h was never analyzed in the literature, i.e. no hash fun
tion was pro-posed that works well at many databases with many support threshold.The next �gure shows ratio of run-time and memory-usage of the online and thetriangular array-based support
ount method.
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

n
of

 ru
n-

tim
e

 0

 0.5

 1

 1.5

 2

 2.5

 3

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed
Figure 4.12: Ratio of run-time de
rease and memory-need in
rease of online and stati
support
ount of 2-itemsetsThe disadvantage of online support
ount
on
erning run-time is signi�
ant at highsupport thresholds, espe
ially when the size of the maximal frequent sets is two. Aslowering the threshold the di�eren
e get insigni�
ant when it is
ompared to the totalrun-time.4.7 Determining the support of 3-itemset
andidatesThe array-based te
hnique
an be naturally generalized to
andidates of size ` by usingan `-dimension array of size �jL1j` �, where L1 denotes the set of frequent items . Thissolution was
hosen in the newest implementation of algorithm kDIC [38℄[44℄. Thedrawba
k of the array-based solution is straightforward, i.e. it requires 4 � �jL1j3 � bytesof memory, whi
h
an be quite large. For example in the
ase of database retail withsupport threshold equal to 3 the L1 is 12889, therefore the array requires 1332 Tbyte!A
tually in the
ase of 9 out of out 16 test databases (with minsup where our Apriori isable to
omplete FIM task within reasonable time) the array needs more than 2Gbyteof memory. This is not a safe solution.Nevertheless, the array-based solution for
andidates of size three speeds up Aprioriin many
ases. A hybrid solution that
hooses array-based te
hnique if the numberof frequent items is small (let say smaller than 700) and trie-based solution otherwise,seems to be a good solution. 42

Chapter5Algorithm E
lat

43

CHAPTER 5. ALGORITHM ECLAT

44

Chapter6Algorithm FPgrowth

45

CHAPTER 6. ALGORITHM FPGROWTH

46

Chapter7Te
hniques for improving eÆ
ien
yThe base algorithms
an be greatly improved by algorithmi
, data stru
ture and im-plementation related te
hniques. The literature is ri
h in this topi
. In this se
tion weinvestigate the most important te
hnique putting emphasize on the relationship betweenthem.7.1 Pruning equisupport extensionsThe sear
h spa
e pruning based on equisupport itemsets is perhaps the most widelyused speed-up tri
k in the FIM �eld. Omitting equisupport extension means ex
ludingfrom the support
ounting the proper supersets of those `-itemsets that have the samesupport as one of their (`� 1)-subsets. This
omes from the following simple property.Property 7.1.1 Let X � Y � I. If sup(X) = sup(Y), then sup(Y [Z) = sup(X [Z)for any Z � I.This property holds for all Z � I, nevertheless we restri
t our attention to itemsetsZ � I n Y .The
onne
tion between the equisupport pruning and
losed itemset mining is ob-vious. Itemset X is a non-
losed set, with
losure Y , if there exists no proper supersetof Y with support equal to sup(Y). An itemset X
an be an ante
edent of an exa
tasso
iation rule (rule with
on�den
e 100%) if and only if it is a non-
losed itemset.Itemset X is
alled a key pattern [5℄ if there exist no proper subset of X with thesame support.If
andidate Y has the same support as its pre�x X, then it is not ne
essary togenerate any superset Y [Z of Y as a new
andidate. Based on the above property itssupport
an be
al
ulated dire
tly from its subset X [Z [19℄.47

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYThe support of the pre�x is always available at bottom-up FIM algorithms, thuspre�x equisupport pruning (i.e. X is the pre�x of Y , su
h that jXj + 1 = jY j)
anbe applied at any time. The te
hnique works the following way. After determiningthe support of a
hildren of itemset P , we
he
k at the infrequent removal phase iftheir support are equal to sup(P). Children with su
h supports are not
onsidered asgenerators in later phases and the extending items that belong to them are stored ina set (
alled equisupport set) and asso
iated with itemset P . Noti
e, that due to thenon-redundant traversal of the itemset latti
e Y nX � z for all z 2 Z where � denotesthe order used to de�ne the pre�x.When writing out a frequent itemset I, we also output the union of I with itemsetE 0 for all E 0 � E, where E is the union of all equisupport sets for the pre�xes of I.Example 7.1.2 Let us assume that the following itemsets of size two with pre�x A arefound to be frequent AB;AC;AD and sup(A) = sup(AB) = sup(AC) = 4; sup(AD) = 3.Only itemset AD is
onsidered as generator for further
andidates with pre�x A. At leasttwo itemsets are needed to generate a
andidate in Apriori, E
lat and FP-growth, thuspro
essing pre�x A terminates. When writing out itemsets AD and A we also appendall subsets of BC to them, thus we write itemsets AD;ABD;ACD;ABCD with support3, and A;AB;AC;ABC with support 4.If the database
ontains only
losed sets, then equisupport pruning is never used andthe large number of support equivalen
e
he
ks just slows down the algorithm. Exper-iments, however, show that in all algorithms the equisupport
he
k
an be performedquite fast (for example in the
ase of Apriori it requires no traversal in the trie) and re-sults no
a
he misses. Even at databases that
ontain insigni�
ant number of non-
losedsets the run-time in
rease is absolutely insigni�
ant.7.2 Improvements used in AprioriBefore we turn to our methods that speed up algorithm Apriori, we have to �nd whatis worth improving, i.e. what takes signi�
ant time of the running. We have alreadymentioned that in the beginning of the FIM resear
h the e�orts were fo
used on redu
ingI/O
osts and later redu
ing the number of
andidates. Now, we know that these twofa
tors are not so important, but rather the data stru
ture and its usage, the memorymanagement, and the level the implementation suits the ar
hite
ture of the modernpro
essors are the issues that really matter.The following table shows the distribution of pro
essor time usage between the mainfun
tions of Apriori. We measured the three main fun
tions of Apriori (generating
an-didates, determining the supports and deleting infrequent
andidates), the time requiredfor reading in, sorting and re
oding (removing infrequent items and assign 0,1,. . . valuesto the frequent items) the transa
tions and determining the support of the two element48

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
andidates. Methods that required less than half per
ent of the run-time are indi
atedby blank entries. For the sake of readability numbers above 25 are rounded. To seethe
orrelation between the ratio of the methods and the
hara
teristi
s of the databaseand sear
h spa
e, we also provide some statisti
s about the data sets and the frequentitemsets (see Tables 7.2 and 7.3). In these tests we have used a highly optimized Apri-ori implementation, whi
h is based on an inhomogeneous trie using our spe
ial blo
kallo
ator, dead-end bran
h removal, a triangular array-based solution to �nd eÆ
ientlyfrequent pairs, and a sophisti
ated depth-�rst, bu�ered input/output manager perform-ing the input/output routines.database minsup
ountingsup-port generating
andi-date inputsortre
ode infrequentremoval frequentpairminingT40I10D100K 3 000 14 53 31:0kosarak 7 000 21 69 1:9T10I4D100K 150 68 24 4:1
onne
t 65 000 73 25 1:4a

idents 210 000 77 21 1:4pumsb 41 000 97 2:6retail 65 64 22 10:6BMS-POS 5 000 38 56 3:8BMS-WebView-1 39 67 9:1 21 0:7BMS-WebView-2 30 56 14:0 23:3 0:5 2:7webdo
s 700 000 1 93mushroom 1600 95 1:3 3T10I5N1KP5KC0 500 8 67 22:0T20I10N1KP5KC0 2 000 76 17:8T30I15N1KP5KC0 1 300 25 73:0pumsb* 23 000 56 41 2:5high support thresholdT40I10D100K 220 90 6:5 0:6 0:6kosarak 860 94 2:0 2:0T10I4D100K 3 33 63 0:7 1:0
onne
t 43 100 96 3:1 0:5a

idents 100 500 98 1:4pumsb 32 600 96 1:6 1:9retail 3 29 63 1:3 1:8 0:7BMS-POS 67 84 13 0:8 0:5BMS-WebView-1 33 44 54 0:7BMS-WebView-2 4 12 83 1:4webdo
s 200 000 77 21:0 1:3mushroom 250 86 12:5T10I5N1KP5KC0 4 53 39 1:8 0:7 0:8T20I10N1KP5KC0 90 84 13:0 1:7 0:6T30I15N1KP5KC0 300 84 12:2 1:6 0:8pumsb* 13 000 99 0:5low support thresholdTable 7.1: The distribution of run-time of Apriori's methods in %The data show that Apriori is so fast at high support thresholds, that its opera-tion require less time than pro
essing the input. Thus we
on
entrate on low supportthresholds. 49

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYdatabase number oftransa
tions number ofitems average sizeof the trans-a
tionsmushroom 8 124 119 23.0pumsb* 49 046 2 088 50.4pumsb 49 046 2 113 74.0BMS-WebView-1 59 602 497 2.5
onne
t 67 557 129 43.0BMS-WebView-2 77 512 3 340 4.6retail 88 162 16 470 10.3T10I4D100K 100 000 870 10.1T40I10D100K 100 000 942 39.6T10I5N1KP5KC0 193 373 3 950 10.3T20I10N1KP5KC0 197 440 4 408 20.2T30I15N1KP5KC0 199 095 4 599 30.0a

idents 340 183 468 33.8BMS-POS 515 597 1 657 6.5kosarak 990 002 41 270 8.1webdo
s 1 692 082 5 267 656 177.2Table 7.2: Some statisti
s about the databasesThe tables support the widely-known observation, that determining the support ofthe
andidates takes most of the time of Apriori. This is, however, not always true. Inmining tasks where the number of frequent itemsets is high (databases BMS-WebView-1,BMS-WebView-2, retail) but the size of the dataset is medium with modest averagetransa
tion sizes (T10I5N1KP5KC0, T10I4D100K) the
andidate generation
ontributessigni�
antly to the run-time. Consequently, we �rst fo
us on the support
ount pro
e-dure and then turn to speed up the
andidate generation method.The distribution
hanges by employing
ertain heuristi
s, and then other parts maybe
ome the bottlene
k of the algorithm. For example if equisupport pruning is applied(see se
tion 7.2.4) then it be
omes possible to pro
ess dense databases at mu
h lowersupport threshold, and subset enumeration and output writing dominates the run-time.Nevertheless, we regard these issues of more advan
ed nature. We believe that ourdata gives good indi
ators about the bottlene
k of Apriori and possible targets forimprovement.We see three prin
ipal ways to redu
e the run-time of support
ounting.1. We �ne-tune and optimize the elementary operation of support
ounting, i.e. �nd-ing the
andidates that are
ontained in a given transa
tion.2. We redu
e the number of support
ount method
alls.3. We make use of the fa
t that some operations are done repeatedly (for exampletraversing the same part of the tree several times) at di�erent steps of the support
ount phase, and by merging these support
ounts we may spare some redundantwork. 50

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
database minsup numberof fre-quentitems numberof fre-quentitem-pairs numberof fre-quentitem-sets sizeof themaximalfrequentitemset averagesizeof thefre-quentitem-sets averagesize ofthe �l-teredtrans-a
-tionswebdo
s 700 000 8 14 34 4 2.0T20I10N1KP5KC0 2 000 472 0 473 1 0.99 6.9kosarak 7 000 93 249 772 6 2.6 3.3T40I10D100K 3 000 486 307 794 2 1.38 33.5
onne
t 65 000 15 72 916 7 4.2 14.8pumsb* 23 000 34 126 1165 8 4.0 20.6BMS-POS 5 000 145 408 1171 5 2.5 5.3T10I5N1KP5KC0 500 1494 90 1655 6 1.1 7.7a

idents 210 000 21 125 1685 8 4.17 17.0T30I15N1KP5KC0 1 300 1667 3 1671 2 1.0 21.9retail 65 2895 4958 11684 6 2.1 8.2T10I4D100K 150 767 5549 19127 10 3.39 10.0pumsb 41 000 25 249 36811 11 5.8 23.5mushroom 1 600 43 380 53952 15 7.1 19.2BMS-WebView-1 39 363 3802 69370 12 4.8 2.5BMS-WebView-2 30 2122 6052 194262 15 6.5 4.4high support thresholdwebdo
s 200 000 195 1 596 58 297 10 5.0a

idents 100500 32 408 160 874 12 6.7 22.1pumsb* 13 000 63 900 1 293 829 17 8.8 31.8T10I5N1KP5KC0 4 3 924 49 0812 1 600 477 14 3.7 10.3kosarak 860 1 437 11 460 3 578 574 19 8.36 6.0pumsb 32 600 36 536 6 061 656 20 10.0 31.6T10I4D100K 3 869 220 988 6 169 854 14 4.43 10.1mushroom 250 82 1 684 9 944 484 17 8.9 22.6T40I10D100K 220 901 104 161 10 174 500 20 8.48 39.6
onne
t 43 100 34 483 11 809 442 19 10.1 30.6T30I15N1KP5KC0 360 3 489 13 037 15 747 841 20 9.7 29.0BMS-POS 67 884 37 377 16 037 252 13 6.4 6.5T20I10N1KP5KC0 90 4 021 86 776 16 964 579 20 8.3 20.1retail 3 12 889 433 297 20 647 332 20 7.9 10.2BMS-WebView-2 4 3 185 106 070 60 193 074 23 9.8 4.6BMS-WebView-1 33 372 5 844 69 417 074 25 11.5 2.5low support thresholdTable 7.3: Some statisti
s about the frequent itemsets

51

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYFirst we investigate �ne-tuning of the support
ount pro
edure by introdu
ing aspe
ial data stru
ture, optimizing the routing strategies and applying dead-end pruning.Then we turn to a te
hnique that signi�
antly redu
es the number of support
ount
alls at many databases. Finally, we
onsider databases with many
losed itemsets andpresent equisupport pruning.7.2.1 Ca
hing the transa
tionsI/O and string to integer parsing
osts are redu
ed if the transa
tions are stored in themain memory instead of disk. It is useless to store the same transa
tions multiple times.It is better to store them on
e and employ
ounters representing the multipli
ities. Thisway, memory is saved and run-time may be signi�
antly de
reased. This te
hnique isused in FP-growth and
an be used in APRIORI as well.The advantage of this idea is the redu
ed number of support
ount method
alls.If a transa
tion o

urs n times, then the expensive pro
edure is
alled just on
e (with
ounter in
rement n) instead of n times (with
ounter in
rement 1). Thus the numberof
alls to the most expensive method may be
onsiderably redu
ed. Unfortunately, thedata stru
ture needs memory, and its build-up (i.e.
olle
ting the same transa
tions)requires pro
essor time.We refer to the data stru
ture that stores the transa
tions together with the mul-tipli
ities as transa
tion
a
her. The transa
tions are
a
hed after the �rst s
an, sothat infrequent items
an be removed from the transa
tions. Di�erent data stru
tures
an be used as transa
tion
a
hers. We have three requirements:1. inserting an itemset has to be fast,2. the data stru
ture has to be memory-eÆ
ient,3. listing the transa
tions and the multipli
ities has to be fast.A simple solution is an ordered ve
tor, ea
h element stores an itemset and its mul-tipli
ity
ounter. Inserting a transa
tion be
omes slow as the number of transa
tionsbe
omes large. A better solution is a ve
tor of ordered ve
tors where the jth ve
torstores transa
tions of size j. We refer to this solution as order-array based
a
her.The most famous Apriori implementation [11℄ uses trie and in our previous imple-mentation we have used a red-bla
k tree (denoted by RB-tree). In an RB-tree
a
herea
h node stores a transa
tion. Due to the su

ess of Patri
ia-trees in FP-growth basedalgorithms [43℄ we also tested this solution.The experiments proved our expe
tation, that ordered-ve
tor and ve
tor of ordered-ve
tor solutions are not
ompetitive with tree based solutions (the table does not evenin
lude the order ve
tor-based solution, sin
e its run-time ex
eeded the a

eptable run-time threshold most of the
ases). Tries slightly outperforms RB-trees
on
erning run-time, but their memory need is mu
h larger, even larger than the memory need of52

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI

database minsup ordered-array RB-tree trie patri
iakosarak 48 000 1.74 0.93 0.83 0.84840 212.8 2.79 2.26 1.68a

idents 3.96 3.49 1.13 0.90 0.8100 500 94.4 1.88 1.48 1.23BMS-POS 5 000 126.09 1.40 0.89 0.6567 153.28 1.55 1.10 0.72webdo
s 700 000 27.05 25.92 25.08 24.98200 000 1030.25 38.05 45.20 31.89run-timesdatabase minsup ordered-array RB-tree trie patri
iakosarak 48 000 0.69 0.69 0.65 1.93840 28.02 32.16 72.55 19.92a

idents 210 000 2.91 2.73 1.45 1.91100 500 21.68 19.15 13.00 9.2BMS-POS 5 000 15.09 17.86 24.84 10.6067 23.31 22.87 38.21 13.12webdo
s 700 000 48.66 48.66200 000 278.10 280.98 934.01 264.84memory needTable 7.4: Transa
tion
a
hing with di�erent data stru
tures

53

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYorder-array solutions. Trie is said to be an eÆ
ient data stru
ture in
ompressing datasets be
ause it stores the same pre�xes on
e instead of the number of times it appears(whi
h is the
ase with ordered-arrays and RB-trees). Experiments, however, do notsupport the statement about
ompression eÆ
ien
y.The reason for this
omes from the fa
t that a trie has mu
h more nodes { thereforemu
h more edges { than an RB-tree has (ex
ept for one bit per node, RB-trees need thesame amount of memory as simple binary trees). In a trie ea
h node stores a
ounterand a list of edges. For ea
h edge we have to store the label and the identi�er of thenode the edge points to. Thus adding a node to a trie in
reases memory need by atleast 5 � 4 bytes (if items and pointers are stored in 4 bytes). In a binary tree, like anRB-tree, the number of nodes equals to the number of transa
tions. Ea
h node stores atransa
tion and its
ounter.When inserting the �rst `-itemset transa
tion in a trie, ` nodes are
reated. Howeverin an RB-tree we
reate only one node. Although the same pre�xes are stored only on
ein a trie, this does not redu
e the memory di�eren
e so mu
h. This is the reason for theempiri
al fa
t we observed, that a binary tree
onsumes 3-10 times less memory than atrie does.A Patri
ia tree over
omes the defe
t of a trie that stems from the ineÆ
ient storageof single paths. It substitutes a single path with one link with a label equal to the setof labels that are on the path. This spares many pointers but more importantly, thememory need
aused by the overhead of a list is greatly redu
ed. Thus Patri
ia treeskeep the advantage of trie-based solution without su�ering from large memory need.In this se
tion we avoid dis
ussing the run-time and memory need e�e
t of theordering used to
onvert itemsets to sequen
es. An in-depth analysis is provided inse
tion 7.3.After �nding the best data stru
ture for a transa
tion
a
her, we investigated iftransa
tion
a
hing really speeds up Apriori. In these experiments (see some results inFigure 7.1) we have used a Patri
ia-tree as a transa
tion
a
her.
 0.1

 1

 10

 100

 1000

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
es

pentium 4
opteron

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1
pu

m
sb

*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed
s

pentium 4
opteron

Figure 7.1: Ca
hing the transa
tions54

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORISome hardware friendliness diagrams are given in Figure 7.2.
 0

 50

 100

 150

 200

 250

 300

cache−on
cache−off

G
C

lo
ck

tic
ks

all uops on kosarak at 1100

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

cache−on
cache−off

G
C

lo
ck

tic
ks

all uops on pumsb at 40000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.2: Hardware friendliness diagrams of Aprioris with and without transa
tion
a
hingExperiments show, that transa
tion
a
hing is a great speed-up te
hnique, it some-times (in the
ase of
onne
t, pumsb) de
reases run-time by several orders of magni-tude, sometimes the run-time \just" drops to its fra
tion (a

idents, BMS-WebView-1,T20I10N1KP5KC0.25D200K, pumsb*). Due to the fast tree-based solution, this te
hniqueis regarded run-time safe, i.e. even at databases where the number of support
ountmethod
alls do not de
rease signi�
antly, building up the
a
her does not redu
e over-all run-time. Building-up the
a
her never takes signi�
ant time
ompared to frequentitemset mining (the largest run-time in
rease was 10% and 5% at databases retail andBMS-WebView-2 respe
tively) at low support thresholds.This te
hnique is obviously not memory safe. The
a
her may need a lot of memory,even more than the memory needed by the
andidates. With most of the databasesthe memory in
rease was not too large and we found no databases where the in
reasedmemory assumption resulted in swapping. In the remaining experiments we will turntransa
tion
a
hing on.7.2.2 Support
ount of Christian BorgeltWhen the transa
tions are stored in a trie or in a Patri
ia tree then an other support
ount te
hnique
an be applied. This
lever idea was already mentioned in [11℄ and wassket
hed in [9℄. This te
hnique is used in the re
ent versions of Borglet's famous Aprioriimplementation.The observation behind the idea is that two transa
tions result in the same program
ow till the
ommon element, i.e. till the
ommon pre�x. Storing the transa
tions in atrie gives the ne
essary information about the
ommon pre�xes. It is possible to pro
essthe same pre�xes only on
e instead of the number of times it appears. The
ounter ofitemset I in the transa
tion trie stores the number of transa
tion whose pre�x is itemset55

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYI. In this respe
t this solution di�ers from the one used in transa
tion
a
hing (andrather it resembles to an FP-tree that is deprived of
ross-links.) Another di�eren
e isthat the ordering used in the transa
tion trie must
orrespond to the ordering used inthe
andidate trie. In se
tion 7.3 we will see, that this is a drawba
k sin
e the two triesprefer di�erent orderings.Unfortunately, the algorithm is not detailed in [9℄, but we believe it works as follows.We simultaneously traverse the
andidate trie and the transa
tion trie in a double re-
ursive manner. We maintain two node pointers respe
tively that are initialized to theroots. We go through on the edges of both node. If the label belong to the transa
tiontrie is smaller or equal than the other label, then the re
ursion is
ontinued on the
hildof the given transa
tion node, and with the same
andidate node. If the two labels areequal, then the re
ursion is
ontinued with the pointed
hildren. A slightly optimizedversion is found in Algorithm 3.Algorithm 3 BORGELT SUPPCOUNTRequire: n
: a node of the
andidate trie,nt: a node of the transa
tion trie,`: number of step from n
 that needs to be done to rea
h a leaf,i:, the smallest index of the edge of n
 that is larger than the label of edge that ledto nt.if ` = 0 thenn
:
ounter n
:
ounter + nt:
ounterelsefor j = 0 to nt:edge number� 1 dowhile i < n
:edge number AND n
:edge[i℄.label < nt:edge[j℄.label doi i+ 1end whileif i < n
.edge number AND n
:edge[i℄.label � nt:edge[j℄.label thenBORGELT SUPPCOUNT(n
, nt:edge[j℄.
hild, `, i)if n
:edge[i℄.label = nt:edge[j℄.label thenBORGELT SUPPCOUNT(n
:edge[i℄.
hild, nt:edge[j℄.
hild, `� 1, 0)i i + 1end ifelsebreakend ifend forend ifThe solution above su�ers from the disadvantage of many redundant traversal inthe transa
tion trie. It does not take into
onsideration the fa
t that only a part of a56

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORItransa
tion needs to be evaluated. To over
ome this problem we
an employ a
ounterfor ea
h node nt of the transa
tion trie that stores the length of the longest path thatstarts from node nt. During the support
ount we do not pro
eed the re
ursion on anode whose
ounter is less than `�1. Several other optimizations
an be applied that isbased on removing unvisited or unimportant paths from the transa
tion trie. For moredetails the reader is referred to [9℄.7.2.3 Filtering unimportant items from the transa
tionsFiltering unimportant items from the transa
tions means removing those items fromea
h transa
tion that do not play role in determining the support of the
andidates.Obviously as the algorithm pro
eeds more and more items
an be �ltered from thetransa
tions. We have already mentioned a very simple �ltering, i.e. after the �rst s
anwe remove infrequent items from the transa
tions. A similarly simple �ltering is whenwe delete the transa
tions of size smaller than ` at iteration `.Further �ltering
an be applied. To illustrate this imagine that the
andidates ofsize two are AB, AC, BC and DE and transa
tion ABCD is pro
essed. Item D is not
ontained in
andidates of size 2 that are
ontained in the transa
tion, therefore it
an bedeleted from the transa
tion. In general an element of the transa
tion
an be removedat iteration ` if it is not
ontained in any
andidate that o

urs in the transa
tion [9℄.A more sophisti
ated solution was proposed by Park et al. [40℄. It is based on thefa
t that for a
andidate I of size `+1 to o

ur in a transa
tion ea
h element of I mustbe
ontained in at least `
andidates of size ` that o

ur in the transa
tion. This isa ne
essary
ondition, therefore an item in the transa
tion
an be trimmed if it doesnot appear in at least ` of the
andidates in the transa
tion. For example transa
tionACDE is deleted if the
andidates are the same as used in our previous example. Noti
ethat the previous simple �ltering does not remove any element from the transa
tion.This te
hnique often results in a large number of item erase, however, to evaluate itseÆ
ien
y we have to take into
onsideration the overhead of removing an item from thetransa
tion, whi
h depends on the way the transa
tions are handled. There are di�erentsolutions in the literature.Algorithm DCI [36℄ pro
esses and �lters ea
h transa
tion one-by-one and writesthem out to the disk, i.e. the database is redu
ed progressively. It uses optimized I/Ooperations for the eÆ
ient disk usage. If we employ an ordered ve
tor, ordered arrayor a binary tree as a transa
tion
a
her, then removing an item from a transa
tion
anbe repla
ed by removing the original transa
tion and inserting the �ltered transa
tion.These transa
tion
a
her, however, are not
ompetitive with red-bla
k tree, trie or pa-tri
ia tree based solutions. Unfortunately, removing an item from a stored transa
tionis not an easy task in the
ase of trie and patri
ia tree, and it is a slow operation in the
ase of red-bla
k tree (deletion may need the expensive rotation operation).This drawba
k was also observed in [9℄ where the following heuristi
s were proposed.57

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYRebuild the transa
tion
a
her if the �ltering result in a signi�
ant node de
rease, oth-erwise use the original transa
tion
a
her. The threshold of rebuild was determinedexperimentally.7.2.4 Equisupport pruningWe have seen that pre�x equisupport pruning
an be applied in all bottom-up FIMalgorithms, where
andidates are generated on the basis of pre�xes. From a Apriori'strie point-of-view, ea
h node has to be extended with a list that stores equisupport items.In the infrequent
andidate removal phase we
he
k if a leaf has the same support asits pre�x generator. If it has, then the leaf is purged from the trie and the label of thelink is added to the parent's equisupport set. Ea
h item i in an equisupport set
an beregarded as a loop edge with label i. Loop edges are not
onsidered in support
ount,but must be
onsidered in the
omplete pruning step of
andidate generation.Example 7.2.1 Let itemsets AB;AC;BC be the only frequent pairs, sup(AB) 6= sup(A) 6=sup(AC) and sup(B) = sup(BC) = sup(BD). Figure 7.3 shows the trie obtained afterinfrequent
andidates removal phase. Noti
e that if loop edges were not
onsidered inthe previous step of the
andidate generation, then itemset ABC would not be generatedas a
andidate even though all its subsets are frequent.
A BC B C,DFigure 7.3: Example: removing equisupport leavesThis example draws attention to the
onne
tion between equisupport pruning anddead-end bran
h removal. We see that node B does not lead to a leaf at depth 2therefore dead-end bran
h removal would erase this node, and itemset ABC would notbe generated. The depth of a node for dead-end bran
h removal must be rede�ned sothat it does not purge leaves that may be needed for a proper
omplete pruning. Wehave to see, that an itemset obtained by taking the union of a leaf X and any item thatis in the equisupport set of some pre�x of X has the same support as X. Thus when
onsidering the depths of node X during dead-end bran
h removal, we have to add to58

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORIthe a
tual depth of X the size of the equisupport sets that are on the path from theroot to X. For example the depth of node B in Figure 7.3 is 3 instead of one.The astute reader may noti
e that edge that points to node B from the root is
onsidered in support
ount, however it does not lead to any
andidate. We haveseen the run-time impa
t on the support
ount method of ignoring su
h nodes when weanalyzed dead-end pruning (see se
tion 4.4). If they
annot be pruned (so that
ompletepruning
an be applied), then they should be distinguished. Edges that are on a path toa
andidate should be type one (let us
all them normal edges), while the rest in
ludingthe equisupport loops should be of type two (denoted by dashed edges). Su
h \
oloredtrie" is depi
ted in Figure 7.4. The frequent pairs are AB, AC, AD, BC, BD, CD, CEand sup(A) = sup(AD), sup(B) = sup(BD), sup(C) = sup(CD). The upper trie storesthe frequent two itemsets. Below, on the left a trie is depi
ted, whi
h is obtained after
andidate generation if equisupport pruning and
oloring is used. The trie on the rightis generated if no equisupport pruning is used.
A B CB C D C D D E

A B CC CD CD EDC
A B CB C C DC D D D EFigure 7.4: Example: distinguishing dead-end edges when equisupport pruning is ap-pliedNoti
e that when determining whi
h
andidates are
ontained in transa
tion hABCDEFGHi,only four nodes are visited in the
olored trie, nine in the original equisupport and 13in the non-equisupport
ase.Although distinguishing the edges seems to be a good pra
ti
e, it also has some draw-ba
ks. Ea
h node stores two lists of edges, that means double overhead. In databasesthat do not
ontain non-
losed itemsets, the se
ond type of edges are never used. Wehave seen (in se
tion 4.2) that in
reasing the size of the trie nodes deteriorates run-time59

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYand memory need. With an other solution we may get rid of large part of the over-head. Instead of this te
hnique, here we propose a di�erent solution that we
all level2 equisupport pruning.7.2.5 Level 2 equisupport pruningIt seems
ontradi
tory to restri
t our equisupport pruning to pre�xes in the
ase ofApriori sin
e all subsets together with the supports are available and the equisupportProperty 7.1.1 (see page 47) is ful�lled for every subset. To understand why we
an notapply a general equisupport pruning we have to understand, that�
omplete pruning does not allow simple removing of equisupport leaves. A loopedge
an be regarded as a
lassi
 edge that leads to a node that is fairly similar toits parent. It is like
opying an identi
al subtree of a
hild to the node itself. Thusa node with many self loops is a
ompa
t representation of a whole imaginarysubtrie, whi
h is traversed during the
omplete pruning.� for eÆ
ient support
ounting and
andidate generation the trie has to store orderedsequen
es, i.e. the labels on all paths that start from the root and lead to a leafhave to be ordered. In other words when an in
lusion of an itemsetX is
he
ked westart from the root and
he
k if there exist a link with label equal to the smallestelement of X. If there exists we follow the link, and then
he
k the se
ond smallestelement, et
.Based on a non-pre�x subset equivalen
e, removing a leaf and adding a loop link,however, may invalidate the se
ond assumption. Let us
onsider the example, whereF2 = fAB;AC;BC;BD;CDg and sup(BC) = sup(C). Sin
e leaf BC has same supportas its subset, it
an be removed, and a loop edge with label B has to be added to nodeC. This is seen in Figure 7.5.
A B CB C D DBFigure 7.5: Example: nonpre�x equisupport pruning ruins orderingThe trie obtained by a nonpre�x equisupport pruning does not meet the orderingrequirement. Node BC
annot be rea
hed from the root, by �rst
he
king item B and60

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORIthen C. Therefore, itemset ABC is not generated as a
andidate be
ause its subset BC
an not be veri�ed.Fortunately, there exists a set of subsets that allows a se
ond type of equisupportte
hnique, be
ause it does not invalidate the ordering.Here we propose a new equisupport pruning te
hnique, whi
h meets the ordering re-quirement of the trie, thus it
an be applied. It
an be used only if the pre�x equisupportpruning is used as well.Property 7.2.2 Let Y be the pre�x of itemset Y [z, where jzj = 1. If there exists asubset X of Y su
h that jXj + 1 = jY j and sup(X [z) = sup(X), then sup(Y [z) =sup(Y).The above property is a spe
ial
ase of the general equisupport pruning property. Weemphasized on the purpose to better illustrate whi
h itemsets play role in this pruningte
hnique. To use the pruning, it requires that we know the equisupport sets of allsubsets. This information is only available in Apriori.This spe
ial equisupport pruning
an be easily adapted in the
andidate generationphase. The se
ond step of the
andidate generation is
he
king all `-subsets if they arefrequent. These are rea
hed by the (` � 1)-element pre�xes of them. We
an add anextra
he
k to apply the equisupport pruning. If the largest item of the
andidate isin the equisupport set of a subset of the pre�x, then the
andidate is pruned and thislargest item is pla
ed in its generator's equisupport set.Example 7.2.3 The set of frequent two itemsets are fAB;AC;AD;BC;BDg and theonly equisupport is sup(BC) = sup(C). We do not generate ABC as a
andidate be
auseit has a 2-element subset that
ontains C in the equisupport set of its pre�x. Figure7.6 depi
ts the trie before and after the
andidate generation. Please keep in mind, thatdead-end bran
h pruning (with the virtual depth modi�
ation) is applies during
andidategeneration.The example also shows that this te
hnique may also redu
e the number of itera-tions of Apriori. Consider the above example ex
ept that itemset BD is not frequent.Three iterations are needed in non-equisupport
ase be
ause ABC would be a
andi-date. Equisupport pruning, however, prevents us from generating ABC as a
andidate,and terminates Apriori after the se
ond iteration.7.2.6 Level 2 equisupport pruning and further dead-end prun-ingFurther pruning
an be applied if level 2 equisupport pruning is used. This is based onthe following lemma. 61

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY
A BB C D DC ABDCFigure 7.6: Example: spe
ial pre�x equisupport pruningLemma 7.2.4 In the
andidate generation phase when
he
king all subsets of an (`+1)-itemset, no equisupport sets of nodes at depth d for all d < `� 1 need to be
onsidered,if level 2 equisupport pruning is used.Proof: We prove this statement by
ontradi
tion. Let us assume the pre�x of the
andidate is denoted by P and item ij of subset Q = fi1; i2; : : : ; ij; : : : i`g, is in theequisupport set of itemset PQ = fi1; i2; : : : ; ij�1g. We
laim that itemset Q0 = PQ[(P nQ)
ould not have been generated as a
andidate at iteration j. If ij � P nQ, then thepre�x equisupport
he
k prunes Q0 (be
ause it prevents extending PQ), otherwise thelevel 2 pruning does this work, be
ause the largest item of Q0 is in the equisupport setof its subset PQ. �Table 7.5 illustrates the rationale of the proof (P = fABCDg). The table
ontainsthe subset of P that is not generated as a
andidate, if the items
orresponding to theindi
es of the row and
olumn, are ij and Q respe
tively. For example item B
annotbe in the equisupport set of itemset A be
ause it
ontradi
ts to the fa
t that ABC wasa
andidate. Also, if item C is in the equisupport list of itemset B, then equisupportpruning in
andidate generation prevents generating itemset ABC as a
andidate. Ingeneral, the existen
e of itemsets above the diagonal as a
andidate
ontradi
ts to pre�xequisupport pruning, while under the diagonal the itemset
ontradi
ts to equisupportpruning in the
andidate generation phase.Lemma 7.2.4 allows us to (1.) simplify the
ode (equisupport sets need to be
on-sidered only at level ` � 1) and (2.) remove some dead-end bran
hes. Nodes at depth` � 1 with no
hildren
an be removed after the
andidate generation, even if theirequisupport sets are not empty. This pruning does not require any extra movement inthe trie. The preorder traversal of the trie ensures that any `-itemset
an be a subsetof an (`+ 1)-itemset that is generated by the pre
eding nodes. This
orresponds to theproperty 4.4.1 (see page 31) used in dead-end pruning. We
all level 2 pruning together62

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORIP nQ Q ijA B C DABC D AD ABD ABCD {ABD C AC ABC { ABCDACD B AB { ABC ABCDBCD A { AB ABC ABCDTable 7.5: Illustration of the proof of Lemma 7.2.4with dead-end pruning presented in this se
tion as level 3 equisupport pruning.Example 7.2.5 The Figure 7.7 illustrates level 3 equisupport pruning. The trie onthe left side is obtained after infrequent removal phase at iteration 2. After
andidategeneration and the new dead-end pruning, we get the trie that is depi
ted on the right sideof the �gure. Noti
e that nodes A and B are present in the next iteration if equisupport
A B DB,C,D D E E BDEFigure 7.7: Example: removing dead-end bran
hes when level 3 equisupport pruning isappliedpruning in
andidate generation is not applied be
ause their virtual depth is 4 and 3.These unne
essary bran
hes slow down support
ount throughout two iterations.The example also shows that this dead-end pruning also redu
es the number of iterationin Apriori. The virtual depth of node A is 4, therefore this node is removed during the
andidate generation in iteration 5. Dead-end bran
h removal, however, terminates thealgorithm before the support
ount of the 4th iteration begins.Experiments with equisupport pruningEquisupport pruning is not ne
essarily run-time safe. If the database does not
ontainnon-
losed itemsets, then the memory allo
ations of the never used equisupport lists63

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYrequire extra pro
essor operations. Furthermore, this te
hnique is not ne
essarily mem-ory safe. The equisupport sets need memory even if they are empty and never used.Experiments, however, show that the performan
e deterioration is not signi�
ant. Thehighest run-time and memory need degradation were 26% and 20%, respe
tively. Webelieve that this is attributed to the fa
t that equisupport
he
k does not require anyextra movement in the trie and
an be performed qui
kly. In the experiments, whoseresults are shown in Figure 7.8, level 3 equisupport pruning was employed.
 0.1

 1

 10

 100

 1000

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

 0.1

 1

 10

 100

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed

pentium 4
opteron

Figure 7.8: Equisupport pruningSome hardware friendliness diagrams are given in Figure 7.9.
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Level3−ESP
prefix−ESP

off

G
C

lo
ck

tic
ks

all uops on pumsb at 36000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

Level3−ESP
prefix−ESP

off

G
C

lo
ck

tic
ks

all uops on retail at 6

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.9: Hardware friendliness diagrams of Aprioris with di�erent equisupport prun-ing te
hniquesThe results meet our expe
tation. In dense datasets the run-time and memory needdrop to their fra
tion. The de
rease may be of several orders of magnitude. Pleasenoti
e the logarithmi
 s
ale.Next, we tested if the speed-up is attributed to pre�x equisupport or the other twoprunings also play signi�
ant role. The answer is found in Fig. 7.10.Experiments show that equisupport pruning proposed in
andidate generation andthis spe
ial dead-end pruning do not only possess a ni
e theoreti
al foundation but it is64

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed

pentium 4
opteron

Figure 7.10: pre�x equisupport pruning vs. level 3 equisupport pruningan eÆ
ient speed-up te
hnique in pra
ti
e as well. In some
ases the run-time droppedto its half.histori
al remark: Similar pruning te
hnique based on itemsets with equalsupport was �rst presented in algorithm PASCAL proposed by Bastide et al.[5℄. Their solution di�ers from our in many respe
tive. First of all, they ap-ply full equisupport pruning, i.e. they do not
al
ulate the support of anyproper superset of itemset I if sup(I) = sup(I 0) for any I 0 � I. They usethe term key pattern for those itemset that have no proper subsets with thesame support. The authors of PASCAL des
ribe full equisupport removal in
on
eptual terms. This des
ription suggests a naive/straightforward imple-mentation that keeps the whole
ombinatorial set of equisupport expansions.The edges may be distinguished so that many of them are not
onsideredduring support
ount, but the nodes have to exist in order to perform fullpruning. We de
lare that the main merit of equisupport pruning is the fa
tthat many nodes
an be deleted and even more need not be generated. Indense databases the main bottlene
k of Apriori is the heavy memory need ofthe large
andidate trie. This is not redu
ed by the PASCAL te
hnique. Onthe
ontrary, our solution solves this problem. The results of the experimentsshown in Figure 7.8 justi�es this argumentation.7.2.7 Interse
tion-based pruningThe
lassi
al
andidate generation
onsists of two steps. First taking the union of twofrequent itemsets that have
ommon (`� 1)-pre�x, and then we
he
k the subsets. Thislatter step is
alled the
omplete pruning of Apriori. From a trie point of view, ea
hitemset that ful�lls the
omplete pruning requirement
an be obtained by taking theunion of the representations of two sibling nodes in the trie. In the so
alled simplepruning we go through all nodes at depth `�1, take the pairwise union of the
hildren65

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYand do the
omplete pruning
he
k. Two straightforward modi�
ations
an be appliedto redu
e unne
essary work. On one hand, we do not
he
k those subsets that areobtained by removing the last and the one before the last elements of the union (theresulting sets are the generators). On the other hand, the prune
he
k is terminated assoon as a subset is infrequent, i.e. not
ontained in the trie.A problem with the simple pruning method is that it unne
essarily traverses someparts of the trie many times. We illustrate this by an example. Let ABCD, ABCE,ABCF , ABCG be the four frequent 4-itemsets. When we
he
k the subsets of potential
andidates ABCDE, ABCDF , ABCDG, then we travel through nodes ABD, ACDand BCD three times. This gets even worse if we take into
onsideration all potential
andidates that stem from node ABC. We travel to ea
h subset of ABC 6 times.To save these super
uous traversals, we propose an interse
tion-based pruningmethod [8℄. Let us assume that we want to add new leaves to node P [x, where Pdenotes the pre�x. When
he
king the subsets of itemset P [fx; yg, we
he
k P [x,P [y and Q[fx; yg where Q � P and jQj+1 = jP j. P [x, P [y are the generators, theyhave to be frequent. Therefore when
he
king the subsets of P [fx; yg it is enough toexamine if item y extends nodes Q[x for allQ subsets. Similarly, when
he
king subsetsof P [fx; zg we examine if item z extends nodes Q [x for all Q � P . Consequentlynode P [x is extended by those sibling items that extend all Q [x nodes, i.e. theextending set equals to the interse
tion of labels of edges that start from nodes Q [x.This is the point where we save the traversals. If nodes that represent Q itemsets arestored, then
he
king the subsets of P [fx; zg means determining the
hild nodes of Qnodes that are rea
hed by label z and doing the interse
tion. Furthermore, if the edgesare stored ordered and we memorize the index of edges used in the a
tual sear
h (andit at a starting point in the next sear
h), then in determining the items that extend the
hildren of p the edges of all Q nodes are traversed at most on
e.In interse
tion-based
andidate generation when extending the
hildren of P , we �rst�nd nodes Q, where Q � P , jQj + 1 = jP j. Then we take ea
h label i of nodes thatstart from P and determine if x extends all Q nodes. If not, then P [x
an not beextended, otherwise we take the interse
tion of the extender labels of Q [x and thelabel of siblings P [x. The elements of the result set are the items that extend P [x,be
ause they meet the
omplete pruning requirement.Note the real advantage of this method. The (`�2)-subset nodes of the P are reused,hen
e the paths representing the subsets are traversed only on
e, instead of �n2�, wheren is the number of the
hildren of the pre�x.Example 7.2.6 Let us assume that the trie obtained after removing infrequent itemsetsof size 4 and dead-end paths is depi
ted in Fig. 7.11.To get the
hildren of node ABCD that ful�ll the
omplete pruning requirement (allsubsets are frequent), we �nd the nodes that represent the 2-subsets of the pre�x (ABC).These nodes are denoted by Q1, Q2, Q3. Next, we �nd their
hildren that are rea
hed66

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
Q1 Q2 Q3P Q01 Q02 Q03

A BB C CC D D D FD E F G E F G F G F GFigure 7.11: Example: interse
tion-based pruningby edges with label D. These
hildren are denoted by Q01, Q02 and Q03 in the trie. Theinterse
tion of the label sets asso
iated to the
hildren of the pre�x, Q01, Q02 and Q03 is:fD;E; F;Gg \ fE; F;Gg \ fF;Gg \ fFg = fFg, hen
e only one
hild is added to nodeABCD, and F is the label of this new edge.When determining the extender items of node ABCE, we �nd the new Q0j node,i.e.
hildren of nodes Qj, that are rea
hed by edge with label E. The la
k of any su
hnode indi
ates that ABCE
annot be extended, be
ause it has a proper subset that isinfrequent.Interse
tion-based
andidate generation is not ne
essarily faster than the traditional
andidate generation. If the �rst, non-generator subset of the
andidate is infrequent,then the traditional method terminates qui
kly. On the
ontrary interse
tion-basedmethod �rst determines the nodes for all subsets of the pre�x. Therefore the interse
tion-based method is faster under the negative border, and the traditional method may bethe better solution when the elements of the negative border are generated. The distan
efrom the negative border, however, is not know in advan
e.We tested interse
tion-based pruning with and without the equisupport te
hnique(Figure 7.12).Some hardware friendliness diagrams are given in Figure 7.13.Obviously at databases where support
ount dominates, the overall run-time de
reaseis insigni�
ant. Experiments shows that at databases where
andidate generation takesa signi�
ant time of the overall run-time, the interse
tion-based
andidate generation isan eÆ
ient te
hnique.Equisupport pruning in
uen
es eÆ
ien
y of interse
tion-based pruning at databaseswhi
h
ontain non-
losed itemsets. Equisupport pruning redu
es the number of support
ount and
andidate generation
alls, be
ause it repla
es these operations with subsetenumeration. It is not known, however, how does the ratio of support
ount and
an-didate generation
hanges (this depends on the
hara
teristi
s of the database). If the
andidate generation be
omes more signi�
ant, then the advantage of the interse
tion-based pruning grows. 67

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

pentium 4 (ESP)
opteron (ESP)

Figure 7.12: Speed-up ratios of interse
tion-based
andidate generation without andwith Level 3 equisupport pruning

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

intersect−prune

classic−prune

G
C

lo
ck

tic
ks

all uops on mushroom at 550

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

 300

 350

classic−prune
intersect−prune

G
C

lo
ck

tic
ks

all uops on T10I4D100K at 4

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.13: Hardware friendliness diagrams of Aprioris with the simple
lassi
 and withthe interse
tion-based
andidate generation
68

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI7.2.8 Omitting
omplete pruningComplete pruning is de
lared to be an inherent and important step of algorithm Apriori.It seems to be natural to use pruning, sin
e { in
ontrast to the DFS algorithms { allsubsets of a potential
andidate are available. The main merit of Apriori against DFSalgorithms is that Apriori generates a smaller number of
andidates. In [8℄ it wasshown that the eÆ
ien
y of Apriori is not ne
essarily attributed to
omplete pruning,furthermore,
omplete pruning slows down Apriori most of the times. In the rest of thepaper we refer to Apriori that does not apply
omplete pruning (i.e. the se
ond step ofthe
andidate generation is omitted) as Apriori-Noprune.The advantage of the pruning is to redu
e the number of
andidates. The numberof
andidates in Apriori equals to the number of frequent itemsets plus the numberof infrequent
andidates, i.e. the negative border of the frequent itemsets. If pruningis not used, then the number of infrequent
andidates be
omes the size of the order-based negative border of the frequent itemsets, where the order
orresponds to the orderused in
onverting the sets to sequen
es (An itemset I is an element of the order-basednegative border of F if it is not in F , but its pre�x P IjIj�1 and the subsequent subset of Iof the same size are in F). It follows, that if we want to de
rease the redundant work (i.edetermining a support of the infrequent
andidates), then we have to use the order thatresults in the smallest order-based negative border. This issue is further investigated inSe
tion 7.3, here let us a

ept that the as
ending order a

ording to supports is expe
tedto result in the minimal negative border.The disadvantage of the pruning strategy is simple: we have to traverse some partof the trie to de
ide if all subsets are frequent or not. Obviously this needs some time.Here we state that pruning is not ne
essarily an important part of Apriori. Thisstatement is supported by the following observation, that applies in most
ases:jNB�A(F) nNB(F)j � jF j:The left-hand side of the inequality gives the number of infrequent itemsets thatare not
andidates in the original Apriori, but are
andidates in Apriori-Noprune. Sothe left-hand side is proportional to the extra work to be done by omitting pruning.On the other hand, jF j is proportional to the extra work done by pruning. Candidategeneration with pruning
he
ks all the maximal proper subsets of ea
h element of F ,while Apriori-Noprune does not. The out
omes of the two approa
hes are the same forfrequent itemsets, but the pruning-based solution determines the out
ome with mu
hmore e�ort (i.e. traverses the trie many times).Although the above inequality holds for most
ases, this does not imply that pruningis unne
essary, and slows down Apriori. The extra work is just proportional to the quan-tities in the formulas above. Extra work
aused by omitting pruning means determiningthe support of some
andidates. The resour
e requirement of this is a�e
ted by manyfa
tors, su
h as the size of these
andidates, the number of transa
tions, the number69

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYof elements in the transa
tions, and the length of mat
hing pre�xes in the transa
tion.The extra work
aused by pruning
omes in a form of redundant traversals of the treeduring
he
king the subsets. This also depends on many other parameters.As soon as the pruning strategy is omitted, Apriori
an be further tuned by mergingthe
andidate generation and the infrequent node deletion phases. After removing theinfrequent
hildren of a node, we extend ea
h
hild the same way as we would do in
andidate generation. This way we spare an entire traversal of the trie. This solution
ombines
andidate generation and infrequent
andidates removal phases.This tri
k
an also be used in the original Apriori, however { as opposed to theappli
ation of Apriori-Noprune { it does not ne
essarily speed up the algorithm. Tounderstand this, we have to observe that
andidate generation is always after the in-frequent node deletion phase, in whi
h some leaves and even entire bran
hes of the triemay be removed. Sin
e the trie is traversed many times during the
omplete pruning
he
ks of the
andidate generation, this trie purge may result in a signi�
ant run-timede
rease. If the se
ond step, and thus the numerous trie traversals are omitted, thenwe
an merge infrequent
andidate removal and
andidate generation phase without thethreat of
ausing performan
e degradation.Figure 7.14 shows the performan
e gain of Apriori-Noprune
ompared to Apriori with
lassi
al pruning. We also
he
k the results when equisupport pruning was turned on.This means full equisupport pruning in the
ase of
lassi
 Apriori and pre�x equisupportpruning in Apriori-Noprune.Some hardware friendliness diagrams are given in Figure 7.15.Experiments show that
omplete pruning is not ne
essarily an important step ofApriori, furthermore it in
reases run-time most of the times. The highest di�eren
ewas at database BMS-WebView-1, where the run-time dropped to its quarter as soon as
omplete pruning was omitted Similar to interse
tion-based
andidate generation, theequisupport pruning also
hanges the importan
e of
omplete pruning.7.2.9 Summary of the te
hniquesWe have presented many te
hniques that aim to redu
e run-time or memory need.The following table summarizes our results. The ti
k in the se
ond (third)
olumndenotes that the te
hnique is run-time (memory) safe. The sign S stands for the stri
tsafeness, i.e. for all databases the te
hnique did not result in a slower (less memory-eÆ
ient) implementation. If no sign is found, then this te
hnique has no in
uen
e onthat measurement. For example routing strategies, when the edges are stored in anordered ve
tor do not have e�e
t on memory need.The fourth
olumn stores the largest run-time drop. For example if the run-timeof the base algorithm was 20 se
, and with the te
hnique it dropped to 10 se
., thenthis value is 2. Therefore higher numbers here mean more eÆ
ient algorithms. If thete
hnique resulted in a slower algorithm { for example the run-time in
reased to 30 se
70

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
 0

 2

 4

 6

 8

 10

 12

 14

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

pentium 4 (ESP)
opteron (ESP)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f m

em
or

y n
ee

d

Figure 7.14: Omitting
omplete pruning

 0

 20

 40

 60

 80

 100

 120

 140

no−prune
classic−prune

G
C

lo
ck

tic
ks

all uops on BMS−Web−2 at 8

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

no−prune
classic−prune

G
C

lo
ck

tic
ks

all uops on pumsb at 36000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.15: Hardware friendliness diagrams of Apriori and Apriori-Noprune71

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY{ then the �fth
olumn stores the largest performan
e degradation (2/3 in this
ase).The last two
olumns store the same indi
ators but for the memory
onsumption.te
hnique run-time memoryneed largestrun-timeratio smallestruntimeratio largestmemoryneedratio smallestmemoryneedratioinhomogeneous triewith spe
ial blo
kallo
ator S S 2.18 2.86dead-end pruning S S 4.24 2.56hybrid edge repre-sentation X S 1.62 0.94 1.37 0.97transa
tion
a
hing X { 706 0.94 0.17level 3 equisupportpruning X X 105 0.77 42 0.88pre�x vs. level 3equisupport prun-ing S S 3.35 1.9interse
tion-basedpruning X 6.12 0.98omitting
ompletepruning { { 7.36 0.81 0 0.76Table 7.6: Summary of the te
hniques7.3 The in
uen
e of item orderingAt the theoreti
al level we work with sets. In the implementations there exist no setsbut ve
tors, lists, arrays, trees. Sets are
onverted to sequen
es using a total order onthe items. The lexi
ographi
 order a

ording to this order de�nes a total order on theitemsets. The order greatly a�e
ts the algorithms and the speed-up te
hniques. Tillthis point we
arefully avoided this issue, but this subse
tion is dedi
ated to this topi
.7.3.1 The order-preserving assumptionIn many FIM papers
ertain algorithms and speed-up te
hniques are explained withthe independen
e assumption. Independen
e assumption states that if the frequen
iesof disjoint itemsets I1 and I2 are respe
tively freq(I1) and freq(I2), then the frequen
yof itemset I1 [I2 is (or at least
lose to) freq(I1) � freq(I2). This tries to en
apsulate theindependen
e of two binary random variables, but the probabilities are substituted byfrequen
ies (relative supports). The assumption seems to
ontradi
t to our original goalwhi
h is dis
overing unusual, unexpe
ted,
orrelated patterns in the form of asso
iation72

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGrules. If independen
e holds then the itemset that
onsists of the most frequent itemswould be largest itemset with the highest support. If we assume that item frequen
ies arefreq(i1) � freq(i2) � � � � � freq(i`), then the size of the largest itemset would be k wherefreq(i1) freq(i2) � � � freq(ik) � min freq but freq(i1) freq(i2) � � � freq(ik+1) < min freq.In general the number of frequent itemsets of size ` would be jfI = fi1; i2; : : : i`g :freq(i1) freq(i2) � � � freq(i`) � min freqgj.We
ompared the distribution of frequent itemsets of real databases to their \inde-pendent version". The latter has the same item frequen
ies ad the original one, andthe frequen
ies for larger sets are derived from the independen
e assumption (formula).The results of two randomly sele
ted databases are seen in Figure 7.16.
 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16

Database: pumsb*, minsupp 13000

independence
real

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20

Database: kosarak, minsupp 840

independence
real

Figure 7.16: Distribution of the size of the frequent itemsets and the distribution offrequent itemsets under independen
e assumptionWe
an see that reality is quite far form the assumption. We get similar
onsequen
eswhen we
ompare the number of frequent sets, the size of the largest frequent set, theaverage size of a frequent sets, et
.When using a model we expe
t the
onsequen
es drawn from the model to be
loseto reality. It seems that almost all observable
onsequen
es that are drawn from theindependen
e assumption have nothing to do with reality.Does there exist a model that suits the
hara
teristi
s of the frequent itemsets andat the same time it
an be used to make further
onsequen
es?Here we propose the following assumption.De�nition 7.3.1 The order-preserving assumption requires that sup(X [Y) �sup(X [Z) holds whenever sup(Y) � sup(Z) for any disjoint sets X; Y; Z.We get an equivalent de�nition if support is substituted with frequen
y. The order-preserving assumption follows from the independen
e assumption, but not
onversely.An immediate
onsequen
e of the independen
e assumption is that sup(X [Y) =sup(X [Z), if sup(Y) = sup(Z). If we want that the relative orders a

ording to73

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYfrequen
ies of two itemsets are not
hanged when adding
ertain items to both itemsets,then we have to modify slightly the de�nition.De�nition 7.3.2 The soft order-preserving assumption requires that sup(X [Y) �sup(X [Z) holds whenever sup(Y) < sup(Z) for any disjoint sets X; Y; Z.Some immediate
onsequen
es for later use are listed in the following.Corollary 7.3.3 Let I = fi1; i2; : : : ; i`g. If sup(i1) � sup(i2) � � � � � sup(i`), thensup(fi1; i2; : : : ; i`�1g) � sup(I 0) for all I 0 � I, with jI 0j = `�1. Also, sup(fi2; i3; : : : ; i`g) �sup(I 00) for all I 00 � I, jI 00j = `� 1.Proof: If I 0 = I n fijg then set X = I n fij; i`g, Y = fijg and Z = fi`g. Theorder=preserving assumption gives the �rst
laim. The se
ond
laim
an be obtainedsimilarly. �The soft order-preserving assumption version of the above
orollary is the following.Corollary 7.3.4 Let I be a set of items of size `. If soft order-preserving assumptionholds, then the subset of size `� 1 that
onsists of the most (least) frequent items, thathas the largest (smallest) support among the subset of I of size `� 1.The
orollary
laims, that the subset of I that
ontains the most (least) frequentitems has the largest (smallest) support among all the subsets of I of the same size.A

ording to the following
orollary (whi
h gives an equivalent version of de�nition7.3.6), the order-preserving assumption is hereditary to the proje
ted databases, i.e.,the ordering based on the supports of the items is equal to the ordering based on thesupports of the items in proje
ted databases.Corollary 7.3.5 Let T be a set of itemsets in whi
h the order-preserving assumptionholds. Then supTjX(Y) � supTjX(Z) if and only if supT(Y) � supT(Z) holds for anydisjoint sets X; Y; Z.Proof: Using the fa
t that the support of X[Y in T equals to the support of Y in TjXwe get the
laim, sin
e the de�nition of order-preserving assumption
an be rewrittensu
h as: supTjX(Y) � supTjX(Z) holds whenever supT(Y) < supT(Z) for any disjointsets X; Y; Z. �The property, however, does not hold to the
omplement of the proje
ted database.This is proven by the following example. Let T = hY;XZ;XWZi. It is easy to ver-ify that the order-preserving assumption holds. Nevertheless sup(Y) < sup(Z) whilesupTjX(Y) > supTjX(Z). 74

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGThe order-preserving assumption is quite rigid, and its validity is sensitive to noise,whi
h is always present in real-world databases. If the probabilities of the o

urren
esof two itemsets are equal, then it is quite likely that in their support in a dataset will be
lose to ea
h other but the
han
e of equality is small and
onverges to 0 as the number oftransa
tions in
reases. This applies to all of their extensions with independent itemsets.Consequently, half of the extension does not ful�ll the order preserving assumption.Here we propose a relaxation of our assumption.De�nition 7.3.6 Let 0 � � � 1 be a given
onstant. The � order-preserving assump-tion requires that � � sup(X [Y) � sup(X [Z) holds whenever sup(Y) < sup(Z) forany disjoint sets X; Y; Z.Obviously, if � = 1, then we get the soft order-preserving assumption.It is quite easy to verify the validity of the � order-preserving assumption in a setof itemsets S, in whi
h downward
losure property holds, in a sequen
e of itemset T.We
he
k all di�erent itemset pairs I; I 0 2 S if their interse
tion is nonempty. For su
hitemset pairs we
al
ulate I1 = InI 0, I2 = I 0nI. If the order of supports a

ording to I; I 0di�ers from the order of support a

ording to I1; I2 then the order-preserving assumptionfails, otherwise holds. The order-preserving ratio is then given by the number of itemsetpairs that result a positive
he
k divided by the number of itemsets pairs
onsidered (i.e.,I and I 0 are not disjoint sets). The order-preserving ratio
an similarly be
al
ulatedfor the � order-preserving assumption. Table
ontains the order preserving ratio of thefrequent itemsets in our ben
hmark databases.The �gures show that the order-preserving assumption holds in most of the
ases.Now let us turn to the
onsequen
es of the order-preserving assumption that arequite valuable in frequent itemset mining.7.3.2 The number of
andidatesThe number of
andidates is independent of the ordering in the
ase of Apriori. In
ontrast, it depends on the pre�xes { and thus on the ordering as well { in the
aseof E
lat, Fp-growth and Apriori-Noprune. The set of infrequent
andidates is equal tothe order based negative border of the frequent itemsets. An `-itemset is an elementof the order-based negative border if it is infrequent and its (`� 1)-element pre�x andthe subsequent (with respe
t to the ordering) subset of the same size are frequent. Thefollowing lemma indi
ates whi
h ordering results in the smallest order based negativeborder.Lemma 7.3.7 If the order-preserving assumption holds, then the as
ending order withrespe
t to the supports results in the smallest order based negative border.75

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY
database minsup order-preserving ratio1 0.95 0.9T40I10D100 900 0.912 0.998 0.999kosarak 1 800 0.817 0.980 0.998T10I4D100K 8 0.690 0.693 0.726
onne
t 56 000 0.725 1.000 1.000pumsb 41 000 0.863 0.994 1.00038 000 0.219 0.974 0.999a

idents 114 000 0.882 0.960 0.988retail 11 0.870 0.876 0.909BMS-POS 400 0.809 0.860 0.901350 0.116 0.354 0.544BMS-WebView-1 37 0.857 0.942 0.98436 0.351 0.802 0.961BMS-WebView-2 30 0.790 0.819 0.853webdo
s 220 000 0.877 0.966 0.990mushroom 1 600 0.910 0.955 0.990900 0.868 0.896 0.913T10I5N1KP5KC0 100 0.915 0.961 0.96710 0.790 0.809 0.8198 0.714 0.729 0.739T20I10N1KP5KC0 400 0.963 0.999 0.999T30I15N1KP5KC0.25D200K 650 0.999 1.000 1.000pumsb* 17 000 0.850 0.963 0.98615 000 0.434 0.833 0.928Table 7.7: The order-preserving ratio of the frequent itemsets

76

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGProof: For ea
h element I = fi1; i2; : : : i`g of the order-based negative border theproper pre�xes of I are frequent. Without loss of generality we
an assume that i1 �i2 � � � � � i`. If sup(ij) � sup(ij+1) for all j = 1; 2; : : : ; `� 1 and the order-preservingassumption holds, then the
orollary 7.3.3 states that sup(fi1; i2; : : : ; i`�1g) � sup(I 0)for all I 0 � I, where jI 0j = `� 1. Itemset fi1; i2; : : : i`�1g is the pre�x whi
h is frequentand hen
e all proper subsets of I are frequent. Consequently NB�(F) = NB(F) if� denotes the as
ending order a

ording to frequen
ies. By Corollary 2.0.8 (see page11) no other ordering results in smaller number of
andidates, hen
e the lemma follows.�Corollary 7.3.8 If order-preserving assumption holds, thenNB(F) = NB�ASC(F);where F denotes the set of frequent itemsets, and �ASC denotes the as
ending orderinga

ording to the supports.7.3.3 Size of the trieItemsets inserted into a trie are �rst
onverted to sequen
es based on an ordering. Theordering a�e
ts the shape and the number of nodes of the trie. This is illustrated bythe tries depi
ted in Figure 7.17. Both tries stores sets AB and AC. The �rst trie usesordering A � B � C the se
ond uses the reverse.012 3AB C 01 23 4C BA AFigure 7.17: tries storing the same sets but using di�erent orderingsFor the sake of redu
ing the memory need whi
h has strong
orrelation to the traver-sal times (see page 27), it would be useful to use the ordering that results in a trie withminimal size. The size of the trie is given by the number of nodes. Comer and Sethiproved in [13℄ that the minimal trie problem, i.e., to determine the ordering whi
h gives aminimal trie (denoted by TOPT), is NP-
omplete. On the other hand, a simple heuristi
(whi
h was employed in FP-growth) performs very well in pra
ti
e: use the des
endingorder a

ording to the frequen
ies. This is inspired by the fa
t that tries store any given77

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYpre�x only on
e, and there is a higher
han
e of itemsets having the same pre�xes if themore frequent items are
loser to the root.Di�erent orderings may result isomorphi
 tries (and di�erent orderings
an result ina minimum-size trie). For example tries that store sets A;B;AB;AC and use orderingA � B � C and A � C � A are isomorphi
 and minimal. Furthermore di�erentordering may result di�erent, non-isomorphi
 minimal tries. This is shown in Figure7.18. TOPT01 23 4 56
A BB C CD

T0OPT01 23 4 56
C AA B BDFigure 7.18: Example: minimal non-isomorphi
 triesNote that we have to distinguish two frequen
ies of the items; frequen
y in thedatabase, and frequen
y among the itemsets inserted into the trie. We
all this latterfrequen
y as unweighted frequen
y. Obviously ordering based on the two values arenot ne
essary equal. If the elements of the database AB;AC;AD;BC;BC;BC thenA is the most frequent a

ording to unweighted frequen
y, but a

ording to databasefrequen
y it is only in third pla
e. Next we prove that under the order-preservingassumption the two orderings are equal.De�nition 7.3.9 Let T be a sequen
e of itemsets and denote by T� the sequen
e thatis obtained from T by keeping only the di�erent elements (i.e. T�
ontains the sameitemsets as T but with multipli
ity exa
tly one). The unweighted support of itemsetI in T equals to the support of I in T�, i.e.uw supT(I) = supT�(I):Lemma 7.3.10 Let T be a sequen
e of itemsets over I. If order-preserving assumptionholds, then the ordering with respe
t to the unweighted support equals to the ordering withrespe
t to the support, i.e. if sup(fijg < sup(fikg) then uw sup(fijg � uw sup(fikg).Proof: We prove the statement by
ontradi
tion. Let us assume that sup(i) � supp(i0)but uw sup(i) < uw sup(i0). Let us denote the elements of the
over of i0 in T� by78

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGt01; t02; : : : ; t0n (i0 2 tj, tj 2 T�, t0k 6= t0l). A

ording to the order-preserving assumptionsup((tn)i0[i) � sup(t) for all t 2
over�T(i0). This is a
ontradi
tion, be
ause the numberof (t n i0)[i sets is smaller or equal than uw supp(i0), they are di�erent and all
ontaini, therefore the size of uw sup(i)
annot be less than uw sup(i0). �T�DESC01 2 34 5 6 78
Z B CB C A AC

TOPT01 23 4 5 67
Z AB C B CCFigure 7.19: Example: des
ending order does not result in the smallest trieThe failure of the des
ending order produ
ing the minimum size trie stems fromthe fa
t that the order-preserving assumption does not hold. Note that in the examplesup(Z) > sup(A), but sup(ZB) < sup(AB).Conje
ture 7.3.11 Let T be a set of itemsets and denote �DESC the des
ending orderof items a

ording to the number of o

urren
es of the items in T. If order-preservingassumption holds then T�DESC (T) is the minimum-size trie among the tries that storeT, i.e., there exists no ordering � su
h that T�(T) has fewer nodes than T�DESC (T).If the
onje
ture follows, then we know that the heuristi
 works �ne under ideal
ir
umstan
es (the order-preserving assumption holds for all sets). Table 7.7 shows thatthe real-world is \
lose"to the ideal, but still slightly di�erent. One of the most valuableknowledge of frequent itemset mining would be a formula about the relationship of the �order-preserving ratio of a set of itemset T and the ratio of jT�DESC (T)j and jTOPT (T)j,where TOPT denotes a minimum-size trie.7.3.4 Te
hniques in AprioriSupport
ountOne may tend to follow the observation a smaller memory need results in better datalo
ality and hen
e faster algorithms. Therefore we should use the des
ending ordera

ording to the frequen
y when building the
andidate trie. This is, however, just oneside of the problem. 79

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYTo understand the other side we have to re
all the support
ount pro
edure. Tode
ide whi
h
andidates are
ontained in a given transa
tion, a part of the trie has tobe traversed. Ea
h path of the traversals starts from the root. Some paths rea
h a leaf,others do not. The number and the length of paths that rea
h a leaf is independent ofthe ordering. This, however, does not apply to the length of the remaining paths. Toredu
e the expe
ted number of unne
essarily visited nodes, �rst we have to
he
k if thetransa
tion
ontains the least frequent item sin
e this is likely to provide the strongest�ltering among the items of the
andidate, i.e. this is the item that is
ontained in theleast amount of transa
tions. Next, the se
ond least frequent is advised to
he
k, thenthe third, and so on. The edges are
he
ked from the root to the leaves, hen
e we expe
tthe least amount of redundant
he
ks and thus the best run-time, if the order of items
orresponds to the as
ending order a

ording to the supports.01 23 4 5 5A BC D C D 01 23 4 5 5D CB A B AFigure 7.20: Example: Tries with di�erent orders7.20. The two tries store the same sets, but one in the left uses the des
endingorder (A � B � C � D) and the other the as
ending order a

ording to unweightedfrequen
ies. When determining the
andidates in transa
tion fA;B;E; Fg. Nodes 0,1and 2 are visited if des
ending order is used, while the sear
h is terminated immediatelyat the root in the
ase of the as
ending order.We know, that transa
tion
a
hing using a trie or a patri
ia tree requires des
endingorder a

ording to the frequen
ies in order to be storage eÆ
ient. In
ontrast, theminimal number of redundant steps in the
andidate trie during the support
ountprefers as
ending order. These two requirements
an be satis�ed at the same time bya little tri
k. The items are re
oded a

ording to as
ending order a

ording to thesupports, but the items are stored des
ending in ea
h transa
tion when inserting intothe
a
her. Sin
e the eÆ
ient support
ount (i.e. merge) requires the items of thetransa
tion to be stored as
endingly, we simply reverse ea
h transa
tion when it isretrieved from the
a
her.In summary, des
ending order is good for the
ompa
tness (and does not requireto reverse the transa
tions before being pro
essed), while as
ending order results in afewer redundant steps in the trie. Experiments show also that there is no absolutewinner; most of the times the as
ending order results in the faster algorithm, sometimesthe des
ending order. For some results pertaining to this di
hotony, see Figure 7.21.80

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGValues less than one mean that the Apriori that uses des
ending order a

ording to thefrequen
ies is the faster.
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

pentium 4 (tr_cache)
opteron (tr_cache)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f m

em
or

y n
ee

d

Figure 7.21: As
ending vs. Des
ending order a

ording to the frequen
iesSome hardware friendliness diagrams are given in Figure 7.22.In all experiments the transa
tion
a
hing does not
hanges whi
h ordering resultsin the �rst pla
e. This is attributed to the fa
t that we used low support threshold.In su
h
ases the memory need of a transa
tion
a
her and the run-time of building itare insigni�
ant
omparing to the memory need of the
andidate trie and the run-timeof support
ount. Di�erent ordering may be a better
hoi
e if we raise the supportthreshold.Pruning eÆ
ien
yThere is a strong
onne
tion between the ordering and eÆ
ien
y of the Apriori thatdoes not use
omplete pruning. We want to use the ordering that minimizes the num-ber of false
andidates. Candidates in Apriori-Noprune are the same as
andidates in81

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY
 0

 50

 100

 150

 200

 250

 300

ASCDESC

G
C

lo
ck

tic
ks

all uops on BMS−POS at 200

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 100

 200

 300

 400

 500

 600

 700

ASCDESC

G
C

lo
ck

tic
ks

all uops on accidents at 140000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.22: Hardware friendliness diagrams of Aprioris with as
ending and des
endingorder a

ording to the frequen
iesE
lat or FP-growth (see se
tion 7.3.2) therefore the fastest Apriori-noprune is expe
tedwhen as
ending order a

ording to the frequen
ies is used. Experiments support this
on
lusion.Table 7.8 shows the ratio of the number infrequent
andidates and the number offrequent itemsets in the
ase of
omplete pruning, Apriori-Noprune with as
ending anddes
ending order a

ording to the supports.database
omplete NOPRUNE NOPRUNE jCDESCnF jjCASCnF jprune ASC DESCT40I10D100K 0:98 1:05 3.20 3.04kosarak 0:05 0:74 1.61 2.16T10I4D100K 6:62 15:57 27.98 1.79
onne
t 0:0001 0:002 2.07 766.83pumsb 0:008 0:03 0.82 22.71a

idents 0:03 0:03 2.90 86.78retail 4:82 5:71 578.54 101.15BMS-POS 0:56 0:59 30.98 52.10BMS-WebView-1 0:002 0:02 0.09 3.53BMS-WebView-2 0:05 0:16 3.28 20.18webdo
s 0:21 0:22 12.91 58.41mushroom 0:001 0:005 2.87 515.85T10I5N1KP5KC0.25D200 42:31 51:94 194.90 3.75T20I10N1KP5KC0.25D200K 0:009 0:06 0.24 3.71T30I15N1KP5KC0.25D200K 0:07 0:26 0.16 0.61pumsb* 0:002 0:05 0.62 12.42Table 7.8: Ratio of the number of infrequent
andidates and the number of frequentitemsetsWe
an see that the number of infrequent
andidates is mu
h larger when the de-s
ending order is used (
he
k the values in the last
olumn).It follows from the rational that Apriori di�ers from Apriori-Noprune in terms ofsensitivity of the ordering. Both orderings has their advantage in Apriori, but in Apriori-Noprune the drawba
k of des
ending order is dominating.82

Chapter8Evalutation
8.1 The battle of Apriori implementationsWe have enrolled our three sele
ted implementations (Apriori, Apriori-Noprune andApriori-MEMSAFE) in a
ompetition with three known Apriori
odes. Apriori-MEMSAFEemploys on-line
andidate 2-itemset generation [19℄ and does not use transa
tion
a
hing.Apriori-Noprune omits the
omplete pruning phase. Apriori and Apriori--MEMSAFEadapt the interse
tion-based
andidate generation. Apriori-Noprune and Apriori usetransa
tion
a
hing and apply a diagonal array for determining the supports of
andi-dates of size two. All three implementations use inhomogeneous trie with the spe
ialblo
k allo
ator, dead-end bran
h pruning, hybrid edge representation and full equisup-port pruning.We
ompared our implementation to three C/C++ implementations
oded by Chris-tian Borgelt1 , Bart Goethals2 and Tingshao Zhu3 respe
tively. This later was �nallyex
luded from the ra
e, be
ause it ran extremely slow, several orders of magnitude slowerthan the others. We used the latest versions that are available on the authors' websiteat 15th De
ember 2005.We have tested two implementations from Christian Borgelt, the one that was sub-mitted to FIMI'04 (Apriori-Borgelt-FIMI) and other that
an be downloaded from thewebpage. We ran this implementation with two di�erent parameters, in order to test thespeed- and memory-optimized version respe
tively (denoted by Apriori-Borgelt-Speedand Apriori-Borgelt-Mem respe
tively). Apriori-Borgelt-Speed always
onsumedthe same amount of memory as Apriori-Borgelt-FIMI but sometimes ran slower.In the memory optimized version hybrid edge representation is used and transa
tionsare not stored in the memory. The speed-optimized version uses a trie with o�set-index1http://fuzzy.
s.uni-magdeburg.de/�borgelt/apriori.html2http://www.adrem.ua.a
.be/�goethals/software/3http://www.
s.ualberta.
a/�tszhu/software.html83

http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html
http://www.adrem.ua.ac.be/~goethals/software/
http://www.cs.ualberta.ca/~tszhu/software.html

8.1. THE BATTLE OF APRIORI IMPLEMENTATIONSCHAPTER 8. EVALUTATIONedge representation, and a trie storing the transa
tions. It adapts a novel support
ounting method, (the basis of whi
h was des
ribed in se
tion 7.2.2) together with thesimple unimportant item �ltering te
hnique (see se
tion 7.2.3).Due to the spa
e restri
tions we show only a small number of test results. We up-loaded all results to the page http://www.
s.bme.hu/�bodon/fim/test.html. Threetypi
al run-time plots are depi
ted in Figure 8.1.
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 215

r
u
n
-
ti
m

e
 (

s
e
c
.)

minsup

Database: T40I10D100K

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000

r
u
n
-
ti
m

e
 (

s
e
c
.)

minsup

Database: kosarak

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

 1

 10

 100

 1000

 31 32 33 34 35 36 37

r
u
n
-
ti
m

e
 (

s
e
c
.)

minsup

Database: BMS-WebView-1

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

Figure 8.1: Battle of the Apriori implementations, run-timesGoethals' implementation is not
ompetitive in speed with the other Apriori im-plementations. Con
erning just the lowest support threshold, Apriori-Borgelt-FIMI�nished in the �rst pla
e in 5
ases and our Apriori in 11
ases. The following �gureshows the advantage of Apriori over Apriori-Borgelt-FIMI. Positive value meansthat Apriori was faster than Apriori-Borgelt-FIMI.
 0.1

 1

 10

 100

 1000

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

Figure 8.2: Borgelt vs. Bodon (run-times)The highest advantage of Apriori-Borgelt-FIMI is at database T10I5N1KP5KC0.-25D200K where it is two times faster than Apriori. On the
ontrary, our Apriori oftenoutperformed Apriori-Borgelt-FIMI with an order of magnitude, and in several
asesApriori-Borgelt-FIMI
ould not even
ope with the task.84

http://www.cs.bme.hu/~bodon/fim/test.html

CHAPTER 8. EVALUTATION8.1. THE BATTLE OF APRIORI IMPLEMENTATIONSCon
erning memory-optimized versions, our implementation outperformed Borgelt'simplementation in run-time in 13
ases.The advantage of our solution is quite
lear if we take a look at the memory need.Our implementations
onsumed only a fra
tion of the memory need of Borgelt's im-plementation. This applies to all databases at all support thresholds. Three typi
almemory-need plots are in Figure 8.3.

 1

 10

 100

 1000

 1000

m
e
m

o
r
y
 n

e
e
d
 (

M
B

)

minsup

Database: T40I10D100K

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

 1

 10

 100

 1000

 10000

 1000

m
e
m

o
r
y
 n

e
e
d
 (

M
B

)

minsup

Database: kosarak

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

 1

 10

 100

 1000

 10000

 31 32 33 34 35 36 37

m
e
m

o
r
y
 n

e
e
d
 (

M
B

)

minsup

Database: BMS-WebView-1

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

Figure 8.3: Battle of the Apriori implementations, memory needThe
omparison of the two main rivals, i.e. Apriori and Apriori-Borgelt-FIMI isfound in Fig. 8.4.
 0.1

 1

 10

 100

 1000

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed

pentium 4
opteron

Figure 8.4: Borgelt vs. Bodon (memory needs)In summary, our
ode results in the fastest Apriori implementation in most of the
ases, and its memory requirement is outstanding in the �eld.85

8.2. THE BATTLE OF ECLAT IMPLEMENTATIONSCHAPTER 8. EVALUTATION8.2 The battle of E
lat implementations8.3 The battle of FP-growth implementations8.4 Comparing Aprior, E
lat and FP-growthIn
ompared the three algorithms we endeavored to be as fair as possible. Commonmethods (like frequent item mining, input/output operations,
oding/de
oding subsetenumeration) use the same
ode. We spend many e�orts on making these
ommonmethods as eÆ
ient as possible in order the algorithm spe
i�

odes be dominant inrun-time and memory need.We determine the supports of the items by using a simple ve
tor. The element atindex i belong to item i. Initially all elements are zero, we take the transa
tions one-by-one and in
rease the
ounter of those elements that o

ur in the a
tual transa
tion.In input and output routines we use bu�ering (with a
arefully
hosen bu�er size)manual integer to string (and ba
kward)
onversion and low level �le operation. Tofurther redu
e the output of the result, whi
h is quite dominant in dense datasets withlow support threshold (like database mushroom with minsup = 30000), we used a depth-�rst output manager, whi
h
a
hes the string representation of the previously frequentitemset written out. For further information and experiment results of this sophisti
atedsolution the reader is referred to [46℄.TEST RESULTS COME HERE!!!The test results immediately proves that the often
ited misbelief \The numerousdatabase s
an is the reason for ine�e
tiveness of algorithm Apriori" has nothing to dowith the reality. Our Apriori implementation uses transa
tion
a
hing (see se
tion 7.2.1)thus Apriori s
ans the entire dataset only twi
e, the same times as E
lat and FP-growthdo. Apriori is still mu
h slower than the
ounterparts in many
ases.8.5 The bottlene
k of Apriori, E
lat and FP-growthWe have seen that there is no single best algorithm that outperforms the other algorithmsat every databases with every support thresholds. Ea
h algorithm has its bottlene
k.On the
ontrary to the believes (see se
tion 1.2), the reason why Apriori falls behindin eÆ
ien
y from E
lat and Fp-growth is that Apriori does not utilize the informationgained in the previous iteration. Although it determines the
over of all subsets of a
andidate in the previous iteration, this information is not used in determining thesupport of the
andidate. E
lat and FP-growth are smarter in this respe
t, i.e. onlythose transa
tions are
onsidered in determining the support of a
andidate that
ontainthe pre�x of the
andidate. 86

CHAPTER 8. EVALUTATION8.5. THE BOTTLENECK OF APRIORI, ECLAT AND FP-GROWTHTO BE CONTINUED!

87

8.5. THE BOTTLENECK OF APRIORI, ECLAT AND FP-GROWTHCHAPTER 8. EVALUTATION

88

Chapter9The furure: toward hybrid algorithmsThe fa
t that ea
h algorithm has its drawba
k, opens the gate toward hybrid algorithms.The �rst hybrid algorithm AprioriHybrid appeared quite early. It is a
ombination ofApriori and AprioriTid, based on the observation that Apriori performs better in theinitial phases while AprioriTid is a better
hoi
e in the later phases. The di�eren
ebetween Apriori and AprioriTid lies in the support
ount method. AprioriTid uses atable, ea
h row of a table belongs to a transa
tion and a row at iteration `
ontainsthe
andidates of size ` that o

urs in the transa
tion (empty rows are removed fromthe table). Both the support of a
andidate and the table of the next iteration
an be
ounted dire
tly from the table. The reason AprioriTid runs faster in the �nal iterationis not the always emphasized property that it does not use the input data (IO operationsrequires insigni�
ant time
ompared to the other operations in the support
ount) butthe simpli�ed support determination of a
andidates.The swit
h point depends on the size of the table. If the number of
andidatesde
reases and the size of the table �ts into the memory then Apriori swit
hes to Aprior-iTid. In [18℄ is was shown that this heuristi
 does not ne
essarily works (with our wordsit is neither memory nor run-time safe), be
ause the number of
andidates may growagain, whi
h may prevent the table �tting into the memory. This results in a signi�
antperforman
e deterioration.The se
ond hybrid solution was proposed in [26℄ where the authors proposed to useApriori is the beginning and then swit
h to E
lat. Unfortunately, the main question,i.e. when to do the swit
h is not answered and
an be simply set by a parameter. In [19℄it was shown that the hybrid algorithm that swit
hes to E
lat after the se
ond iterationand uses the array-based te
hnique to determine the support of the pairs outperformsApriori and E
lat at many databases.Sin
e the eÆ
ien
y of Apriori and E
lat fall farbehind from the eÆ
ien
y of our Apriori and E
lat, this observation does not ne
essarilyhold. Also to understand this hybrid solution we don't have to know anything aboutApriori and its speed-up te
hniques, hen
e we do not regard this solution as a hybrid89

9.1. CONCLUSIONCHAPTER 9. THE FURURE: TOWARD HYBRID ALGORITHMSmethod, but rather a modi�
ation of E
lat.We believe that the �rst remarkable hybrid solution is algorithm DCI [36℄ whoseimprovement kDCI [38℄ turned out to be one of the most su

essful FIM implementationsin 2003. In the beginning it works as an Apriori that used pre�x-array to store the
andidates and applies the unimportant item �ltering te
hnique in order to redu
e thesize of the database. As soon as the database �ts into the memory it swit
hes to anovel interse
tion-based
ounting method. Moreover, it uses a heuristi
s to de
ide if theinput database is dense or sparse and
hooses the
ounting pro
edure that is expe
tedto perform better.9.1 Con
lusion

90

Bibliography
[1℄ Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. A tree proje
tionalgorithm for generation of frequent item sets. J. Parallel Distrib. Comput., 61(3):350{371, 2001. ISSN 0743-7315. doi: http://dx.doi.org/10.1006/jpd
.2000.1693.[2℄ R. Agrawal and R. Srikant. Fast algorithms for mining asso
iation rules. In J.B.Bo

a, M. Jarke, and C. Zaniolo, editors, Pro
eedings of the 20th InternationalConferen
e on Very Large Data Bases (VLDB'94), Santiago de Chile, September12-15, pages 487{499. Morgan Kaufmann, 1994.[3℄ R. Agrawal, T. Imielienski, and A. Swami. Mining asso
iation rules between setsof items in large databases. In P. Bunemann and S. Jajodia, editors, Pro
eedings ofthe 1993 ACM SIGMOD Conferen
e on Managment of Data, pages 207{216, NewYork, 1993. ACM Press.[4℄ R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast dis-
overy of asso
iation rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, andR. Uthurusamy, editors, Advan
es in Knowledge Dis
overy and Data Mining, pages307{328. MIT Press, 1996.[5℄ Yves Bastide, Ra�k Taouil, Ni
olas Pasquier, Gerd Stumme, and Lot� Lakhal.Mining frequent patterns with
ounting inferen
e. SIGKDD Explor. Newsl., 2(2):66{75, 2000. doi: http://doi.a
m.org/10.1145/380995.381017.[6℄ Feren
 Bodon. A fast apriori implementation. In Bart Goethals and Mohammed J.Zaki, editors, Pro
eedings of the IEEE ICDM Workshop on Frequent Itemset Min-ing Implementations (FIMI'03), volume 90 of CEUR Workshop Pro
eedings, Mel-bourne, Florida, USA, 2003.[7℄ Feren
 Bodon and Lajos R�onyai. Trie: an alternative data stru
ture for data miningalgorithms. Hungarian Applied Mathemati
s and Computer Appli
ation, 38(7-9):739{751, O
tober 2003. 91

BIBLIOGRAPHY BIBLIOGRAPHY[8℄ Feren
 Bodon and Lars S
hmidt-Thieme. The relation of
losed itemset mining,
omplete pruning strategies and item ordering in apriori-based �m algorithms. InPro
eedings of the 9th European Conferen
e on Prin
iples and Pra
ti
e of Knowl-edge Dis
overy in Databases (PKDD'05), Porto, Portugal, 2005.[9℄ Christian Borgelt. EÆ
ient implementations of apriori and e
lat. In Bart Goethalsand Mohammed J. Zaki, editors, Pro
eedings of the IEEE ICDM Workshop on Fre-quent Itemset Mining Implementations (FIMI'03), volume 90 of CEUR WorkshopPro
eedings, Melbourne, Florida, USA, 2003.[10℄ Christian Borgelt. Re
ursion pruning for the apriori algorithm. In Bart Goethals,Mohammed J. Zaki, and Roberto Bayardo, editors, Pro
eedings of the IEEE ICDMWorkshop on Frequent Itemset Mining Implementations (FIMI'04), volume 126 ofCEUR Workshop Pro
eedings, Brighton, UK, 2004.[11℄ Christian Borgelt and Rudolf Kruse. Indu
tion of asso
iation rules: Apriori imple-mentation. In W. Hrdle and B. Rnz, editors, Pro
eedings of the 15th Conferen
eon Computational Statisti
s, pages 395{400. Physi
a-Verlag, 2002.[12℄ Sergey Brin, Rajeev Motwani, Je�rey D. Ullman, and Shalom Tsur. Dynami
itemset
ounting and impli
ation rules for market basket data. In Joan Pe
kham,editor, SIGMOD 1997, Pro
eedings ACM SIGMOD International Conferen
e onManagement of Data, May 13-15, 1997, Tu
son, Arizona, USA, pages 255{264.ACM Press, 05 1997.[13℄ Douglas Comer and Ravi Sethi. The
omplexity of trie index
onstru
tion. J.ACM, 24(3):428{440, 1977. ISSN 0004-5411. doi: http://doi.a
m.org/10.1145/322017.322023.[14℄ R. de la Briandais. File sear
hing using variable-length keys. In Pro
eedings of theWestern Joint Computer Conferen
e, pages 295{298, Mar
h 1959.[15℄ Edward Fredkin. Trie memory. Communi
ations of the ACM, 3(9):490{499, 1960.ISSN 0001-0782. doi: http://doi.a
m.org/10.1145/367390.367400.[16℄ B. Goethals and M. J. Zaki. Advan
es in frequent itemset mining implementations:Report of �mi'03. ACM SIGKDD Explorations, 6(1):109{117, June 2004.[17℄ Bart Goethals. Memory issues in frequent itemset mining. In SAC '04: Pro
eedingsof the 2004 ACM symposium on Applied
omputing, pages 530{534, New York, NY,USA, 2004. ACM Press. ISBN 1-58113-812-1. doi: http://doi.a
m.org/10.1145/967900.968012. 92

BIBLIOGRAPHY BIBLIOGRAPHY[18℄ Bart Goethals. EÆ
ient Frequent Pattern Mining. PhD thesis, TransnationaleUniversiteit Limburg, 2002.[19℄ Bart Goethals. Survey on frequent pattern mining. Manuskript, 2002.[20℄ Gsta Grahne and Jianfei Zhu. EÆ
iently using pre�x-trees in mining frequentitemsets. In Bart Goethals and Mohammed J. Zaki, editors, Pro
eedings of theIEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03),volume 90 of CEUR Workshop Pro
eedings, Melbourne, Florida, USA, 2003.[21℄ J. Han and J. Pei. Mining frequent patterns by pattern-growth: Methodologyand impli
ations. ACM SIGKDD Explorations, 2(2):14{20, 2000. Spe
ial Issue onS
alable Data Mining Algorithms.[22℄ J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
andidate generation.In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, Pro
eedings of the 2000ACM SIGMOD International Conferen
e on Management of Data, pages 1{12.ACM Press, 2000.[23℄ J. Han, J. Pei, and Y. Yin. Mining frequent patterns without
andidate generation:a frequent-pattern tree approa
h. Data Mining and Knowledge Dis
overy, ers
heintdemn
hst, 2003.[24℄ Jia Liang Han and Ashley W. Plank. Ba
kground for asso
iation rules and
ostestimate of sele
ted mining algorithms. In CIKM '96, Pro
eedings of the FifthInternational Conferen
e on Information and Knowledge Management, November12 - 16, 1996, Ro
kville, Maryland, USA, pages 73{80. ACM, 1996.[25℄ Jo
hen Hipp, Ulri
h Güntzer, and Gholamreza Nakhaeizadeh. Algorithmsfor asso
iation rule mining a general survey and
omparison. SIGKDD Explor.Newsl., 2(1):58{64, 2000. doi: http://doi.a
m.org/10.1145/360402.360421.[26℄ Jo
hen Hipp, Ulri
h Güntzer, and Gholamreza Nakhaeizadeh. Mining asso-
iation rules: Deriving a superior algorithm by analyzing today's approa
hes. InPKDD '00: Pro
eedings of the 4th European Conferen
e on Prin
iples of Data Min-ing and Knowledge Dis
overy, pages 159{168, London, UK, 2000. Springer-Verlag.ISBN 3-540-41066-X.[27℄ Keyun Hu, Yu
hang Lu, Lizhu Zhou, and Chunyi Shi. Integrating
lassi�
ationand asso
iation rule mining: A
on
ept latti
e framework. In RSFDGrC '99:Pro
eedings of the 7th International Workshop on New Dire
tions in Rough Sets,Data Mining, and Granular-Soft Computing, pages 443{447, London, UK, 1999.Springer-Verlag. ISBN 3-540-66645-1.93

BIBLIOGRAPHY BIBLIOGRAPHY[28℄ Walter A. Kosters, Elena Mar
hiori, and Ard A. J. Oerlemans. Mining
lusters withasso
iation rules. In IDA '99: Pro
eedings of the Third International Symposium onAdvan
es in Intelligent Data Analysis, pages 39{50, London, UK, 1999. Springer-Verlag. ISBN 3-540-66332-0.[29℄ Wenke Lee and Salvatore Stolfo. Data mining approa
hes for intrusion dete
tion.In Pro
eedings of the 7th USENIX Se
urity Symposium, San Antonio, TX, 1998.URL
iteseer.ist.psu.edu/arti
le/lee98data.html.[30℄ Dao-I Lin and Zvi M. Kedem. Pin
er sear
h: A new algorithm for dis
overingthe maximum frequent set. In EDBT '98: Pro
eedings of the 6th InternationalConferen
e on Extending Database Te
hnology, pages 105{119, London, UK, 1998.Springer-Verlag. ISBN 3-540-64264-1.[31℄ Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets and
ondensedrepresentations (extended abstra
t). In Knowledge Dis
overy and Data Mining,pages 189{194, 1996. URL
iteseer.ist.psu.edu/mannila96multiple.html.[32℄ Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. EÆ
ient algo-rithms for dis
overing asso
iation rules. In Usama M. Fayyad and Ra-masamy Uthurusamy, editors, AAAI Workshop on Knowledge Dis
overy inDatabases(KDD-94), pages 181{192, Seattle, Washington, 1994. AAAI Press. URLhttp://
iteseer.nj.ne
.
om/mannila94effi
ient.html.[33℄ Ulri
h Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for MemoryHierar
hies, Advan
ed Le
tures [Dagstuhl Resear
h Seminar, Mar
h 10-14, 2002℄,volume 2625 of Le
ture Notes in Computer S
ien
e, 2003. Springer. ISBN 3-540-00883-7.[34℄ B. Mobasher, N. Jain, E. Han, and J. Srivastava. Web mining: Pattern dis
overyfrom world wide web transa
tions. Te
hni
al Report TR-96050, Department ofComputer S
ien
e, University of Minnesota, 1996.[35℄ A. Mueller. Fast sequential and parallel algorithms for asso
iation rule mining:A
omparison. Te
hni
al report, Department of Computer S
ien
e, University ofMaryland-College Park, 1995. CS-TR-3515.[36℄ S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resour
e-awaremining of frequent sets. In ICDM '02: Pro
eedings of the 2002 IEEE InternationalConferen
e on Data Mining (ICDM'02), page 338, Washington, DC, USA, 2002.IEEE Computer So
iety. ISBN 0-7695-1754-4.[37℄ Salvatore Orlando, Paolo Palmerini, and Ra�aele Perego. Enhan
ing the apriorialgorithm for frequent set
ounting. In DaWaK '01: Pro
eedings of the Third94

citeseer.ist.psu.edu/article/lee98data.html
citeseer.ist.psu.edu/mannila96multiple.html
http://citeseer.nj.nec.com/mannila94efficient.html

BIBLIOGRAPHY BIBLIOGRAPHYInternational Conferen
e on Data Warehousing and Knowledge Dis
overy, pages71{82, London, UK, 2001. Springer-Verlag. ISBN 3-540-42553-5.[38℄ Salvatore Orlando, Claudio Lu

hese, Paolo Palmerini, Ra�aele Perego, and Fab-rizio Silvestri. kd
i: a multi-strategy algorithm for mining frequent sets. In BartGoethals and Mohammed J. Zaki, editors, Pro
eedings of the IEEE ICDM Work-shop on Frequent Itemset Mining Implementations (FIMI'03), volume 90 of CEURWorkshop Pro
eedings, Melbourne, Florida, USA, 2003.[39℄ Bruno Pôssas, Nivio Ziviani, Jr. Wagner Meira, and Berthier Ribeiro-Neto.Set-based model: a new approa
h for information retrieval. In SIGIR '02: Pro-
eedings of the 25th annual international ACM SIGIR
onferen
e on Resear
h anddevelopment in information retrieval, pages 230{237, New York, NY, USA, 2002.ACM Press. ISBN 1-58113-561-0. doi: http://doi.a
m.org/10.1145/564376.564417.[40℄ Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An e�e
tive hash-based al-gorithm for mining asso
iation rules. SIGMOD Re
., 24(2):175{186, 1995. ISSN0163-5808. doi: http://doi.a
m.org/10.1145/568271.223813.[41℄ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning
loseditemset latti
es for asso
iation rules. In Pro
eedings of the BDAFren
h Conferen
e on Advan
ed Databases, O
tober 1998. URLhttp://
iteseer.nj.ne
.
om/pasquier98pruning.html.[42℄ Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and DongqingYang. H-mine: Hyper-stru
ture mining of frequent patterns in large databases. InICDM, pages 441{448, 2001.[43℄ Andrea Pietra
aprina and Dario Zandolin. Mining frequent itemsets using patri-
ia tries. In Bart Goethals and Mohammed J. Zaki, editors, Pro
eedings of theIEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03),volume 90 of CEUR Workshop Pro
eedings, Melbourne, Florida, USA, 19. Novem-ber 2003.[44℄ Adriana Prado, Cristiane Targa, and Alexandre Plastino. Improving dire
t
ountingfor frequent itemset mining. In DaWaK, pages 371{380, 2004.[45℄ Bal�azs R�a
z. nonordfp: An FP-growth variation without rebuilding the FP-tree.In Bart Goethals, Mohammed J. Zaki, and Roberto Bayardo, editors, Pro
eed-ings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations(FIMI'04), volume 126 of CEUR Workshop Pro
eedings, Brighton, UK, 2004.[46℄ Bal�azs R�a
z, Feren
 Bodon, and Lars S
hmidt-Thieme. Ben
hmarking frequentitemset mining algorithms: from measurement to analysis. In Bart Goethals,95

http://citeseer.nj.nec.com/pasquier98pruning.html

BIBLIOGRAPHY BIBLIOGRAPHYSiegfried Nijssen, and Mohammed J. Zaki, editors, Pro
eedings of the ACMSIGKDD Workshop on Open Sour
e Data Mining Workshop (OSDM'05), Chi
ago,IL, USA, August 2005.[47℄ Jr. Roberto J. Bayardo. EÆ
iently mining long patterns from databases. In SIG-MOD '98: Pro
eedings of the 1998 ACM SIGMOD international
onferen
e onManagement of data, pages 85{93, New York, NY, USA, 1998. ACM Press. ISBN0-89791-995-5. doi: http://doi.a
m.org/10.1145/276304.276313.[48℄ Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis ofre
ommendation algorithms for e-
ommer
e. In EC '00: Pro
eedings of the 2ndACM
onferen
e on Ele
troni

ommer
e, pages 158{167, New York, NY, USA,2000. ACM Press. ISBN 1-58113-272-7. doi: http://doi.a
m.org/10.1145/352871.352887.[49℄ Ashoka Savasere, Edward Omie
inski, and Shamkant B. Navathe. An eÆ
ientalgorithm for mining asso
iation rules in large databases. In VLDB '95: Pro
eedingsof the 21th International Conferen
e on Very Large Data Bases, pages 432{444, SanFran
is
o, CA, USA, 1995. Morgan Kaufmann Publishers In
. ISBN 1-55860-379-4.[50℄ R. Srikant. Fast algorithms for mining asso
iation rules and sequential pat-terns. PhD thesis, Univeristy of Wis
onsin, Madison, 1996. Supervisor-Je�reyF. Naughton.[51℄ Ja-Hwung Su and Wen-Yang Lin. Cbw: An eÆ
ient algorithm for frequent itemsetmining. In HICSS '04: Pro
eedings of the Pro
eedings of the 37th Annual HawaiiInternational Conferen
e on System S
ien
es (HICSS'04) - Tra
k 3, page 30064.3,Washington, DC, USA, 2004. IEEE Computer So
iety. ISBN 0-7695-2056-1.[52℄ Hannu Toivonen. Sampling large databases for asso
iation rules. In VLDB '96:Pro
eedings of the 22th International Conferen
e on Very Large Data Bases, pages134{145, San Fran
is
o, CA, USA, 1996. Morgan Kaufmann Publishers In
. ISBN1-55860-382-4.[53℄ Takeaki Uno, Tatsuya Asai, Yuzo U
hida, and Hiroki Arimura. L
m: An eÆ
ientalgorithm for enumerating frequent
losed item sets. In Bart Goethals and Mo-hammed J. Zaki, editors, Pro
eedings of the IEEE ICDM Workshop on FrequentItemset Mining Implementations (FIMI'03), volume 90 of CEUR Workshop Pro-
eedings, Melbourne, Florida, USA, 19. November 2003.[54℄ John von Neumann. First draft of a report on the EDVAC. Con-tra
t No. W{670{ORD{4926 Between the United States Army Ordnan
eDepartment and the University of Pennsylvania, June 1945. URLhttp://qss.stanford.edu/�fggodfrey/vonNeumann/vnedva
.pdf.96

http://qss.stanford.edu/~{}godfrey/vonNeumann/vnedvac.pdf

BIBLIOGRAPHY BIBLIOGRAPHY[55℄ Yew Kwong Woon, Wee Keong Ng, and Ee-Peng Lim. Online and in
rementalmining of separately-grouped web a

ess logs. In WISE '02: Pro
eedings of the 3rdInternational Conferen
e on Web Information Systems Engineering, pages 53{62,Washington, DC, USA, 2002. IEEE Computer So
iety. ISBN 0-7695-1766-8.[56℄ Yew-Kwong Woon, Wee-Keong Ng, and Ee-Peng Lim. A support-ordered trie forfast frequent itemset dis
overy. IEEE Transa
tions on Knowledge and Data En-gineering, 16(7):875{879, 2004. ISSN 1041-4347. doi: http://dx.doi.org/10.1109/TKDE.2004.1318569.[57℄ Mohammed Javeed Zaki and Mitsunori Ogihara. Theoreti
al foundations of asso-
iation rules. In Pro
eedings of third SIGMOD'98 Workshop on Resear
h Issuesin Data Mining and Knowledge Dis
overy (DMKD'98), Seattle, Washington, 1998.URL http://
iteseer.nj.ne
.
om/zaki98theoreti
al.html.[58℄ Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li.New algorithms for fast dis
overy of asso
iation rules. In David He
kerman, HeikkiMannila, Daryl Pregibon, Ramasamy Uthurusamy, and Menlo Park, editors, In 3rdIntl. Conf. on Knowledge Dis
overy and Data Mining, pages 283{296. AAAI Press,12{15 1997. ISBN 1-57735-027-8. URL
iteseer.nj.ne
.
om/zaki97new.html.[59℄ Z. Zheng, Ronny Kohavi, and L. Mason. Real world performan
e of asso
iation rulealgorithms. In Foster Provost and Ramakrishnan Srikant, editors, Pro
eedings of the7th International Conferen
e on Knowledge Dis
overy and Data Mining (KDD'01),New York, pages 401{406. ACM Press, 2001.

97

http://citeseer.nj.nec.com/zaki98theoretical.html
citeseer.nj.nec.com/zaki97new.html

	Introduction
	The arena of FIM algorithms; a short history
	Common misbelieves
	Algorithmic aspects of the modern processors' features
	Memory hierarchies, data locality:
	Pipeline processing, branch prediction:

	A Frequent Pattern Mining Template Library

	The Frequent Itemset Mining Problem
	Base Algorithms
	Bottom-up FIM algorithms
	Breadth-first, iterative vs. depth-first, recursive algorithms
	Techniques
	Graphical presentation of the experiments
	The trie and its variants
	The representation of the list of edges
	Index vs. pointer-based trie
	Patricia trie

	Algorithm Apriori
	The trie of Apriori
	Support Counting
	Removing Infrequent Candidates
	Candidate Generation

	Compactness of the trie
	Inhomogeneous trie
	Removing Dead-end Branches
	Routing strategies at the nodes
	Routing strategies in the case of ordered-list edge representation
	Can we speed up binary search-based routing strategies?
	Routing strategies in the case of different edge representation

	Determining the support of 2-itemset candidates
	Determining the support of 3-itemset candidates

	Algorithm Eclat
	Algorithm FPgrowth
	Techniques for improving efficiency
	Pruning equisupport extensions
	Improvements used in Apriori
	Caching the transactions
	Support count of Christian Borgelt
	Filtering unimportant items from the transactions
	Equisupport pruning
	Level 2 equisupport pruning
	Level 2 equisupport pruning and further dead-end pruning
	Intersection-based pruning
	Omitting complete pruning
	Summary of the techniques

	The influence of item ordering
	The order-preserving assumption
	The number of candidates
	Size of the trie
	Techniques in Apriori

	Evalutation
	The battle of Apriori implementations
	The battle of Eclat implementations
	The battle of FP-growth implementations
	Comparing Aprior, Eclat and FP-growth
	The bottleneck of Apriori, Eclat and FP-growth

	The furure: toward hybrid algorithms
	Conclusion

