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Preface

The frequen t itemset mining problem �rst has b een form ulated in 1993 as the compu-

tational relev an t step in asso ciation rule mining. Giv en a sequence of itemsets, w e ha v e

to �nd itemsets that are con tained as a subset in more than a giv en n um b er of elemen ts

of the sequence. More than 180 pap ers ha v e b een published ab out algorithms to solv e

this task, most of them declared to b e the most e�cien t. The op en-source comp etition,

whic h w as organized ten y ears after the problem's birth, pro v ed that the truth is far

from the claims and the data structure and implemen tation issues need to b e p olished

ev en for the basic algorithms.

In this surv ey w e in v estigate data structure and implemen tation details of the three

most imp ortan t FIM algorithms Apriori, Eclat, FP-gro wth, examine their adv an tages

and disadv an tages. Besides, w e presen t new tec hniques to sp eed-up the basic algorithms.
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Cha pt e r 1

In tro duction

F requen t itemset mining (FIM) is a v ery y oung researc h �eld b orn in 1993 [3]. It aims

to �nd frequen tly o ccurring subsets in a sequence of sets. The FIM problem app ears

as a subproblem in man y other data mining �elds lik e asso ciation rule disco v ery [3],

correlations, classi�cation [27], clustering [28], W eb mining [55], [34 ]. The fact that

algorithms and tec hniques dev elop ed in FIM are also used successfully in �nding frequen t

patterns of other t yp es (lik e sequences, episo des, ro oted ordered/unordered trees, lab eled

graphs and b o olean form ulas) also pro v es the signi�cance of the �eld. The frequen t sets

pla y an imp ortan t role in man y application suc h as customers relationship managemen t,

impro ving the e�ciency of electronic commerce [48], bioinformatics, DNA and protein

analysis, inductiv e databases [31 ], query expansion [39], net w ork in trusion detection [29],

etc.

After the problem w as b orn, man y algorithms w ere prop osed, the authors of eac h

algorithms claimed that their algorithms are the fastest. The e�ciency w as sho wn

b y run-time plots on a few databases and for the comparisons the authors co ded the

coun terpart algorithms as w ell. Unfortunately , neither the prop osed algorithm, nor the

implemen tation of the coun terpart algorithm w ere public a v ailable therefore the claimed

results w ere not repro ducible.

Those, who w an ted to �nd the real v alues, the real con tributions w ere not satis�ed

with lac k of repro ducibilit y . The �rst step to w ard the qualit y assurance w as the pub-

lication of some indep enden t authors who implemen ted and compared some published

algorithms [25] [19] [26 ] [9 ] [17 ]. Unfortunately , these implemen tations are less e�ectiv e

than the b est implemen tations (if there exists suc h)of the same algorithms, and often

they do not ev en sho w the same p erformance c haracteristics. This is the reason, w e

b eliev e that the consequences dra wn form the exp erimen ts of suc h implemen tations are

not necessarily attributed to the algorithms themselv es, but rather to the non-optimized

implemen tation.

A b etter and less time-consuming solution w as published b y Zheng et al. [59], where
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CHAPTER 1. INTR ODUCTION

indep enden t referees collected the implemen tations from the authors themselv es, and

run the exp erimen ts. The case of Apriori, Eclat and FP-gro wth has sho wn the most

e�cien t implemen tation of an algorithm is not necessarily dev elop ed b y the in v en tors of

the algorithm, therefore the comparison should b e op en to ev eryb o dy . This lead to the

public, op en-source comp etitions of FIM implemen tation [16] in 2003 and 2004. The im-

p ortance of the FIMI con tests is inevitable; it stressed the requiremen t of repro ducibilit y

and pro vided some baseline implemen tation and test datasets for the researc h comm u-

nit y . The most imp ortan t question, ho w ev er, is not answ ered. W e still don't kno w the

real reasons of the e�ciency , the b orders and the b ottlenec k of some implemen tations.

Do es the e�ciency of b est implemen tation stems from the algorithm itself or from the

sophisticated data structure? Or the outstanding run-time is attributed to the brillian t

programming tec hnique?

Although w e agree with the view \Exp osition, criticism, appreciation, is w ork for

second-rate minds."

1

w e b eliev e that the publishing of data mining algorithms has

reac hed the p oin t when a theoretical analysis and a comprehensiv e studies are more

useful to the comm unit y than new algorithms. It seems that w e ha v e mo v ed from the

\W e are dro wning in information, but starving for kno wledge" to the \W e are dro wning

in metho ds, but starving for solutions" era.

Ev en no w, after the n umerous publication there are man y misb eliev es, misunder-

standing ab out the e�ciency of certain algorithms. Most reasoning in textb o oks are

either not true or they are not the real reason of an algorithm's e�ciency .

F requen t itemset mining is fortunate compared to other the data mining �elds lik e

classi�cation and clustering, b ecause the problem can b e easily form ulated. It su�ers,

ho w ev er, from the lac k of ev aluation metho d, and from the fact that it is easy to create

a database whic h is suitable to demonstrate arbitrary ine�cien t algorithm.

In the b eginning this w as fortunate, b ecause the opp ortunit y of the easy publication

attracted man y researc hers, and this has raised frequen t itemset mining as one of the

most p opular �eld of the 90s. Unfortunately the high n um b er of published algorithms,

the lac k of standard terminology , comparisons and theoretical results led to a c haos and

resulted in an unexpressed loss of credibilit y of the �eld.

An e�cien t FIM program is an implemen tation of a widely kno wn and basic FIM

algorithm together with man y data structure and implemen tation tec hnique. The base

algorithm alone is not comp etitiv e with its coun terpart that adapts sp eed-up tec hniques.

This is the reasons w e b eliev e that sp eed-up tec hniques and the base algorithm are

inseparable and there is no p oin t stating an ything ab out the base algorithm without

examine the in
uence of the statemen t to the tec hniques. The FIM w orld is further

complicated b y the fact that the tec hniques are not indep enden t of eac h other, i.e. one

reduces, the other increases the in
uence of a third tec hnique. Actually , the e�ciency

of almost an y arbitrary simple idea, can b e v eri�ed b y carefully c ho osing the other

1

G H Hardy . A Mathematician 's Ap olo gy (London 1941).
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CHAPTER 1. INTR ODUCTION1.1. THE ARENA OF FIM ALGORITHMS; A SHOR T HISTOR Y

tec hniques, whic h resulted in the large n um b er of publications. T o rev eal the truth, w e

ha v e to examine the base algorithms, the tec hniques alone and their in
uence on eac h

other, and the theoretical statemen ts ha v e to b e v eri�ed with a comprehensiv e set of

exp erimen ts. Suc h publication has not b orn y et.

Our goal is t w ofold. First w e w ould lik e to clarify the three most imp ortan t al-

gorithms of the �eld, i.e. Apriori, Eclat and FP-gro wth. W e b eliev e that the imple-

men tation of the fastest Apriori, Eclat and FP-gro wth, the most comprehensiv e set of

exp erimen ts and the dev elopmen t of a template FIM library en titles us. Second, e w e

try to pro vide a notation and terminology that is as concise, compact and coheren t as

p ossible. In the literature, often di�eren t names ha v e b een used. But as the same en ti-

ties often got di�eren t names and there clearly is no con v ergence in notation moreo v er,

the historical terminonolgy sometimes obscures more than it helps. So w e felt obliged

to pro vide a base for further common understanding. F or reference, w e alw a ys pro vide

the most common historical names in ap ostrophes.

1.1 The arena of FIM algorithms; a short history

The �rst FIM algorithm AIS w as published in the pap er that presen ted the problem

itself [3]. A y ear later the same authors published Apriori, whic h is the widest-kno wn

algorithm ev en no w ada ys. In the next few y ears man y Apriori mo di�cations w ere pro-

p osed, DHP [40], DIC [12], P artition [49] and the sampling algorithm [52 ] are the most

famous ones. These algorithms are regarded obsolete; there exists no public implemen-

tation of an y of them that is comp etitiv e with to da y's algorithms. In 1996 Zaki et al.

[58 ] published algorithm Eclat and four y ears later Han et al. [22] presen ted FP-gro wth.

Since FP-gro wth w as sho wn not to p erform w ell on sparse datasets, the authors im-

pro v ed their solution and published H-mine [42]. A v ery e�cien t Apriori m utan t DCI,

whic h adapts h ybrid supp ort coun t w as presen ted b y Orlando et al. [36].

2003 w as a milestone in the history of frequen t itemset mining. The �rst op en

FIM comp etition w as organized [16]. Tw o FP-gro wth implemen tations (FP-gro wth* b y

Grahne and Zh u [20] and P atricia b y Pietracaprina and Zandolin [43 ]), a mo di�cation

of DIC [38 ] and a highly optimized Eclat called lcm b y [53 ] w ere standing out from

the �eld of comp etitors. Lcm w as further impro v ed and submitted to the second FIMI

comp etition, where a brand new FP-gro wth implemen tation b y R� acz [45 ] o v erto ok the

�rst place from FP-gro wth* and P atricia.

1.2 Common misb eliev es

In this section w e list some common b eliev es that are false and led the researc hes in to

wrong direction.

3



1.2. COMMON MISBELIEVES CHAPTER 1. INTR ODUCTION

� The e�ciency is not primarily determine d by the numb er of sc an of the datab ase.

In the early era of the FIM man y e�orts fo cused on reducing the n um b er of

database scan of Apriori. This led to algorithms DIC [12 ], P artition [49], etc.

Although there exists no public implemen tation of these algorithms that outp er-

form the most widespread Apriori [11][9], they are quite fa v ored in textb o oks.

� A lgorithm FP-gr owth do gener ates c andidates, furthermor e it gener ates mor e c an-

didates than Apriori. An itemset is called candidate if its supp ort is determined,

i.e. a space for coun ter is reserv ed in the memory . Actually FP-gro wth determines

the supp orts of only 1-itemsets, but then it do es it recursiv ely in the pro jected

database. F or example if item B o ccurs in a transaction that is pro jected to item

A , then the supp ort of itemset AB is determined.

� The numb er of c andidates is not the primary factor that determines the e�ciency

of an algorithm. W e will see that Eclat and FP-gro wth generates more candidate

than Apriori, nev ertheless they outp erform Apriori most of the cases. The same

applies to Apriori and DHP , it is easy to presen t databases where DHP generates

few er candidates, but runs slo w er. Analysis that use only these n um b ers (lik e [24])

ha v e nothing to do with the real p erformance. T o understand the p erformance, w e

ha v e tak e in to consideration the n um b er of candidates, the w a y they are generated

and their supp ort are determined.

� FP-tr e e (or trie) is not ne c essarily a c ondense d r epr esentation of the datab ase.

W orst-case the size of the FP-tree is four times as m uc h as the size of the database.

In man y cases a simple v ector that stores the transactions that are depriv ed of the

infrequen t items needs less memory than an FP-tree. See Section 7.2.1 for further

details.

� Supp ort c ount is always the most time-c onsuming function in Apriori. In dense,

medium-size databases the candidate generation dominates the run-time.

� Gener ating c andidates of size two is not the b ottlene ck of algorithm Apriori. This

migh t ha v e b een true in 1997 when the a v ailable memories w ere m uc h smaller

and few er candidates �t in to the memory . With to da ys' memory capacities this

restriction no longer liv es. See section 7.2 for more details ab out the b ottlenec k of

Apriori.

� The numer ous datab ase sc an is not the b ottlene ck of algorithm Apriori. W e kno w

that Apriori scans the database as man y times as the size of the largest candidates.

The time required b y the I/O op erations is only a small fraction of time required

b y the supp ort coun t and almost nev er dominates the run-time of Apriori.

4



CHAPTER 1. INTR ODUCTION1.3. ALGORITHMIC ASPECTS OF THE MODERN PR OCESSORS' FEA TURES

1.3 Algorithmic asp ects of the mo dern pro cessors'

features

Man y researc hers tend to analyze their algorithms b y using the external memory mo del.

Due to the h uge memory sizes, most databases �t in to the main memory , whic h leads to

the usage of the simpler random access mo del (RAM) (also called v on Neumann mo del

[54 ] named after the Hungarian b orn John v on Neumann who prop osed �rst this arc hi-

tecture). The precise mo del of the mo dern pro cessors, ho w ev er, is more sophisticated

than the RAM mo del, whic h is the reason that the analysis has often nothing to do with

the real run-times. F or an excellen t o v erview ab out the c hanges in classical algorithm

required b y the new mo del, the reader is referred to [33]. The most imp ortan t features

of mo dern pro cessors, whic h ha v e to b e k ept in mind b y a data mining programmer, are

the memory hier ar chy and the pip eline pr o c essing .

1.3.1 Memory hierarc hies, data lo calit y:

The memory is not one big blo c k but rather a hierarc h y of memories with di�eren t

sizes, access latencies and access n um b ers. The larger the memory the longer it tak es

to access it. The mem b ers of the hierarc h y are registers, (few kilob ytes of ) L1 cac he,

(few megab ytes of ) L2 cac he, sometimes L3 cac he, (few gigab ytes of ) main memory and

hard disk. The data are copied from the main memory to the L2 cac he and from L2 to

L1 cac he in blo c ks. The size of blo c k (also called cac he line size) for cop ying from L2 to

L1 cac he is 128 b ytes in the case of P en tium 4 pro cessors.

The blo c k pro cessing brings in some imp ortan t algorithmic asp ects. Reac hing a single

bit from a slo w er memory tak es the same time as reac hing a whole blo c k. Pro cessing the

data that is in the same blo c k do es not require an other slo w memory access op eration.

Therefore data lo calit y , the requiremen t that data items whic h are pro cessed close to

eac h other in time, should b e lo cated close to eac h other in memory , is a immensely

imp ortan t issue, whic h a�ect signi�can tly the running time. Data near the curren tly

pro cessed data should con tain man y items, whic h will b e pro cessed in the near future.

When a data has to b e pro cessed, it has to b e mo v ed in to the registers. Sometimes

it is already there, b ecause it w as used in the previous instructions. Due to the limited

n um b er of registers, it is more probably that the data is lo cated in L1, L2 cac he or in

main memory . It ma y ev en b e lo cated on the hard disk, if the memory usage of the

algorithm is so large, that the op erating system has to sw ap. W e sa y a data access causes

cac he miss if it is lo cated in L2 cac he or main memory . Although the pro cessor ma y

p erform another op erations while the data is fetc hed, the p erformance of the pro cessor

get far from its maxim um. The pro cessor is capable to do 1000 basic op erations (lik e

addition) during the time the data is fetc hed from the main memory . In summary , when

designing the data structure { algorithm pair, w e ha v e to endea v or to reac h high data

5



1.4. A FREQUENT P A TTERN MINING TEMPLA TE LIBRAR YCHAPTER 1. INTR ODUCTION

lo calit y so that cac he misses are a v oided.

1.3.2 Pip eline pro cessing, branc h prediction:

The instructions a programmer w orks with are executed as a sequence of man y micro op-

erations (u-ops). The op erations are not pro cessed individually , one-b y-one after eac h

other. Instead, a parallel pro cessing is done b y using a pip eline. Unfortunately , the

data dep endency and the conditions ruin the e�ciency of parallelism. Data dep endency

o ccurs when an instruction dep ends on the results of a previous instruction. Branc h

prediction means predicting the output of a condition and loading the predicted op era-

tions in to the pip eline. If the prediction turns out to b e false, then the pip eline has to

b e 
ushed and the correct v alues ha v e to b e reloaded to the registers. These problems

can b e often o v ercome b y di�eren t tec hniques (lik e co de reordering), whic h are done

automatically b y the compiler. W e still ha v e to tak e data indep endence and branc h

prediction in to consideration when designing a computation in tensiv e algorithm.

The pip eline pro cessing mak es it p ossible to execute more than one instruction dur-

ing a clo c ktic k. The problems men tioned ab o v e are the reasons for b eing the a v erage

p erformance of the pro cessor m uc h less than the optimal. W e sa y the pro cessor stal ls ,

if it can not execute an op eration in the actual clo c ktic k.

Unnecessary conditions ma y ruin e�ciency , but this is not alw a ys the case. The

branc h prediction is \in telligen t" in the sense that it learns if the outcome of the con-

dition nev er c hanges, and sets the prediction accordingly . Therefore, a 100% true (or)

false condition nev er ruins e�ciency at all.

1.4 A F requen t P attern Mining T emplate Library

Those who b eliev e that their w ork is of high v alue, often sa y , that the main problem of

frequen t pattern mining is the lac k of repro ducibilit y and the imp ossibilit y of v eri�cation.

In the b eginning of the FPM era a t ypical pap er prop osed some new tec hniques,

reasoned with some in tuitiv e, informal though ts and sho w ed its e�ciency on some care-

fully generated datasets. This pro cedure led to indignation, b ecause the e�ciency of

the implemen tation of the riv al algorithm w as often signi�can tly b elo w the e�ciency of

the implemen tation done b y the original authors. The generalit y , dra wbac ks, limits of

the prop osed algorithm w ere rarely discussed.

F ortunately , this era quic kly closed after some famous implemen tations w ere made

publicly a v ailable, and at the conferences of high standards it w as required that the

prop osed algorithms b e compared with the kno wn implemen tations. The lev el w as raised

further b y the t w o FIMI comp etitions. No w w e ha v e ultrafast FIM implemen tations,

nev ertheless nob o dy exactly kno ws wh y do they p erform so w ell, what are the limitations

of the solutions, what kind of input data they prefer. They are lik e blac k-b o xes, and

6
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only the authors can c hange the parts of the implemen tation, whic h is attributed to

the highly optimized, non-ob ject orien ted co des, whic h are almost imp ossible to read b y

other researc hers.

If w e w ould lik e to understand the p erformance e�ect of all parts of a co de, w e ha v e

to mak e it mo dularized. This is not a trivial task in a highly optimized en vironmen t. In

[46 ] w e presen ted some tec hniques, whic h are based on templated and in-line functions,

to mak e a co de ob ject-orien ted without sacri�cing e�ciency . T o ac hiev e a p erfect FPM

w orld, ob ject orien ted co des are not enough y et. The co des ha v e to b e in a library ,

where an y part of an implemen tation can b e replaced b y an other elemen t of the same

functionalit y and an y tec hnique can b e switc hed on and o�. This w a y eac h part of

an algorithm can b e tested separately and together with other tec hniques. W e can

measure ho w do es a certain solution con tribute to the �nal p erformance, ho w do di�eren t

tec hniques assist or hold bac k eac h other.

These principles w ere follo w ed in building up our FPM template library , whic h con-

tains our fully pluggable Apriori, Eclat and FP-gro wth implemen tations that are com-

p etitiv e with (and in most of the cases outp erform) the blac k-b o x implemen tations. F or

example in our Apriori algorithm di�eren t template classes are resp onsible for doing

the supp ort coun ting, the candidate generation, co ding and deco ding the items, cac hing

the transaction. All tec hniques lik e, dead-end pruning, equisupp ort extension, etc. can

b e turned on and o� b y a template parameter. The data structure is also a template

parameter. If it is a trie, then the represen tation of the list of edges is giv en b y an other

template class, in whic h ev en the v ector represen tation is pluggable, therefore w e can

c hose STL v ector or our ligh t w eigh t, self-made v ector.

The FPM template library made p ossible to conduct a comprehensiv e set of exp er-

imen ts with reasonable e�ort. In a blac k-b o x system this w ould ha v e required a lot of

lab orious and error-prone w ork. The library is made publicly a v ailable and started to

b e used b y other researc hers.
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Cha pt e r 2

The F requen t Itemset Mining Problem

Let I b e a set of unin terpreted sym b ols called items . An y subset I � I is called an

itemset .

Let T = h t

1

; : : : ; t

n

i b e a sequence of itemsets called data (also called as transaction

database ). Its elemen ts t 2 T will b e called data itemsets or transactions

1

. F or an y

itemset I � I w e de�ne the set

co v er

T

( I ) := f t 2 T j I � t g

of data itemsets con taining I as the co v er of I . The size of the co v er

sup

T

( I ) := j co v er

T

( I ) j

is called supp ort . Giv en a lo w er supp ort threshold minsup called minim um supp ort ,

the set

F

T ; minsup

:= f I � I j sup

T

( I ) � minsup g

is called the set of frequen t itemsets .

The frequen t itemset mining (FIM) task then is, giv en data T and a lo w er

supp ort threshold minsup, to compute the set F of all frequen t itemsets.

Historically , the supp ort threshold w as de�ned as a relativ e measure to the n um b er

of transactions, i.e

j co v er

T

( I ) j

j T j

and a relativ e supp ort threshold in in terv al [0 ; 1] w as giv en.

The data mining comm unit y tended to c hange the de�nition, and b y to da y , the absolute

supp ort is the default. In the rest of the pap er w e refer to the relativ e supp ort as

frequency and denote

sup

T

( I )

j T j

b y freq

T

( I ) and

minsup

j T j

b y minfreq.

1

A large part of the researc h comm unit y de�nes the data as a m ulti-set of itemsets or as a binary

relation o v er a set of items and a set of transaction (bipartite graph-based de�nition). It is actually a

matter of taste since the three de�nitions result in an equiv alen t problem statemen t. W e ha v e decided

for sequence-based de�nition b ecause, in practice, the data is actually giv en as sequence .

9



CHAPTER 2. THE FREQUENT ITEMSET MINING PR OBLEM

W e will often illustrate de�nitions and metho ds b y examples where the items are

denoted b y capital letters of the English alphab et. F or the sak e of simplicit y , w e often

omit braces and commas when denoting an itemset. F or example, w e write AE D G

instead of the precise form f A; E ; D ; G g .

There are some notions that are hea vily used throughout the pap er. Next, w e giv e

the de�nitions for them.

In a set of itemsets S the do wn w ard closure prop ert y holds, if I

0

2 S for all

I

0

� I and all I 2 S . A frequen t itemset I is maximal if there exist no prop er sup erset

of I in I that is frequen t. An itemset I is closed [41 ][57] if there exist no prop er sup erset

of I that has the same supp ort as I .

Corollary 2.0.1 A l l maximal fr e quent itemsets ar e close d.

De�nition 2.0.2 The ne gative b or der of a set of itemsets F (denote d by N B ( F ) )

c ontains the itemsets that ar e not elements of F , but al l their pr op er maximal subsets

ar e in F . F ormal ly

N B ( F ) := f I j I 62 F and I

0

2 F for al l I

0

� I such that j I

0

j + 1 = j I jg :

In p oset theory the negativ e b order is called the minimal, prop er upp er b ound.

Example 2.0.3 L et I = f A; B ; C ; D g and F = f; ; A; B ; C ; AB ; AC ; g . Then N B ( F ) =

f B C ; D g .

De�nition 2.0.4 L et � denote a total or der on I . The ` -element pr e�x of itemset I

( ` � j I j ), which is denote d by P

`

I

, is the ` -element subset of I that c ontains the ` smal lest

elements of I with r esp e ct to the or dering � .

By de�nition P

0

I

= ; for an y I itemset, i.e. the empt y set is the zero-size pre�x of all

itemsets.

Example 2.0.5 L et I = f A; B ; C ; D ; E g and � denote the alphab etic or der over I .

Her e, P

2

AB C

= AB and P

1

B D E

= B .

De�nition 2.0.6 The or der b ase d ne gative b or der of a set of itemsets F c ontains

the itemsets I that ar e not elements of F , but their pr e�x of size j I j � 1 and the subse quent

subset of size j I j � 1 ar e elements of F . Her e, subse quent is understo o d with r esp e ct to

the or dering de�ne d on the p ower set of I . F ormal ly:

N B

�

( F ) := f I j I 62 F and P

j I j� 1

I

2 F ; Q 2 F , wher e P

j I j� 1

I

� Q � Q

0

(2.1)

for al l Q

0

� I such that j Q

0

j + 1 = j I j ; Q

0

6= P

j I j� 1

I

; Q

0

6= Q g :

(2.2)

By de�nition item i is in N B

�

( F ) if f i g is not in of F and the empty set is in F .

10
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Example 2.0.7 L et I = f A; B ; C ; D ; E g , F = f; ; A; B ; C ; AB ; AC g and for any item-

sets of the same size I ; J let I � J if I lexic o gr aphic al ly pr e c e des J . Then N B

�

( F ) =

f AB C ; B C ; D g .

Corollary 2.0.8 F or any itemset I , F � 2

I

and � we have

N B ( F ) � N B

�

( F ) :

In depth-�rst lik e algorithms the notion pro jected database pla ys an imp ortan t

role.

De�nition 2.0.9 L et T b e a tr ansaction datab ase over I . The I -pr oje cte d datab ase of

T (which is denote d by T j I ) c onsists of the elements of T that c ontain I .

The sequence of transactions that are not con tained in the I pro jected database is

denoted b y T j I and called the complemen t of the pro jected database . Ob viously ,

no elemen t of T j I con tains I .

F or example h AB C ; AE ; B C E ; B C E ijf B g = h AB C ; B C E ; B C E i , h AB C ; AE ; B C E ijf AE g =

h AE i and h AB C ; AE ; B C E ijf AE g = h AB C ; B C E i .

11
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Cha pt e r 3

Base Algorithms

There ha v e b een man y di�eren t algorithms prop osed for frequen t itemset mining. Al-

though most of these algorithms are v arian ts of other algorithms, sometimes small or

ob vious, sometimes larger or more in tricate, for mark eting purp oses most of them come

b y their o wn names, making it rather hard to see the common features as w ell as the

sp eci�c di�erences.

All these algorithms can b e categorized as v arian ts of one of three di�eren t base

algorithms , Apriori, Eclat and FP-gro wth. F urthermore, Eclat and FP-gro wth are

the same algorithms except that they use a di�eren t data structure. Nev ertheless, w e

distinguish them for historical reasons.

3.1 Bottom-up FIM algorithms

The initial step is common in all algorithms. W e scan the database once to determine

the supp ort of ev ery item, and then select the frequen t ones. Without loss of generalit y ,

w e assume that frequen t items are denoted b y consecutiv e in tegers starting from 0.

In the latter phases of the algorithms eac h transaction is �lter e d b efore b eing pro-

cessed, i.e. infrequen t items are remo v ed. Most of the tec hniques mak e the assumption

that the (frequen t) items are co ded with nonnegativ e in tegers. Therefore eac h transac-

tion is �ltered, and reco ded. Ob viously , b efore writing out the results the items ha v e to

b e co ded bac k.

Apriori, Eclat and FP-gro wth p erform a b ottom-up tra v ersal of the searc h space,

i.e. starting from the empt y set they determine the frequen t itemsets in a gro wing

manner. T o a v oid duplicate c hec king of the same itemset all FIM algorithm are based

on an ordering of the items. The lexicographic extension of this ordering mak es it

p ossible to order the itemsets. It w ould b e imp ossible to determine the supp ort of ev ery

p ossible itemset (their n um b er is exp onen tial in j I j ) therefore the algorithms restrict

13



3.2. BREADTH-FIRST, ITERA TIVE VS. DEPTH-FIRST, RECURSIVE

ALGORITHMS CHAPTER 3. BASE ALGORITHMS

their atten tion to the so called candidates . In general a candidate is an itemset whose

supp ort is determined.

Bottom-up searc h algorithms turned out to b e more e�cien t algorithms than those

that p erform top-do wn or a middle-w a y top-do wn b ottom-up searc h (suc h as algorithms

Pincer [30] and CBW [51]). This is attributed to the fact that the maximal frequen t

itemset b order is closer to the empt y set than to I , i.e. in general the size of the largest

frequen t set is m uc h less than j I j .

3.2 Breadth-�rst, iterativ e vs. depth-�rst, recursiv e

algorithms

Apriori is an iterativ e, breadth-�rst algorithm. In the iteration step ` it determines the

frequen t itemsets of size ` . Eclat and FP-gro wth, on the con trary , are recursiv e, depth-

�rst-lik e algorithms. Giv en a set of frequen t itemsets (denoted b y F

+

P

) with a common

maximal prop er pre�x P and of size j P j + 1, it tak es the itemsets I 2 F

+

P

one-b y-one

and determines the frequen t itemsets whose pre�x is I . The searc h is done recursiv ely;

initially the empt yset is considered as a pre�x and the set of frequen t 1-itemsets is the

giv en set.

The de�nition of a candidate in Apriori di�ers from the de�nition in Eclat and

FP-gro wth. In Apriori the set of candidates at iteration ` is equal to the negativ e

b order of frequen t itemsets found till the iteration step ` . In Eclat and FP-gro wth

the set of candidates in the next recursiv e step b elonging to itemset I 2 F

+

P

is the

subset of the order-based negativ e b order of F

+

P

whose elemen t's pre�x is I (formally

f I

0

j I

0

2 N B

�

( F

+

P

) suc h that P

j I

0

j� 1

I

0

= I g ). The recursiv e step is terminated if no

candidate is generated.

It w ould b e ine�cien t to c hec k all itemsets of a giv en size if they meet the de�nition

for candidates. Instead, w e generate the candidates. Here w e mak e use of the fact that

in all three algorithms the smallest and the subsequen t subset of the candidate m ust b e

frequen t. The itemsets form a lattice, therefore eac h candidate is a union of t w o frequen t

itemsets, that ha v e same pre�x of size ` � 1. This is the reason the maximal prop er

pre�x and the subsequen t itemset are called the generators of the candidate. The item

that is added to get the candidate (i.e. the largest item of the second generator) is called

the extender .

The set of infrequen t candidates is the the negativ e b order of the frequen t itemsets

in Apriori and is the order-based negativ e b order of the frequen t itemsets in the case of

Eclat and FP-gro wth. It follo ws from Corollary 2.0.8 that the n um b er of candidates is

nev er less in Eclat and FP-gro wth than in Apriori.

historical remark: FP-gro wth has b een view ed as an algorithm op eration

on the data trie b y its in v en tors [22 , 21, 23] that is augmen ted b y so-called

14
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"header lists" that sequen tially link no des with the same item lab el. F rom

this p ersp ectiv e, FP-gro wth lo oks lik e a depth-�rst algorithm that is quite

di�eren t from Eclat. W e argue here (and it w as also noted b y Go ethals

[19 ]), that this is a queer view on the algorithm, and that actually the main

data structure is the set of pre�xes (i.e., the \header lists"), while the data

trie is nothing else than a means to compute the relation startsWith e�-

cien tly . Then, the e�ectiv e di�erence b et w een Eclat and FP-gro wth is that

FP-gro wth w orks on pre�xes, while Eclat w orks on single transaction. That

means, that FP-gro wth can tak e adv an tage from data that can considerably

compressed b y a trie, while it has to pa y the o v erhead of a more complex

in tersection metho d that has to tak e in to accoun t the relation startsWith.

3.3 T ec hniques

Most published algorithms are the mo di�cations of the base algorithms. A t ypical FIM

pap er presen ts some tec hnique that decreases the run-time, memory need or I/O demand

of a kno wn metho d. In fact, there is m uc h more to discuss ab out tec hniques and data

structure issues than ab out the base algorithms.

In the next sections w e describ e the three most imp ortan t FIM algorithms. Eac h

algorithm is �rst describ ed at seman tic lev el, and then w e c hec k what kind of data

structure supp orts b est the functions of the algorithm. Then w e giv e a comprehensiv e

description of the tec hniques.

W e call a tec hnique memory safe if it nev er increases the memory need of the

algorithm signi�can tly (let us sa y more than 25%). A memory-safe tec hnique is called

strictly memory-safe if it required the same or less amoun t of memory than the

algorithm without the tec hnique in al l test databases with ev ery supp ort threshold.

Similarly a tec hnique is run-time safe if it nev er results in a signi�can t run-time

degradation. W e call a tec hnique dangerous if the p erformance drops to its fraction at

some b enc hmark dataset.

3.4 Graphical presen tation of the exp erimen ts

This w ork is based on thorough theoretical analysis and on a v ery comprehensiv e set of

exp erimen ts. T o increase readabilit y w e a v oid using tables of n um b ers but rather trying

to visualize the exp erimen ts. In the literature the authors presen t their exp erimen ts b y

run-time and memory plots. Displa ying the plots for all databases tak es to o m uc h space,

therefore only a few (unfortunately the ones that giv e a fa v orable view of the prop osed

tec hnique) are selected. The FIMI con tests sho w ed that the published algorithms do

not p erform so w ell in general as they do in certain, carefully c hosen databases. F or
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fairness, w e test eac h tec hnique on 16 w ell-kno wn test databases, most of them can b e

do wnloaded from http://fimi.cs.helsinki .fi . T o a v oid space problems, w e restrict

our atten tion to test results at lo w supp ort thresholds.

In man y exp erimen ts w e compare t w o solutions ( s and s

new

), one ( s

new

) is exp ected

to b e faster. The adv an tage of the faster solution is presen ted on 16 databases mainly

at v ery lo w supp ort thresholds. W e use bar-c harts, where the heigh t of a bar is

m ( s )

m ( s

new

)

,

where m denotes the measuremen t (in most of the cases it is run-time and memory-

need). Sometimes the new tec hnique results in an impro v emen t of a sev eral orders of

magnitude. T o presen t suc h cases w e use the logarithm of the measuremen ts.

In man y cases w e are not only in terested in the run-times but w e w ould lik e to

visualize the w a y the tec hnique suits to the features of the mo dern pro cessor. F or this

w e use a diagram lik e the follo wing.

 0

 200

 400

 600

 800

 1000

 1200

 1400

500

GC
loc

kti
ck

s

all uops on  BMS-WebView-2 at 6

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

The heigh t of the wide bars cen tered around the tic ks sho w the actual run-time (the

total clo c ktic ks used b y the program). The colors/patterns of these bars sho w ho w w ell

the program utilized these clo c ktic ks: the top-most part sho ws the amoun t of clo c ktic ks

during whic h three u-ops w ere executed, while the b ottom-most part sho ws the time

during whic h the program execution w as stalled for some reason (i.e., no op erations

w ere executed during that clo c ktic k).

The narro w bars cen tered around the tic ks sho w the total n um b er of u-ops that w ere

executed. The bar is divided in to t w o, the upp er part sho w the b ogus u-ops, those u-ops

that w ere sp eculativ ely executed on a mispredicted branc h, and th us w ere rolled bac k.

The ratio of the lo w er-to-upp er part of this bar sho ws the branc h prediction ine�ciency .

The narro w bars b eside the wide ones sho w the fron t-side bus activit y , the total

n um b er of clo c ktic ks during whose at least one read/write op eration w as p ending (i.e.,

data transfer time including memory latency). The upp er part of these bars sho w the

time consumed b y prefetc h reads (when the pro cessor sp eculativ ely transfers data from

the memory in to the cac he for further a v ailabilit y), while the lo w er part sho ws actual

reads or writes. The main di�erence is that the deliv ery of data during actual reads

and writes presumably stalls the execution pip eline (these are the cac he misses). If the

ratio of prefetc h (top part) to actual w ait (b ottom part) is high, then a h uge amoun t
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of cac he misses are a v oided b y the prefetc h mec hanism, th us ac hieving a considerable

p erformance gain.

3.5 The trie and its v arian ts

Since the trie (pre�x-tree) data structure comes in to pla y in Apriori, FP-gro wth and

man y other FIM algorithms (lik e MaxMiner [47] and T reePro jection [1]), w e b egin with

the description this cen tral data structure.

The data structure trie w as originally in tro duced b y de la Briandais [14] and F redkin

[15 ] to store and e�cien tly retriev e w ords of a dictionary . Mueller [35] w as the �rst to

use trie in a FIM algorithm.

A trie is a ro oted, lab eled tree. Eac h lab el is a c haracter and eac h no de represen ts a

w ord (sequence of c haracters) whic h is the concatenation of the c haracters that are on

the path from the ro ot to the no de. The ro ot is de�ned to b e at depth 0, and a no de at

depth d can p oin t to no des at depth d + 1. A p oin ter is also referred to as e dge or link .

W e will use the notations paren t , c hild , sibling , ancestor and descendan t as they

are de�ned in the classical orien ted tree data structures.

T ries are suitable for storing and retrieving not only w ords, but an y �nite sequences

o v er arbitrary alphab et as w ell. In the FIM setting a link is lab eled b y a frequen t item,

and a no de represen ts a sequence of items. T o obtain a sequence from a set, w e ha v e to

de�ne a total order on the items. F or this, w e alw a ys use the same order that is used

to order the edges. In this case the preorder depth-�rst searc h tra v ersal corresp onds to

the ascending lexicographical ordering of the itemsets.

If the trie stores sequences of di�eren t lengths, then a b o olean v alue is also asso ciated

to eac h inner no de. A true v alue denotes that the sequence that is represen ted b y the

inner no de is also con tained in the dictionary not just the sequences represen ted b y the

lea v es. Figure 3.1 presen ts a trie that stores the itemsets A , C , F , AC , AF , E F , AE F .

The order used to con v ert sets to sequences corresp onds to the alphab etic order. Inner

no des with false and true b o olean v alues are denoted b y squares and circles, resp ectiv ely .

A trie that stores all subsets of a giv en set is quite un balanced. The follo wing picture

sho ws the trie that stores all subsets of itemset f ABCDE g .

Originally the tries are c hild-link ed , i.e. from eac h no de only its c hildren can b e

reac hed with one step. In case of a paren t-link ed trie w e can only reac h the paren ts

directly . Ob viously , the t w o approac hes can b e com bined. F or example, in FP-gro wth

the c hild link ed-trie is con v erted to paren t-link ed tree after all itemsets are inserted.

3.5.1 The represen tation of the list of edges

The list of edges can b e represen ted in man y w a ys. The represen tation used in the

algorithms greatly a�ects b oth run-time and memory-need. Let us assume that w e ha v e
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Figure 3.1: Example: a trie that stores sets f A g , f C g , f F g , f A C g , f AF g , f EF g , f AEF g
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Figure 3.2: Example: a trie that stores all subsets of itemset f ABCDE g

18



CHAPTER 3. BASE ALGORITHMS 3.5. THE TRIE AND ITS V ARIANTS

a no de u with n c hildren. This means that n edges start out from u . Denote the smallest

and largest lab el of these edges b y l

min

and l

max

resp ectiv ely . The most frequen tly used

represen tations are:

ordered list: Eac h edge is represen ted b y a pair, whose �rst elemen t is the lab el, and

the second is a p oin ter to the c hild. The edges are stored in a v ector, whic h is

ordered according to the lab els. The memory need of this solution (ignoring the

o v erhead of a list) is 2 n cells.

indexv ector: The c hild p oin ters are stored in a v ector whose length equals to the

n um b er of frequen t items. A no de at index i is the endp oin t of the edge whose

lab el is item i . If there is no edge with suc h lab el, then the elemen t is NIL.

Ob viously the elemen ts at index less than the smallest lab el and greater than the

largest lab el are NIL. W e sa v e memory if these elemen ts are not stored. In o�set

indexv ector represen tation the smallest elemen t (the o�set) and a p oin ter v ector

of size l

max

� l

min

+ 1 is stored. The c hild p oin ter of lab el i is giv en b y the elemen t

at index i � l

min

.

h ybrid solution: Notice, that neither of the ab o v e represen tations needs alw a ys less

memory than the other. If 2 n < l

max

� l

min

+ 1 + 1, then the ordered list needs less

memory , otherwise the o�set-indexv ector. In the h ybrid edge represen tation w e

dynamically c ho ose the edge represen tation based on the memory requiremen ts.

3.5.2 Index vs. p oin ter-based trie

The no des of the trie (together with the lists of edges) can b e stored consecutiv ely or

scattered in the memory . W e distinguish t w o t yp es of T rie according to the memory

la y out (suc h tries are depicted in Figure 3.3 ).

167

123 102

B

D

con tiguous-memory based:

[2,167,B,6,D,8,0,123,0,102]

p oin ter-based:

167,[B, � ,D, � ]

123 ,[]

102 ,[]

Figure 3.3: di�eren t represen tations of the same trie
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p oin ter-based trie : The no des are scattered in the memory . The coun ter and the list

of edges are asso ciated with the no de. The no des are iden ti�ed b y their address

in the memory , and a link is represen ted b y a p oin ter. When adding a new leaf

in to the tree w e searc h for a free space in the memory and reserv e it to the new

leaf. Deleting a leaf means simply freeing the memory o ccupied b y the leaf and

remo ving the p oin ter (together with the lab el) from the edgelist of its paren t.

If w e store the edges in an ordered v ector, then the memory need of a no de is

the memory need of a coun ter and a list. The total memory need of a trie is

ns

i

+ ns

ov

+ ( n � 1) s

i

+ ( n � 1) s

p

, where n is the n um b er of no des in the trie, s

ov

is

the memory need of the o v erhead of the v ector, s

i

; s

p

is the size of an in teger and

a p oin ter resp ectiv ely . If the v ector of C++ STL is used then the o v erhead of a

v ector equals three times the size of the p oin ter, therefore the total memory need

is appro ximately 2 n ( s

i

+ s

p

) whic h is 26 n b ytes in a P en tium 4 and 40 n b ytes in

an Opteron.

con tiguous-blo c k trie : The trie is represen ted b y one big v ector. The coun ter, the

n um b er of edges and the list of edges are asso ciated with the no de. Eac h no de

is iden ti�ed b y the p osition in the v ector. Adding (and erasing) a leaf is quite a

lab orious w ork. W e expand the v ector, then insert a new edge in to the edgelist of

the paren t. This results in an increase of the p ositions of the no des coming after

the paren t, therefore the indices ha v e to b e up dated. This requires a total scan of

the v ector.

It ma y b e di�cult to �nd a free big blo c k in the memory , hence a list of medium-

size blo c ks are used in practice. The blo c ks are of the same size, therefore w e can

quic kly determine the blo c k (and the o�set) of a no de it has b een placed in to.

If the edgelists are stored in an ordered v ectors, then the memory need of a no de

equals to the memory need of the coun ter the memory need of the v ariable that

stores the n um b er of c hildren, and the edges (without o v erhead). The total mem-

ory need is s

ov

+ n ( s

i

+ s

i

+ 2 s

i

) � 4 ns

i

whic h is 16 n in a P en tium and Opteron as

w ell. Note, that w e assume that the size of the v ector that stores the trie is not

greater that 2

8 s

i

, otherwise w e cannot address an elemen t b y an in teger v alue.

In our implemen tation lea v es are added and deleted from the trie, therefore w e use

the p oin ter-based approac h.

3.5.3 P atricia trie

A directed path is called chain if all inner no des on the path ha v e only one c hild. A

tree that is obtained from a trie b y collapsing maximal c hains to a single edge is called

p atricia tr e e . The new edge p oin ts to the last no de of the c hain and its lab el is the
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sequence of the lab els on the c hain. If c hain collapse is restricted to c hains that end in

lea v es then w e talk ab out le af-p atricia tr e e .

P atricia trees consume less memory if the trie con tains man y c hains. Otherwise, it

need more memory , b ecause the lab els are represen ted b y v ectors, whic h is an ine�cien t

solution when it con tains just one elemen t.
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Cha pt e r 4

Algorithm Apriori

APRIORI is regarded to b e the �rst FIM algorithm that can cop e with large datasets

and large searc h space. It w as prop osed b y Agra w al and Srik an t [2] and Mannila et al.

[32 ] indep enden tly at the same time. Their co op erativ e w ork w as presen ted in [4 ].

The algorithm scans the transaction datasets sev eral times. After the �rst scan the

frequen t 1-itemsets are found, and in general after the `

th

scan the frequen t ` -itemsets

are extracted. The metho d do es not determine the supp ort of ev ery p ossible itemset. In

an attempt to narro w the domain to b e searc hed, b efore ev ery pass it generates c andidate

itemsets and only the supp ort of the candidates are determined. An itemset b ecomes

a candidate if all its prop er subsets of are frequen t. Due to the b ottom-up searc h, all

frequen t itemsets of size smaller than the candidate are already determined, therefore it

is p ossible to do the subset v alidations.

After all the candidate ( ` + 1)-itemsets ha v e b een generated, a new scan of the

transactions is e�ected and the precise supp ort of the candidates are determined. The

candidates with lo w supp ort are discarded. The algorithm ends when no candidates are

generated. The pseudo co de of Apriori is giv en b elo w.

The in tuition b ehind candidate generation is based on the follo wing simple fact:

Prop ert y 4.0.1 Every subset of a fr e quent itemset is fr e quent.

This is immediate, b ecause if a transaction t con tains an itemset X , then t con tains

ev ery subset Y � X .

Using the fact indirectly , w e infer that, if itemset I has a subset that is infrequen t,

then I cannot b e frequen t. In the algorithm APRIORI only those itemsets are candidates

whose all subsets are frequen t. It is not necessary to c hec k all subsets; if all maximal

prop er subsets are frequen t, then the an ti-monotone prop ert y of the supp ort function

guaran tees that all subsets are frequen t as w ell.

It w ould b e ine�cien t to go through on all itemsets of size ( ` + 1) and do the subset

c hec k, instead, w e generate the candidates. All itemsets that meet the subset c hec k
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Algorithm 1 algorithm Apriori

Require: D : database o v er the set of items I ,

minsup supp ort threshold

Ensure: F : the set of frequen t itemsets

`  1

C

`

 I

while j C

`

j 6= 0 do

supp ort coun t( D ; C

`

)

for all c 2 C

`

do

if c:suppor t � minsup then

F

`

 c

end if

end for

C

` +1

 candidate generation( F

`

)

`  ` + 1;

end while

F =

S

`

j =1

F

j

requiremen t m ust b e the union of t w o di�eren t ` -itemset that are frequen t and ha v e

` � 1 common items. Di�eren t pairs can ha v e the same union (for example the pairs

( AB ; AC ) and ( AB ; B C )). In order the candidate generation to b e non-redundan t w e

tak e the union of those ` -itemsets whose in tersection is the ( ` � 1)-elemen t pre�x. P airs

( I

1

; I

2

) and ( I

2

; I

1

) generate the same candidate therefore w e assume I

1

� I

2

. The

pseudo co de of the candidate generation is found in Algorithm 2.

Algorithm 2 candidate generation

Require: F

`

frequen t itemsets of size `

Ensure: C

` +1

the set of candidates of size `

for all f i

1

; : : : i

` � 1

; i

`

g ; f i

1

; : : : i

` � 1

; i

0

`

g 2 F

`

suc h that i

`

� i

0

`

do

c  f i

1

; : : : i

` � 1

; i

`

; i

0

`

g

if all ` subsets are frequen t( c; F

`

) then

C

` +1

 c

end if

end for

After the candidate generation the supp orts of the candidates are calculated. This

is done b y reading transactions one b y one. A coun ter with 0 initial v alue is asso ciated

with eac h candidate. F or eac h transaction t the algorithm decides whic h candidates are

con tained in t . The coun ter of these candidates are incremen ted.
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A simple solution of this is to c hec k eac h candidate if it is con tained in the transac-

tion. This is an elemen tary op eration (determining if an ordered sequence con tains an

other ordered sequence) if the transaction and the candidates are stored ordered. The

dra wbac k of this solution is that the transaction is c hec k ed and partially tra v ersed as

man y times as the n um b er of candidates, whic h is quite slo w at lo w supp ort thresholds,

where there are man y candidates.

T o sa v e n umerous transaction tra v ersals it is useful to store the candidates in a

sp ecial data structure. In the original pap er [ ? ] a hash-tree w as prop osed for this

purp ose. The �rst trie-based Apriori implemen tation is rep orted P asquier et al. [41].

F or the sak e of correctness w e ha v e to men tion that a y ear earlier algorithm DIC [12],

whic h is an extension of Apriori, also used trie to store the candidates. Indep enden t

from eac h other Borgelt, Go ethals and Bo don (and ma yb e sev eral others) published the

�rst op en-source Apriori implemen tations. In [7] trie and hash-tree w ere compared, and

suggested that the trie is a b etter data structure in Apriori w.r.t run-time, memory

need but most imp ortan tly the 
exibilit y . The main disadv an tage of hash-tree is that

it is non-parametric, i.e., it requires a hash function. The e�ciency of the hash-tree is

greatly in
uenced b y the hash-function. Di�eren t hash-functions are suitable for di�er-

en t databases and ev en di�eren t hash-functions are suitable for the same database with

di�eren t supp ort threshold. There exists no a v ailable and e�cien t Apriori implemen ta-

tion that uses a hash-tree.

A v ector{trie middle-w a y solution w as prop osed in [37 ]. Candidates with the same 2-

elemen t pre�x are stored in a v ector. The addresses of the v ectors are directly accessible

b y a triangular arra y . V ector of pre�x i; j b elongs to the elemen t at index i; j � i � 1

of the arra y . T o sa v e memory , the common 2-elemen t pre�xes are not stored in the

elemen ts of the v ectors. The authors declared that this solution is more e�cien t than

trie-based solution, b ecause of the \p oin terless" approac h, the high data lo calit y and

the predictable co de branc hes. Our exp erimen ts do no supp ort this claim.

The follo wing plots sho w that although this is a m uc h b etter solution than simply

storing the candidates in a list, it is still not comp etitiv e with trie-based solution at

medium or lo w supp ort thresholds. This observ ation holds in all databases.

The fact that trie-based solution pro vides results in a faster Apriori than pre�x-arra y

based solution in all cases, do es not imply that trie is the b est c hoice. Pre�x-arra ys are

exploited in the initial phases of DCI, therefore w e ha v e to compare the p erformance

of the t w o data structures at smaller candidates' sizes. Our exp erimen t { in whic h w e

terminated the algorithms as so on as the candidates reac hed a certain size { sho w ed that

trie-based solution is alw a ys faster than pre�x-arra y based solution at an y candidates'

sizes.

Due to the outstanding e�ciency of the trie-based solution, w e restrict our atten tion

to this data structure.
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Figure 4.1: Comparison of simple v ector, pre�x-arra y and trie-based solution for storing

the candidates in Apriori

4.1 The trie of Apriori

Throughout the algorithm one c hild-link ed trie is main tained. In this trie a coun ter

is asso ciated with eac h no de. This coun ter stores the supp ort of the itemset the no de

represen ts. In candidate generation phases new lea v es are added with zero coun ters, in

supp ort coun t phases the coun ters are up dated, and when w e eliminate infrequen t sub-

sets (infrequen t remo v al phase), lea v es with coun ter v alue less than minsup are pruned.

Next, w e examine Apriori's main pro cedures from the p ersp ectiv e of the trie.

4.1.1 Supp ort Coun ting

In the supp ort coun ting phase, w e tak e the transactions one-b y-one. With a recursiv e

tra v ersal w e tra v erse some part of the trie. If a no de is reac hed, then the itemset

represen ted b y the leaf is con tained in the transaction. The coun ters of suc h lea v es are

increased. The tra v ersal of the trie is driv en b y the elemen ts of transaction t and starts

in the ro ot. No step is p erformed on edges that ha v e lab els whic h are not con tained in

t . More precisely , if w e are at a no de at depth d b y follo wing a link lab eled with the j

th

(let j b e 0 in the ro ot) item in t , then w e mo v e forw ard on those links that ha v e the

lab els i 2 t with index greater than j , but less than j t j � ` + d , if w e denote the size of

the candidates b y ` + 1. The upp er b ound is obtained b y the fact that ` � d another

steps are required to reac h a leaf from a c hild.

4.1.2 Remo ving Infrequen t Candidates

After supp ort coun ting, the lea v es that represen t infrequen t itemsets ha v e to b e deleted

from the trie. Lea v es are reac hed in a depth-�rst tra v ersal.
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4.1.3 Candidate Generation

Here w e mak e use of an other nice feature of tries; ` -itemsets, that share the same ( ` � 1)-

pre�x, are represen ted b y sibling lea v es. Consequen tly , the extender of a no de m ust b e

in the lab el set of edges p oin ting to a sibling. This is just a necessary requiremen t.

F or an ( ` + 1)-itemset I to b ecome a �nal new leaf, it has to meet Apriori's pruning

condition: the ` -subsets of I ha v e to b e frequen t.

T o obtain the itemsets represen ted b y the no des, w e ha v e to main tain a stac k and

p erform a depth �rst tra v ersal. Whenev er w e step do wn along an edge w e push its lab el

to the stac k, and p op it when a bac kw ard step is p erformed.

4.2 Compactness of the trie and the run-time of

Apriori

The gro wth of a v ailable memory sizes follo ws Mo ore's la w. T o da y memory sizes are

so large that most of the databases �t in the main memory if the prop er �ltering and

compression is applied (in FIM setting this means remo ving infrequen t items from the

transactions and reco ding items to in tegers). The c heap and h uge memorie devices

encourages the implemen tors of data mining algorithms to handle memory issues gen-

erously .

The reader will, ho w ev er, observ e the opp osite in our case; w e try to k eep memory

consumption as small as w e can, and w e sp end serious e�orts on k eeping the trie as

compact as p ossible. This has t w o main reasons. First, memory allo cations and deal-

lo cations require pro cessor resources, but more imp ortan tly they mak es the pro cessor

stall, whic h ruins e�ciency . Second, b y increasing compactness, w e increase data lo-

calit y , whic h impro v es the e�ciency of the prefetc hing the cac hing features of mo dern

pro cessors.

T o illustrate this w e ha v e done the follo wing exp erimen t. W e measured the run-

time and memory need of our Apriori. Ho w ev er, w e manipulated the candidate trie a

little bit; a v ector of uninitialized in tegers w as inserted in to eac h no de. The size of the

v ector w as a parameter. The larger this parameter is, the more the no des are scattered

from eac h other, and hence the w orse the data lo calit y is. The follo wing plots sho w the

run-time and memory need.

The reason of the run-time increase is prompted b y Fig. 4.3, whic h sho ws more infor-

mation ab out the utilization of the clo c ktic ks, the n um b er of u-ops that w ere executed

on prop erly and improp erly predicted branc hes, the total n um b er of clo c ktic ks during

whose at least one read/write op eration w as p ending on database BMS-Webview-2 with

minsup = 6. The left bar c hart b elongs to v ector size 0 the righ t one b elongs to the

v ector size 50.

W e see, that the t w o implemen tations p erform appro ximately the same n um b er of
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instruction, and there is no signi�can t di�erence in branc h prediction e�ciency . Ho w-

ev er, in the second implemen tation the pro cessor stalls m uc h more than in the �rst case,

whic h results the slo wing do wn of the program. The pro cessor stalls are caused b y bad

data lo calit y .

4.3 Inhomogeneous trie and a sp ecial blo c k allo cator

F rom programming p oin t of view a trie can b e declared in man y w a ys. The simplest one

is the follo wing: \T rie is a recursiv e structure; it has a coun ter and a list of edges. An

edge is pair of a lab el and a trie p oin ter". A trie is called leaf if its list is empt y . Another

de�nition is, that \A leaf is a coun ter. The trie is a leaf (a coun ter) or a coun ter and a

list of edges.". The �rst t yp e of trie is called homogeneous trie, b ecause it is declared

b y a singe data structure (not taking in to consideration the data structure list). The

second is inhomogeneous trie b ecause in the de�nition w e use t w o data structures (leaf

and trie). Distinguishing the ab o v e de�nitions seems to ha v e no meaning.

T o understand the con trary , w e ha v e to dig do wn to implemen tation lev el. The main

p oin t of the di�erence comes from the facts that:

1. the compactness of the trie is crucial, and greatly a�ects b oth run-time and mem-

ory need,

2. an y list has some o v erhead (at least 8 b ytes, but in the case of C++ STL's vector

it is 12 b ytes on a 32 bit pro cessor), i.e., the size of an empt y list is not zero.

An inhomogeneous trie spares memory b y sa ving the o v erhead of the lists at the

lea v es. Since tries of FIM algorithms are v ery large, and con tain man y lea v es, the sa ving

ma y b e signi�can t. Note that the size of a leaf of an inhomogeneous trie is merely the

size of a coun ter, i.e. 4 b ytes. On the con trary the leaf tak es 12+4=16 b ytes in a

homogeneous trie. The cac he line (the blo c k that is the basic unit in transferring data

from the memory to the cac he) size is 32 b ytes in the case of P en tium 4 pro cessor, whic h

means 8 and 2 lea v es �t in a cac he-line in the case of inhomogeneous and homogeneous

trie, resp ectiv ely . In 64 bit arc hitectures (lik e Opteron) the di�erence is ev en larger (the

size of a leaf is the same, ho w ev er, the size of a p oin ter is 8 b ytes).

Notice, that if a transaction con tains an itemset represen ted b y a leaf, then it con tains

its siblings man y times. It is imp ortan t that the siblings b e as \close" to eac h other in

the memory as p ossible to obtain b etter data lo calit y .

Lea v es b eing generated in the candidate generation phase, deleted or con v erted in to

inner no de in the infrequen t remo v al phase require a lot of allo cations/deallo cations. W e

can reduce the o v erhead of this and impro v e data lo calit y at the same time b y applying

a sp ecial blo c k allo cation mec hanism. The lea v es are stored in a blo c k

1

and there is an

1

Actually w e used a list of medium-size blo c ks instead of one big blo c k in our implemen tation.
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extra stac k that stores p oin ters of the freed places. When a leaf is freed, a p oin ter to

its place is p opp ed to the stac k. When a new leaf is allo cated, w e c hec k if the stac k is

empt y . If not, w e reallo cate the memory that is p oin ted b y the top elemen t of the stac k.

If the stac k is empt y , then w e simply allo cate a new elemen t in the curren t blo c k. Since

a leaf is practically a coun ter (and in teger), reallo cation means a v alue assignmen t.

This solution can b e further impro v ed b y merging together the stac k and the blo c ks,

i.e., eac h p osition of a blo c k is either a leaf or a p oin ter that p oin ts to the next empt y

p osition (if there is an y , otherwise its v alue is NULL). In C++ this solution is supp orted

b y the union data structure and b y the fact that a p oin ter and an in teger needs the

same amoun t of memory in 32 bit pro cessors.

T able 4.1 sho ws some exp erimen ts concerning this design detail.

database minsup

homogeneous

trie

inhomogeneous

trie

inhomogeneous

trie with blo c k

allo cator

T40I10D100K 220 670 653 518

pumsb 32600 184 161 133

retail 3 96 208 44

T10I5N1KP5K C0 6 21 21 18

T30I15N1KP5K C0 360 622 557 395

run-time (sec.)

database minsup

homogeneous

trie

inhomogeneous

trie

inhomogeneous

trie with blo c k

allo cator

T40I10D100K 220 342 128 128

pumsb 32600 19 14 14

retail 3 939 327 327

T10I5N1KP5K C0 6 553 196 196

T30I15N1KP5K C0 360 296 204 203

memory need (MB)

T able 4.1: Inhomogeneous trie and a sp ecial blo c k-allo cation tec hnique

An inhomogeneous trie with our sp ecial blo c k allo cator reduces b oth run-time and

memory need signi�can tly . In the forthcoming exp erimen ts with Apriori w e alw a ys use

inhomogeneous tries and our blo c k-allo cator.

4.4 Remo ving Dead-end Branc hes

F requen t itemsets of size ` are only needed in (1) writing out the results and (2) gen-

erating candidates of size ` + 1. The results can b e written out either in candidate

generation or at the infrequen t candidate remo v al phase. In candidate generation some

lea v es are extended (if adding an item to its represen tation results in an itemset whose

all subsets are frequen t) some are not. This means that there are lea v es that represen t

candidates and there are lea v es that do not. W e call the second kind of lea v es dead-

end lea v es and a subtrie is a dead-end branc h if all its lea v es are dead-end lea v es.
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Dead-end branc hes are also generated in infrequen t remo v al phase. If all (or all with

one exception) c hildren of a no de are infrequen t, then the no de b ecomes a leaf and is

nev er extended again.

The no des of a dead-end branc h are not needed for candidate generation th us its

no des' itemsets can b e written out and suc h no des can b e purged from the trie. This

tec hnique has man y adv an tages. First, the trie gets smaller. Second, the supp ort coun t

is faster. T o illustrate this, let us assume that only one candidate (itemset AB C ) is

generated. Figure 4.4 sho ws t w o candidate tries. The second is obtained b y applying

the dead-end branc h pruning. The adv an tage of dead-end branc h remo v al can b e easily

seen if w e consider �nding the candidates in transaction h A; B ; C ; D ; E i . In b oth cases

the whole trie is tra v ersed, whic h means visiting only half as man y no des in the second

case as in the �rst case.

A

B

C

B

C

C

C

A

B

C

Figure 4.4: Example: remo ving dead-end branc hes

Dead-end branc h pruning do es not require an y mo v emen t in the trie, if the no des

in the candidate generation phase are visited in a preorder depth �rst manner. This is

based on the follo wing prop ert y .

Prop ert y 4.4.1 F or a given depth d , the depth-�rst or dering of the no des' r epr esenta-

tion at depth d is the same as if we lexic o gr aphic al ly or der these r epr esentations, wher e

the or der use d in the lexic o gr aphic al or dering c orr esp onds to the or dering of the trie and

the lexic o gr aphic or dering of the pr esentations is b ase d on a glob al item or dering.

Consequen tly , an itemset I can b e a subset of those candidates whose generators

strictly precede I in the preorder tra v ersal. Therefore a no de can b e pruned if no new

candidates are generated from an y descendan ts of it.

Dead-end branc h pruning do es not necessarily sp eed up Apriori. If there exist no

dead-end paths, then the dead-end branc h c hec ks just deteriorate the branc h prediction

facilit y of the pro cessor and th us the run-time as w ell. F or example if all maximal

candidates ha v e the same size, then dead-end pruning is nev er used, and this tec hnique
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neither results in a faster nor a more memory-e�cien t algorithm. F ortunately , in most

cases the negativ e b order of frequen t itemsets (i.e. the maximal candidates) is not

\straigh t" and the size of the maximal candidates v aries. Figure 4.5 sho ws the ratio of

run-time and memory need of Apriori that do es not use the dead-end pruning and the

Apriori that do es.
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Figure 4.5: Deadend pruning (ratio of run-times and memory-needs)

Some hardw are friendliness diagrams is giv en in Figure 4.6.
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Figure 4.6: Hardw are friendliness diagrams of Aprioris with and without dead-end prun-

ing

The exp erimen ts sho w that dead-end pruning is an e�cien t tec hnique. It alw a ys

resulted in a faster and more memory-e�cien t algorithm.

The problem of tra v ersing dead end paths w as also considered in [10] as an in
uence

of our earlier pap er [6]. The author of [10] has c hosen an other solution. F or eac h no de

a b o olean v alue w as attributed (more precisely the upp ermost bit of the coun ter w as

dedicated for this purp ose) whose v alue is true if the no de is on a path to the deep est

lev el (i.e. to a candidate), otherwise false . Recursion during supp ort coun ting pro ceeds

only on suc h c hildren whose b o olean v alue is true .
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This solution has t w o dra wbac ks. First, dead end branc hes are not erased and

therefore the space is not freed. Second, the b o olean v alue c hec k is just a second test

after a matc hing of items is found during supp ort coun t (see routing strategy merge on

page 33). Th us the items with false b o olean v alues are also considered in �nding the

edges to follo w. This problem could b e solv ed b y not just distinguishing the edges but

actually storing di�eren t edges in t w o di�eren t lists. This requires, ho w ev er, more than

one bit o v erhead.

It is easy to see the consequence of the t w o dra wbac ks if w e compare the exp erimen ts

(for details see [10 ]). It reac hed 20-40% sp eed-up at database BMS-Webview-1 , while our

solution resulted in a more than t wice so fast program.

In the rest exp erimen ts with Apriori w e use dead-end pruning.

4.5 Routing strategies at the no des

R outing str ate gy at an inner no de refers to the principle used to select the edges to

follo w during the recursiv e tra v ersal of the supp ort coun t metho d. Giv en a no de with

a list of edges and a part of the transaction t denoted b y t

0

w e ha v e to �nd the edges

whose lab els are included in t

0

. This is the main step of supp ort coun t in APRIORI,

it is called man y times, and this is the step that primarily determines the run-time of

the algorithm. In this section w e analyze some p ossible solutions. The n um b er of edges

ha ving the no de w e in v estigate (at depth d ) is denoted b y n . F or the sak e of e�ciency

the elemen ts of the transaction are ordered.

Di�eren t routing strategies can b e applied with di�eren t edgelist represen tations (see

section 3.5.1). In an indexv ector-based solution the edge that has a giv en lab el can b e

found in one step, th us w e adapt the simple metho d that c hec ks for eac h elemen t i of t

0

if there exists an edge with lab el i . In our implemen tation w e skip those elemen ts that

are smaller than the smallest lab el (this equals to the o�set if the o�set tric k is applied),

and terminate the searc h if the actual elemen t of t

0

is larger than the largest lab el (i.e.

o�set plus the size of the v ector).

With an ordered list represen tation sev eral solutions are applicable:

sim ultaneous tra v ersal ( merge ): Tw o p oin ters are main tained; one go es through the

elemen ts of t

0

and the other go es through on the n edges. Both p oin ters are

initialized to the �rst elemen t of the corresp onding list. The p oin ter that p oin ts

to the smaller item is increased. If the p oin ted items are the same, then a matc h

is found (recursiv e step is called), and b oth p oin ters are increased. W e terminate

the searc h if an y p oin ter reac hes the end of its list. The w orst case n um b er of

comparisons (and p oin ter increases) is n + j t

0

j , the b est case is min f n; j t

0

jg .

�nd corresp onding edge: F or eac h item in t

0

w e �nd the corresp onding edge (if there

is an y). W e can use a binary searc h for �nding the prop er lab el. Notice that the
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run-time of the binary searc h is prop ortional to log

2

n . Since the lab els are ordered,

it is enough to p erform binary searc h from the p osition that the previous binary

searc h returned.

�nd corresp onding transaction item: F or eac h lab el w e �nd the corresp onding trans-

action item. F or this a binary searc h starting from the previously returned index

is applicable.

The logarithmic run-time need of the binary searc h can b e reduced to constan t

time b y applying an o�set-bitv ector represen tation of t

0

, whose v alue at index i

is true if item i +o�set is the elemen t of t

0

otherwise false . The o�set is the

smallest elemen t of t

0

.

The problem with bitv ectors is that they do not exploit the fact that at a certain

depth only a part of the transaction needs to b e examined. F or example, if the

item of the �rst edge is the same as the last item of the bask et, then the other

edges should not b e examined. The bitv ector-based approac h do es not tak e in to

consideration the p ositions of items in the bask et.

W e can easily o v ercome this problem if the indices of the items are stored in the

v ector. F or example transaction f 2 ; 4 ; 7 g is stored as [1 ; 0 ; 2 ; 0 ; 0 ; 3] with o�set 2.

The routing strategy with this v ector is the follo wing. First w e step through those

edges whose lab els are less than the o�set. Then w e tak e the remaining lab els

one-b y-one. If w e reac h for item i in t

0

, then w e c hec k the elemen t i � o�set of the

v ector. There are three p ossibilities. If it is 0, then the item is not con tained; w e

pro ceed with the next lab el. If the elemen t is smaller than j t j � ` + d + 1 then

matc h is found (and the supp ort coun t pro cedure is con tin ued with the next lab el).

Otherwise the pro cedure is terminated.

F or eac h routing strategy w e could giv e an upp er b ound on the n um b er of com-

parisons in the w orst case. Comparing these theoretical v alues, ho w ev er, predict the

e�ciency of the routing strategies m uc h w orse than the degree eac h metho d suits to

the features of the mo dern pro cessor and memory structures. No w let us turn to the

exp erimen ts w e ha v e carried out.

4.5.1 Routing strategies in the case of ordered-list edge repre-

sen tation

First w e tested the routing strategies that can b e applied when the edges are stored in

an ordered list. Tw o t ypical plots are depicted in Figure 4.7 .

Some hardw are friendliness diagrams is giv en in Figure 4.8.

Observ ations based on all the tests are the follo wing:
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1. There exists no single routing strategy that outp erforms all other routing strategies

on ev ery database with ev ery supp ort threshold. The run-time di�erences b et w een

routing strategies is sometimes up to ten-fold.

2. Except for merge , there exists a dataset for eac h routing strategy where its p er-

formance is quite bad compared to the b est one.

3. merge outp erforms the binary-searc h based approac hes most of the cases b y a

signi�can t margin.

4. Binary searc h-based approac hes alw a ys get faster if the p osition returned b y the

previous binary searc h is stored and used to decrease the searc h space.

5. Bitv ector based solutions p erformed p o orly most of the times; it w as alw a ys slo w er

than merge .

Let us explain the observ ations one-b y-one.

1. The e�ciency of a routing strategy dep ends on n , the length of t

0

and the n um b er

of matc hes. Di�eren t data ha v e di�eren t c haracteristics concerning these v alues,

th us di�eren t routing strategies p erform w ell.

2. The merge strategy pro duces the simplest co de (its co de con tains the few est lines)

and it do es not w ait for the data b ecause the items are read sequen tially and the

prefetc h feature is v ery e�ectiv e.

3. If only the n um b er of comparisons (in the w orst/a v erage case) is tak en in to consid-

eration then binary searc h is alw a ys faster than linear searc h. If w e, ho w ev er, also

consider the w a y mo dern pro cessors' features are utilized, w e conclude that the

linear searc h outp erforms binary searc h signi�can tly when the lists w e are searc h-

ing in are small. Notice that pip elining, prefetc hing p erforms p o orly since the

elemen t of the list to pro cess dep ends on the outcome of the previous comparison.

This also results in an ine�cien t branc h-prediction.

4. Storing the index that w as returned form the previous binary searc h reduces the

a v erage n um b er of theoretical comparisons from n log

2

n to log

2

n !. This simple

tric k is also greatly supp orted b y the mo dern pro cessor's cac he system. Storing

and using the v alue that w as returned b y the last binary searc h is p erformed quite

fast most of the times since it is lik ely to b e stored in the L1 cac he.

5. The bitv ector-based approac h do es not tak e in to consideration that only a part of

the transaction has to b e examined. This results in man y sup er
uous tra v ersals.

Let us see an example. Assume that the only 4-itemset candidate is f D ; E ; F ; G g

and w e ha v e to �nd the candidates in transaction f A; B ; C ; D ; E ; F g . Except for
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the bitv ector-based approac h all the tec hniques considered will not visit an y no de

except the ro ot, b ecause there is no edge of the ro ot whose lab el corresp onds to

an y of the �rst 6 � 4 + 1 = 3 items in the transaction. On the con trary , the

bitv ector-based approac h uses the whole transaction and starts with a sup er
uous

tra v el that go es do wn ev en to depth 3. The indexv ector-based solution o v ercomes

this dra wbac k.

4.5.2 Can w e sp eed up binary searc h-based routing strategies?

The reasoning ab out the execution time of the linear and binary searc h brings up the

p ossibilit y of impro ving the p erformance of binary-searc h based routing strategies, i.e.

lookup edge and lookup trans . W e kno w that under a threshold the linear searc h is

faster, and ab o v e this threshold the binary searc h. The v alue of this threshold dep ends

on the pro cessor features (cac he sizes, prefetc hing mec hanism, length of the pip eline,

etc.), the w a y the binary searc h is co ded and the t yp e of the elemen ts. In our exp eri-

men tal en vironmen t (P en tium 4 2.8 Ghz pro cessor { family 15, mo del 2, stepping 9 {,

using std::lower bound for the binary searc h, the size of a list elemen t is 4 b ytes) the

threshold is around 14.

The pure binary searc h-based approac hes can b e sp eed up if it is substituted b y a

h ybrid solution whic h c ho oses b et w een linear and binary searc h according to the length

of the lists (length of t

0

in the case of lookup trans ).

In our implemen tation the threshold is set b y a template parameter. Notice that as

so on as a linear searc h is selected, then the threshold c hec k will prefer linear searc h in

the curren t no de and in the descendan ts as w ell. Therefore in our implemen tation w e

switc h to merge routing strategy to a v oid the threshold condition c hec k and impro v e

the e�ciency of branc h prediction. The larger the threshold the so oner w e switc h to

merge .

In the next �gure w e plotted our exp ectation of run-time in the function of the

threshold.

run-time

threshold

binary

merge

ideal

threshold

When the threshold is zero, then alw a ys binary searc h is emplo y ed, when it is more

than the n um b er of frequen t item then alw a ys linear searc h is used, whic h results practi-
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cally in the merge algorithm. The fastest solution is exp ected when the threshold equals

to the ideal threshold.

In realit y w e get a totally di�eren t c haracteristic, whic h applies in all databases.

This is plotted in the next �gure.

run-time

threshold

binary

merge

ideal

threshold

The run time decreases as the threshold increases ev en if w e cross the ideal threshold.

It seems that the so oner w e switc h to merge routing strategy the faster algorithm w e

get.

T o resolv e the con tradiction and understand the observ ation w e ha v e to examine the

c haracteristic of the data. The next t w o �gures sho w some distributions of the steps

b et w een t w o matc hes in the transaction. Zero step b elongs to the case when the �rst

item in the t

0

is the same as the lab el of the �rst edge. With database T10I5N1KP5KC0

the merge w as 2.5 times faster than look up trans whic h is not far from the t ypical

case. The smallest adv ance w as just 20% with database kosarak .
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Figure 4.9: distribution of distances b et w een consecutiv e matc hes

W e can see that the distribution is quite steep (notice the logarithmic scale). The

ideal threshold (14 in our en vironmen t) is equal to the 0.999989 and 0.645 quan tile

resp ectiv ely . This means that although the size of t

0

migh t b e long the distances b et w een

consecutiv e matc hes are quite small in most of the cases it is smaller than the adv an tage
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of a binary searc h comes in to pla y . Th us linear searc h ( merge ) is the fastest most of

the case and the extra condition c hec k just ruins the e�ciency of branc h prediction.

The larger threshold w e set the so oner w e switc h to merge and the few er unnecessary

conditions are ev aluated.

Also notice that the ratio of the n um b er of consecutiv e steps under 14 to the n um b er

of all matc hes has a strong correlation with the e�ciency of sp eed-up lookup trans .

The less this v alue the more e�cien t this routing strategy is.

Although in this section w e neither presen ted a new approac h neither sp eeded up the

existing routing strategies, w e b eliev e that this rationale sho ws a illuminating example

ho w deep w e ha v e to dig do wn to �nd the true reasons. T o understand the b eha vior of the

routing strategies and their b oundaries w e ha v e to consider (1.) theoretical p ossibilities,

(2.) hardw are friendliness and (3.) the sp ecialties/c haracteristics of the application

domain.

4.5.3 Routing strategies in the case of di�eren t edge represen-

tation

Next w e compared the \winner" (i.e. merge ) to the routing strategies that can b e

applied when o�setindex-v ector and h ybrid edge represen tation is used. In the case

of h ybrid edge represen tation (i.e. ordered list or o�setindex-based represen tation is

selected dep ending on the sizes, in other w ords, the no de represen tation is not unique

but c hanges dynamically) a h ybrid routing strategy is used: lookup edge if the curren t

no de uses o�setindex-v ector, merge otherwise. F or the sak e of memory compactness w e

used the upp ermost bit of the no des' coun ter to store the t yp e of represen tation of the

no des' edges.

The h ybrid solution almost alw a ys outp erformed the other t w o solutions concerning

b oth run-time and memory need. The o�setindex-v ector approac h p erformed quite

p o orly in most of the cases. This is attributed to its large memory need. The correlation

b et w een the memory need and run-time is quite apparen t, the solution is comp etitiv e

in run-time only when it is comp etitiv e in memory-need.

Some hardw are friendliness diagrams is giv en in Figure 4.11.

The h ybrid solution is more e�cien t than the ordered-list edge represen tation with

the merge routing. The adv an tage is not v ery signi�can t, the largest di�erence w as 62%

in run-time and 37% in memory-need.

In the rest of the exp erimen ts w e use h ybrid edge represen tation and h ybrid routing

strategy .
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Figure 4.10: Ratio of run-time and memory-need of ordered list-based Apriori compared

to h ybrid edge represen tation-based Apriori
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4.6 Determining the supp ort of 2-itemset candidates

Using a trie seems unnecessary and complicated when determining the supp ort of 2-

itemset candidates [50 ]. A simple arra y also do es the tric k. W e kno w that the elemen ts

of eac h candidate are frequen t items co ded b y 0,1,2. . . and ev ery pair that consists of

t w o frequen t items is a candidate.

The arra y stores the coun ters that are initialized to 0. Coun ter of itemset f i

1

; i

2

g (w e

can assume i

1

< i

2

) is at index i

1

; i

2

� i

1

� 1 of the arra y (i.e. w e us an upp er-triangle

arra y). Notice that theoretically this solution is the same as trie based solution where

o�set-index represen tation is used with o�set equal to 0. Arra y-based solution (also

called direct coun t), ho w ev er, spares the recursiv e step.

It is not necessary to allo cate a coun ter for eac h candidate. In online c andidate

gener ation [19 ] w e allo cate a coun ter only when the pair actually o ccurs in a transaction.

I databases, that con tains man y frequen t items and most 2-elemen t candidates do not

ev en o ccur, this solution reduces memory need signi�can tly . In this solution the ro ws

of the arra y are empt y at the b eginning and item i

2

with coun ter 1 is added to ro w i

1

when itemset f i

1

; i

2

g o ccurs in the �rst time. So the elemen ts of the arra y are actually

pairs. F or the sak e of quic k insertion the ro ws are sorted according to the items.

historical remark: Theoretically the same idea with some minor c hanges

w as rein v en ted b y W o on et al. [56]. First, they used a trie (called SOT rieT)

instead of an arra y . This is an unnecessary and o v er-complicated solution,

but most imp ortan tly it requires more memory , than a simple v ector of

v ectors. Second, the frequen t items and the frequen t pairs are found in the

same iteration. This a wkw ard solution also su�ers from a v ery bad memory

usage. All pairs that o ccur in a transaction require a coun ter ev en if they

con tain infrequen t items. F or these reasons w e use the v ector-based on-line

candidate generation metho d in our exp erimen ts.

A hash-based tec hnique DHP w as prop osed b y P ark et al. [40] in order to

reduce the n um b er of candidates in particular the n um b er of candidates

pairs. When determining the frequen t items an other coun ter v ector is also

main tained. Coun ter at index i b elong to the itempairs that has hash-v alue i .

During the �rst scan at eac h transaction t the hash-v alue of all subsets of t of

size t w o are calculated and the corresp onding coun ters are increased. After

the �rst scan, a candidate itempair is generated only if coun ter determined

b y the hash-function is greater than minsup .

The problem of this solution is the lac k of a univ ersal go o d hash function.

It is easy to �nd a go o d hash function if the c haracteristic of the transaction

database is kno wn, but this is not the case. F urthermore a hash-function that

w orks w ell at a database with a giv en supp ort threshold p erforms p o orly at
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the same database with an other supp ort threshold. W e b eliev e that the sore

sp ot (and actually the applicabilit y) of this tec hnique is the hash-function,

whic h w as nev er analyzed in the literature, i.e. no hash function w as pro-

p osed that w orks w ell at man y databases with man y supp ort threshold.

The next �gure sho ws ratio of run-time and memory-usage of the online and the

triangular arra y-based supp ort coun t metho d.
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Figure 4.12: Ratio of run-time decrease and memory-need increase of online and static

supp ort coun t of 2-itemsets

The disadv an tage of online supp ort coun t concerning run-time is signi�can t at high

supp ort thresholds, esp ecially when the size of the maximal frequen t sets is t w o. As

lo w ering the threshold the di�erence get insigni�can t when it is compared to the total

run-time.

4.7 Determining the supp ort of 3-itemset candidates

The arra y-based tec hnique can b e naturally generalized to candidates of size ` b y using

an ` -dimension arra y of size

�

j L

1

j

`

�

, where L

1

denotes the set of frequen t items . This

solution w as c hosen in the new est implemen tation of algorithm kDIC [38][44]. The

dra wbac k of the arra y-based solution is straigh tforw ard, i.e. it requires 4 �

�

j L

1

j

3

�

b ytes

of memory , whic h can b e quite large. F or example in the case of database retail with

supp ort threshold equal to 3 the L

1

is 12889, therefore the arra y requires 1332 Tb yte!

Actually in the case of 9 out of out 16 test databases (with minsup where our Apriori is

able to complete FIM task within reasonable time) the arra y needs more than 2Gb yte

of memory . This is not a safe solution.

Nev ertheless, the arra y-based solution for candidates of size three sp eeds up Apriori

in man y cases. A h ybrid solution that c ho oses arra y-based tec hnique if the n um b er

of frequen t items is small (let sa y smaller than 700) and trie-based solution otherwise,

seems to b e a go o d solution.
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Cha pt e r 5

Algorithm Eclat
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Cha pt e r 6

Algorithm FPgro wth
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Cha pt e r 7

T ec hniques for impro ving e�ciency

The base algorithms can b e greatly impro v ed b y algorithmic, data structure and im-

plemen tation related tec hniques. The literature is ric h in this topic. In this section w e

in v estigate the most imp ortan t tec hnique putting emphasize on the relationship b et w een

them.

7.1 Pruning equisupp ort extensions

The searc h space pruning based on equisupp ort itemsets is p erhaps the most widely

used sp eed-up tric k in the FIM �eld. Omitting equisupp ort extension means excluding

from the supp ort coun ting the prop er sup ersets of those ` -itemsets that ha v e the same

supp ort as one of their ( ` � 1)-subsets. This comes from the follo wing simple prop ert y .

Prop ert y 7.1.1 L et X � Y � I . If sup( X ) = sup ( Y ) , then sup ( Y [ Z ) = sup ( X [ Z )

for any Z � I .

This prop ert y holds for all Z � I , nev ertheless w e restrict our atten tion to itemsets

Z � I n Y .

The connection b et w een the equisupp ort pruning and closed itemset mining is ob-

vious. Itemset X is a non-closed set, with closure Y , if there exists no prop er sup erset

of Y with supp ort equal to sup ( Y ). An itemset X can b e an an teceden t of an exact

asso ciation rule (rule with con�dence 100%) if and only if it is a non-closed itemset.

Itemset X is called a k ey pattern [5] if there exist no prop er subset of X with the

same supp ort.

If candidate Y has the same supp ort as its pre�x X , then it is not necessary to

generate an y sup erset Y [ Z of Y as a new candidate. Based on the ab o v e prop ert y its

supp ort can b e calculated directly from its subset X [ Z [19].
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The supp ort of the pre�x is alw a ys a v ailable at b ottom-up FIM algorithms, th us

pr e�x e quisupp ort pruning (i.e. X is the pre�x of Y , suc h that j X j + 1 = j Y j ) can

b e applied at an y time. The tec hnique w orks the follo wing w a y . After determining

the supp ort of a c hildren of itemset P , w e c hec k at the infrequen t remo v al phase if

their supp ort are equal to sup ( P ). Children with suc h supp orts are not considered as

generators in later phases and the extending items that b elong to them are stored in

a set (called e quisupp ort set ) and asso ciated with itemset P . Notice, that due to the

non-redundan t tra v ersal of the itemset lattice Y n X � z for all z 2 Z where � denotes

the order used to de�ne the pre�x.

When writing out a frequen t itemset I , w e also output the union of I with itemset

E

0

for all E

0

� E , where E is the union of all equisupp ort sets for the pre�xes of I .

Example 7.1.2 L et us assume that the fol lowing itemsets of size two with pr e�x A ar e

found to b e fr e quent AB ; AC ; AD and sup( A ) = sup( AB ) = sup ( AC ) = 4 ; sup( AD ) = 3 .

Only itemset AD is c onsider e d as gener ator for further c andidates with pr e�x A . A t le ast

two itemsets ar e ne e de d to gener ate a c andidate in Apriori, Eclat and FP-gr owth, thus

pr o c essing pr e�x A terminates. When writing out itemsets AD and A we also app end

al l subsets of B C to them, thus we write itemsets AD ; AB D ; AC D ; AB C D with supp ort

3, and A; AB ; AC ; AB C with supp ort 4.

If the database con tains only closed sets, then equisupp ort pruning is nev er used and

the large n um b er of supp ort equiv alence c hec ks just slo ws do wn the algorithm. Exp er-

imen ts, ho w ev er, sho w that in all algorithms the equisupp ort c hec k can b e p erformed

quite fast (for example in the case of Apriori it requires no tra v ersal in the trie) and re-

sults no cac he misses. Ev en at databases that con tain insigni�can t n um b er of non-closed

sets the run-time increase is absolutely insigni�can t.

7.2 Impro v emen ts used in Apriori

Before w e turn to our metho ds that sp eed up algorithm Apriori, w e ha v e to �nd what

is w orth impro ving, i.e. what tak es signi�can t time of the running. W e ha v e already

men tioned that in the b eginning of the FIM researc h the e�orts w ere fo cused on reducing

I/O costs and later reducing the n um b er of candidates. No w, w e kno w that these t w o

factors are not so imp ortan t, but rather the data structure and its usage, the memory

managemen t, and the lev el the implemen tation suits the arc hitecture of the mo dern

pro cessors are the issues that really matter.

The follo wing table sho ws the distribution of pro cessor time usage b et w een the main

functions of Apriori. W e measured the three main functions of Apriori (generating can-

didates, determining the supp orts and deleting infrequen t candidates), the time required

for reading in, sorting and reco ding (remo ving infrequen t items and assign 0,1,. . . v alues

to the frequen t items) the transactions and determining the supp ort of the t w o elemen t
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candidates. Metho ds that required less than half p ercen t of the run-time are indicated

b y blank en tries. F or the sak e of readabilit y n um b ers ab o v e 25 are rounded. T o see

the correlation b et w een the ratio of the metho ds and the c haracteristics of the database

and searc h space, w e also pro vide some statistics ab out the data sets and the frequen t

itemsets (see T ables 7.2 and 7.3 ). In these tests w e ha v e used a highly optimized Apri-

ori implemen tation, whic h is based on an inhomogeneous trie using our sp ecial blo c k

allo cator, dead-end branc h remo v al, a triangular arra y-based solution to �nd e�cien tly

frequen t pairs, and a sophisticated depth-�rst, bu�ered input/output manager p erform-

ing the input/output routines.

database minsup

coun ting

sup-

p ort

generating

candi-

date

input

sort

reco de

infrequen t

remo v al

frequen t

pair

mining

T40I10D100K 3 000 14 53 31 : 0

k osarak 7 000 21 69 1 : 9

T10I4D100K 150 68 24 4 : 1

connect 65 000 73 25 1 : 4

acciden ts 210 000 77 21 1 : 4

pumsb 41 000 97 2 : 6

retail 65 64 22 10 : 6

BMS-POS 5 000 38 56 3 : 8

BMS-W ebView-1 39 67 9 : 1 21 0 : 7

BMS-W ebView-2 30 56 14 : 0 23 : 3 0 : 5 2 : 7

w eb do cs 700 000 1 93

m ushro om 1600 95 1 : 3 3

T10I5N1KP5K C0 500 8 67 22 : 0

T20I10N1KP5K C0 2 000 76 17 : 8

T30I15N1KP5K C0 1 300 25 73 : 0

pumsb* 23 000 56 41 2 : 5

high supp ort threshold

T40I10D100K 220 90 6 : 5 0 : 6 0 : 6

k osarak 860 94 2 : 0 2 : 0

T10I4D100K 3 33 63 0 : 7 1 : 0

connect 43 100 96 3 : 1 0 : 5

acciden ts 100 500 98 1 : 4

pumsb 32 600 96 1 : 6 1 : 9

retail 3 29 63 1 : 3 1 : 8 0 : 7

BMS-POS 67 84 13 0 : 8 0 : 5

BMS-W ebView-1 33 44 54 0 : 7

BMS-W ebView-2 4 12 83 1 : 4

w eb do cs 200 000 77 21 : 0 1 : 3

m ushro om 250 86 12 : 5

T10I5N1KP5K C0 4 53 39 1 : 8 0 : 7 0 : 8

T20I10N1KP5K C0 90 84 13 : 0 1 : 7 0 : 6

T30I15N1KP5K C0 300 84 12 : 2 1 : 6 0 : 8

pumsb* 13 000 99 0 : 5

lo w supp ort threshold

T able 7.1: The distribution of run-time of Apriori's metho ds in %

The data sho w that Apriori is so fast at high supp ort thresholds, that its op era-

tion require less time than pro cessing the input. Th us w e concen trate on lo w supp ort

thresholds.
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database

n um b er of

transactions

n um b er of

items

a v erage size

of the trans-

actions

m ushro om 8 124 119 23.0

pumsb* 49 046 2 088 50.4

pumsb 49 046 2 113 74.0

BMS-W ebView-1 59 602 497 2.5

connect 67 557 129 43.0

BMS-W ebView-2 77 512 3 340 4.6

retail 88 162 16 470 10.3

T10I4D100K 100 000 870 10.1

T40I10D100K 100 000 942 39.6

T10I5N1KP5K C0 193 373 3 950 10.3

T20I10N1KP5K C0 197 440 4 408 20.2

T30I15N1KP5K C0 199 095 4 599 30.0

acciden ts 340 183 468 33.8

BMS-POS 515 597 1 657 6.5

k osarak 990 002 41 270 8.1

w eb do cs 1 692 082 5 267 656 177.2

T able 7.2: Some statistics ab out the databases

The tables supp ort the widely-kno wn observ ation, that determining the supp ort of

the candidates tak es most of the time of Apriori. This is, ho w ev er, not alw a ys true. In

mining tasks where the n um b er of frequen t itemsets is high (databases BMS-WebView-1 ,

BMS-WebView-2 , retail ) but the size of the dataset is medium with mo dest a v erage

transaction sizes ( T10I5N1KP5KC0 , T10I4D100K ) the candidate generation con tributes

signi�can tly to the run-time. Consequen tly , w e �rst fo cus on the supp ort coun t pro ce-

dure and then turn to sp eed up the candidate generation metho d.

The distribution c hanges b y emplo ying certain heuristics, and then other parts ma y

b ecome the b ottlenec k of the algorithm. F or example if equisupp ort pruning is applied

(see section 7.2.4 ) then it b ecomes p ossible to pro cess dense databases at m uc h lo w er

supp ort threshold, and subset en umeration and output writing dominates the run-time.

Nev ertheless, w e regard these issues of more adv anced nature. W e b eliev e that our

data giv es go o d indicators ab out the b ottlenec k of Apriori and p ossible targets for

impro v emen t.

W e see three principal w a ys to reduce the run-time of supp ort coun ting.

1. W e �ne-tune and optimize the elemen tary op eration of supp ort coun ting, i.e. �nd-

ing the candidates that are con tained in a giv en transaction.

2. W e reduce the n um b er of supp ort coun t metho d calls.

3. W e mak e use of the fact that some op erations are done rep eatedly (for example

tra v ersing the same part of the tree sev eral times) at di�eren t steps of the supp ort

coun t phase, and b y merging these supp ort coun ts w e ma y spare some redundan t

w ork.
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database minsup

n um b er

of fre-

quen t

items

n um b er

of fre-

quen t

item-

pairs

n um b er

of fre-

quen t

item-

sets

size

of the

maximal

frequen t

itemset

a v erage

size

of the

fre-

quen t

item-

sets

a v erage

size of

the �l-

tered

trans-

ac-

tions

w eb do cs 700 000 8 14 34 4 2.0

T20I10N1KP5K C0 2 000 472 0 473 1 0.99 6.9

k osarak 7 000 93 249 772 6 2.6 3.3

T40I10D100K 3 000 486 307 794 2 1.38 33.5

connect 65 000 15 72 916 7 4.2 14.8

pumsb* 23 000 34 126 1165 8 4.0 20.6

BMS-POS 5 000 145 408 1171 5 2.5 5.3

T10I5N1KP5K C0 500 1494 90 1655 6 1.1 7.7

acciden ts 210 000 21 125 1685 8 4.17 17.0

T30I15N1KP5K C0 1 300 1667 3 1671 2 1.0 21.9

retail 65 2895 4958 11684 6 2.1 8.2

T10I4D100K 150 767 5549 19127 10 3.39 10.0

pumsb 41 000 25 249 36811 11 5.8 23.5

m ushro om 1 600 43 380 53952 15 7.1 19.2

BMS-W ebView-1 39 363 3802 69370 12 4.8 2.5

BMS-W ebView-2 30 2122 6052 194262 15 6.5 4.4

high supp ort threshold

w eb do cs 200 000 195 1 596 58 297 10 5.0

acciden ts 100500 32 408 160 874 12 6.7 22.1

pumsb* 13 000 63 900 1 293 829 17 8.8 31.8

T10I5N1KP5K C0 4 3 924 49 0812 1 600 477 14 3.7 10.3

k osarak 860 1 437 11 460 3 578 574 19 8.36 6.0

pumsb 32 600 36 536 6 061 656 20 10.0 31.6

T10I4D100K 3 869 220 988 6 169 854 14 4.43 10.1

m ushro om 250 82 1 684 9 944 484 17 8.9 22.6

T40I10D100K 220 901 104 161 10 174 500 20 8.48 39.6

connect 43 100 34 483 11 809 442 19 10.1 30.6

T30I15N1KP5K C0 360 3 489 13 037 15 747 841 20 9.7 29.0

BMS-POS 67 884 37 377 16 037 252 13 6.4 6.5

T20I10N1KP5K C0 90 4 021 86 776 16 964 579 20 8.3 20.1

retail 3 12 889 433 297 20 647 332 20 7.9 10.2

BMS-W ebView-2 4 3 185 106 070 60 193 074 23 9.8 4.6

BMS-W ebView-1 33 372 5 844 69 417 074 25 11.5 2.5

lo w supp ort threshold

T able 7.3: Some statistics ab out the frequen t itemsets
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First w e in v estigate �ne-tuning of the supp ort coun t pro cedure b y in tro ducing a

sp ecial data structure, optimizing the routing strategies and applying de ad-end pruning .

Then w e turn to a tec hnique that signi�can tly reduces the n um b er of supp ort coun t

calls at man y databases. Finally , w e consider databases with man y closed itemsets and

presen t e quisupp ort pruning .

7.2.1 Cac hing the transactions

I/O and string to in teger parsing costs are reduced if the transactions are stored in the

main memory instead of disk. It is useless to store the same transactions m ultiple times.

It is b etter to store them once and emplo y coun ters represen ting the m ultiplicities. This

w a y , memory is sa v ed and run-time ma y b e signi�can tly decreased. This tec hnique is

used in FP-gro wth and can b e used in APRIORI as w ell.

The adv an tage of this idea is the reduced n um b er of supp ort coun t metho d calls.

If a transaction o ccurs n times, then the exp ensiv e pro cedure is called just once (with

coun ter incremen t n ) instead of n times (with coun ter incremen t 1). Th us the n um b er

of calls to the most exp ensiv e metho d ma y b e considerably reduced. Unfortunately , the

data structure needs memory , and its build-up (i.e. collecting the same transactions)

requires pro cessor time.

W e refer to the data structure that stores the transactions together with the m ul-

tiplicities as transaction cac her . The transactions are cac hed after the �rst scan, so

that infrequen t items can b e remo v ed from the transactions. Di�eren t data structures

can b e used as transaction cac hers. W e ha v e three requiremen ts:

1. inserting an itemset has to b e fast,

2. the data structure has to b e memory-e�cien t,

3. listing the transactions and the m ultiplicities has to b e fast.

A simple solution is an ordered v ector, eac h elemen t stores an itemset and its m ul-

tiplicit y coun ter. Inserting a transaction b ecomes slo w as the n um b er of transactions

b ecomes large. A b etter solution is a v ector of ordered v ectors where the j

th

v ector

stores transactions of size j . W e refer to this solution as order-arra y based cac her.

The most famous Apriori implemen tation [11] uses trie and in our previous imple-

men tation w e ha v e used a red-blac k tree (denoted b y RB-tree). In an RB-tree cac her

eac h no de stores a transaction. Due to the success of P atricia-trees in FP-gro wth based

algorithms [43] w e also tested this solution.

The exp erimen ts pro v ed our exp ectation, that ordered-v ector and v ector of ordered-

v ector solutions are not comp etitiv e with tree based solutions (the table do es not ev en

include the order v ector-based solution, since its run-time exceeded the acceptable run-

time threshold most of the cases). T ries sligh tly outp erforms RB-trees concerning run-

time, but their memory need is m uc h larger, ev en larger than the memory need of
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database minsup ordered-arra y RB-tree trie patricia

k osarak

48 000 1.74 0.93 0.83 0.84

840 212.8 2.79 2.26 1.68

acciden ts

3.96 3.49 1.13 0.90 0.8

100 500 94.4 1.88 1.48 1.23

BMS-POS

5 000 126.09 1.40 0.89 0.65

67 153.28 1.55 1.10 0.72

w eb do cs

700 000 27.05 25.92 25.08 24.98

200 000 1030.25 38.05 45.20 31.89

run-times

database minsup ordered-arra y RB-tree trie patricia

k osarak

48 000 0.69 0.69 0.65 1.93

840 28.02 32.16 72.55 19.92

acciden ts

210 000 2.91 2.73 1.45 1.91

100 500 21.68 19.15 13.00 9.2

BMS-POS

5 000 15.09 17.86 24.84 10.60

67 23.31 22.87 38.21 13.12

w eb do cs

700 000 48.66 48.66

200 000 278.10 280.98 934.01 264.84

memory need

T able 7.4: T ransaction cac hing with di�eren t data structures
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order-arra y solutions. T rie is said to b e an e�cien t data structure in compressing data

sets b ecause it stores the same pre�xes once instead of the n um b er of times it app ears

(whic h is the case with ordered-arra ys and RB-trees). Exp erimen ts, ho w ev er, do not

supp ort the statemen t ab out compression e�ciency .

The reason for this comes from the fact that a trie has m uc h more no des { therefore

m uc h more edges { than an RB-tree has (except for one bit p er no de, RB-trees need the

same amoun t of memory as simple binary trees). In a trie eac h no de stores a coun ter

and a list of edges. F or eac h edge w e ha v e to store the lab el and the iden ti�er of the

no de the edge p oin ts to. Th us adding a no de to a trie increases memory need b y at

least 5 � 4 b ytes (if items and p oin ters are stored in 4 b ytes). In a binary tree, lik e an

RB-tree, the n um b er of no des equals to the n um b er of transactions. Eac h no de stores a

transaction and its coun ter.

When inserting the �rst ` -itemset transaction in a trie, ` no des are created. Ho w ev er

in an RB-tree w e create only one no de. Although the same pre�xes are stored only once

in a trie, this do es not reduce the memory di�erence so m uc h. This is the reason for the

empirical fact w e observ ed, that a binary tree consumes 3-10 times less memory than a

trie do es.

A P atricia tree o v ercomes the defect of a trie that stems from the ine�cien t storage

of single paths. It substitutes a single path with one link with a lab el equal to the set

of lab els that are on the path. This spares man y p oin ters but more imp ortan tly , the

memory need caused b y the o v erhead of a list is greatly reduced. Th us P atricia trees

k eep the adv an tage of trie-based solution without su�ering from large memory need.

In this section w e a v oid discussing the run-time and memory need e�ect of the

ordering used to con v ert itemsets to sequences. An in-depth analysis is pro vided in

section 7.3.

After �nding the b est data structure for a transaction cac her, w e in v estigated if

transaction cac hing really sp eeds up Apriori. In these exp erimen ts (see some results in

Figure 7.1) w e ha v e used a P atricia-tree as a transaction cac her.
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Figure 7.1: Cac hing the transactions
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Some hardw are friendliness diagrams are giv en in Figure 7.2.
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Figure 7.2: Hardw are friendliness diagrams of Aprioris with and without transaction

cac hing

Exp erimen ts sho w, that transaction cac hing is a great sp eed-up tec hnique, it some-

times (in the case of connect , pumsb ) decreases run-time b y sev eral orders of magni-

tude, sometimes the run-time \just" drops to its fraction ( accidents , BMS-WebView-1 ,

T20I10N1KP5KC0.25D200K , pumsb* ). Due to the fast tree-based solution, this tec hnique

is regarded run-time safe, i.e. ev en at databases where the n um b er of supp ort coun t

metho d calls do not decrease signi�can tly , building up the cac her do es not reduce o v er-

all run-time. Building-up the cac her nev er tak es signi�can t time compared to frequen t

itemset mining (the largest run-time increase w as 10% and 5% at databases retail and

BMS-WebView-2 resp ectiv ely) at lo w supp ort thresholds.

This tec hnique is ob viously not memory safe. The cac her ma y need a lot of memory ,

ev en more than the memory needed b y the candidates. With most of the databases

the memory increase w as not to o large and w e found no databases where the increased

memory assumption resulted in sw apping. In the remaining exp erimen ts w e will turn

transaction cac hing on.

7.2.2 Supp ort coun t of Christian Borgelt

When the transactions are stored in a trie or in a P atricia tree then an other supp ort

coun t tec hnique can b e applied. This clev er idea w as already men tioned in [11] and w as

sk etc hed in [9 ]. This tec hnique is used in the recen t v ersions of Borglet's famous Apriori

implemen tation.

The observ ation b ehind the idea is that t w o transactions result in the same program


o w till the common elemen t, i.e. till the common pre�x. Storing the transactions in a

trie giv es the necessary information ab out the common pre�xes. It is p ossible to pro cess

the same pre�xes only once instead of the n um b er of times it app ears. The coun ter of

itemset I in the transaction trie stores the n um b er of transaction whose pre�x is itemset
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I . In this resp ect this solution di�ers from the one used in transaction cac hing (and

rather it resem bles to an FP-tree that is depriv ed of cross-links.) Another di�erence is

that the ordering used in the transaction trie m ust corresp ond to the ordering used in

the candidate trie. In section 7.3 w e will see, that this is a dra wbac k since the t w o tries

prefer di�eren t orderings.

Unfortunately , the algorithm is not detailed in [9], but w e b eliev e it w orks as follo ws.

W e sim ultaneously tra v erse the candidate trie and the transaction trie in a double re-

cursiv e manner. W e main tain t w o no de p oin ters resp ectiv ely that are initialized to the

ro ots. W e go through on the edges of b oth no de. If the lab el b elong to the transaction

trie is smaller or equal than the other lab el, then the recursion is con tin ued on the c hild

of the giv en transaction no de, and with the same candidate no de. If the t w o lab els are

equal, then the recursion is con tin ued with the p oin ted c hildren. A sligh tly optimized

v ersion is found in Algorithm 3.

Algorithm 3 BOR GEL T SUPPCOUNT

Require: n

c

: a no de of the candidate trie,

n

t

: a no de of the transaction trie,

` : n um b er of step from n

c

that needs to b e done to reac h a leaf,

i :, the smallest index of the edge of n

c

that is larger than the lab el of edge that led

to n

t

.

if ` = 0 then

n

c

:counter  n

c

:counter + n

t

:counter

else

for j = 0 to n

t

: edge n um b er � 1 do

while i < n

c

: edge n um b er AND n

c

:edg e [ i ].lab el < n

t

:edg e [ j ].lab el do

i  i + 1

end while

if i < n

c

.edge n um b er AND n

c

:edg e [ i ].lab el � n

t

:edg e [ j ].lab el then

BOR GEL T SUPPCOUNT( n

c

, n

t

:edg e [ j ].c hild, ` , i )

if n

c

:edg e [ i ].lab el = n

t

:edg e [ j ].lab el then

BOR GEL T SUPPCOUNT( n

c

:edg e [ i ].c hild, n

t

:edg e [ j ].c hild, ` � 1, 0)

i  i + 1

end if

else

break

end if

end for

end if

The solution ab o v e su�ers from the disadv an tage of man y redundan t tra v ersal in

the transaction trie. It do es not tak e in to consideration the fact that only a part of a
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transaction needs to b e ev aluated. T o o v ercome this problem w e can emplo y a coun ter

for eac h no de n

t

of the transaction trie that stores the length of the longest path that

starts from no de n

t

. During the supp ort coun t w e do not pro ceed the recursion on a

no de whose coun ter is less than ` � 1. Sev eral other optimizations can b e applied that is

based on remo ving un visited or unimp ortan t paths from the transaction trie. F or more

details the reader is referred to [9].

7.2.3 Filtering unimp ortan t items from the transactions

Filtering unimp ortan t items from the transactions means remo ving those items from

eac h transaction that do not pla y role in determining the supp ort of the candidates.

Ob viously as the algorithm pro ceeds more and more items can b e �ltered from the

transactions. W e ha v e already men tioned a v ery simple �ltering, i.e. after the �rst scan

w e remo v e infrequen t items from the transactions. A similarly simple �ltering is when

w e delete the transactions of size smaller than ` at iteration ` .

F urther �ltering can b e applied. T o illustrate this imagine that the candidates of

size t w o are AB , AC , B C and D E and transaction AB C D is pro cessed. Item D is not

con tained in candidates of size 2 that are con tained in the transaction, therefore it can b e

deleted from the transaction. In general an elemen t of the transaction can b e remo v ed

at iteration ` if it is not con tained in an y candidate that o ccurs in the transaction [9].

A more sophisticated solution w as prop osed b y P ark et al. [40]. It is based on the

fact that for a candidate I of size ` + 1 to o ccur in a transaction eac h elemen t of I m ust

b e con tained in at least ` candidates of size ` that o ccur in the transaction. This is

a necessary condition, therefore an item in the transaction can b e trimmed if it do es

not app ear in at least ` of the candidates in the transaction. F or example transaction

AC D E is deleted if the candidates are the same as used in our previous example. Notice

that the previous simple �ltering do es not remo v e an y elemen t from the transaction.

This tec hnique often results in a large n um b er of item erase, ho w ev er, to ev aluate its

e�ciency w e ha v e to tak e in to consideration the o v erhead of remo ving an item from the

transaction, whic h dep ends on the w a y the transactions are handled. There are di�eren t

solutions in the literature.

Algorithm DCI [36] pro cesses and �lters eac h transaction one-b y-one and writes

them out to the disk, i.e. the database is reduced progressiv ely . It uses optimized I/O

op erations for the e�cien t disk usage. If w e emplo y an ordered v ector, ordered arra y

or a binary tree as a transaction cac her, then remo ving an item from a transaction can

b e replaced b y remo ving the original transaction and inserting the �ltered transaction.

These transaction cac her, ho w ev er, are not comp etitiv e with red-blac k tree, trie or pa-

tricia tree based solutions. Unfortunately , remo ving an item from a stored transaction

is not an easy task in the case of trie and patricia tree, and it is a slo w op eration in the

case of red-blac k tree (deletion ma y need the exp ensiv e rotation op eration).

This dra wbac k w as also observ ed in [9] where the follo wing heuristics w ere prop osed.
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Rebuild the transaction cac her if the �ltering result in a signi�can t no de decrease, oth-

erwise use the original transaction cac her. The threshold of rebuild w as determined

exp erimen tally .

7.2.4 Equisupp ort pruning

W e ha v e seen that pre�x equisupp ort pruning can b e applied in all b ottom-up FIM

algorithms, where candidates are generated on the basis of pre�xes. F rom a Apriori's

trie p oin t-of-view, eac h no de has to b e extended with a list that stores equisupp ort items.

In the infrequen t candidate remo v al phase w e c hec k if a leaf has the same supp ort as

its pre�x generator. If it has, then the leaf is purged from the trie and the lab el of the

link is added to the paren t's equisupp ort set. Eac h item i in an equisupp ort set can b e

regarded as a lo op edge with lab el i . Lo op edges are not considered in supp ort coun t,

but m ust b e considered in the complete pruning step of candidate generation.

Example 7.2.1 L et itemsets AB ; AC ; B C b e the only fr e quent p airs, sup ( AB ) 6= sup ( A ) 6=

sup ( AC ) and sup ( B ) = sup ( B C ) = sup ( B D ) . Figur e 7.3 shows the trie obtaine d after

infr e quent c andidates r emoval phase. Notic e that if lo op e dges wer e not c onsider e d in

the pr evious step of the c andidate gener ation, then itemset AB C would not b e gener ate d

as a c andidate even though al l its subsets ar e fr e quent.

A

B

C

B C,D

Figure 7.3: Example: remo ving equisupp ort lea v es

This example dra ws atten tion to the connection b et w een equisupp ort pruning and

dead-end branc h remo v al. W e see that no de B do es not lead to a leaf at depth 2

therefore dead-end branc h remo v al w ould erase this no de, and itemset AB C w ould not

b e generated. The depth of a no de for dead-end branc h remo v al m ust b e rede�ned so

that it do es not purge lea v es that ma y b e needed for a prop er complete pruning. W e

ha v e to see, that an itemset obtained b y taking the union of a leaf X and an y item that

is in the equisupp ort set of some pre�x of X has the same supp ort as X . Th us when

considering the depths of no de X during dead-end branc h remo v al, w e ha v e to add to
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the actual depth of X the size of the equisupp ort sets that are on the path from the

ro ot to X . F or example the depth of no de B in Figure 7.3 is 3 instead of one.

The astute reader ma y notice that edge that p oin ts to no de B from the ro ot is

considered in supp ort coun t, ho w ev er it do es not lead to an y candidate. W e ha v e

seen the run-time impact on the supp ort coun t metho d of ignoring suc h no des when w e

analyzed dead-end pruning (see section 4.4). If they cannot b e pruned (so that complete

pruning can b e applied), then they should b e distinguished. Edges that are on a path to

a candidate should b e t yp e one (let us call them normal edges), while the rest including

the equisupp ort lo ops should b e of t yp e t w o (denoted b y dashed edges). Suc h \colored

trie" is depicted in Figure 7.4 . The frequen t pairs are AB , AC , AD , B C , B D , C D , C E

and sup ( A ) = sup( AD ), sup ( B ) = sup ( B D ), sup ( C ) = sup ( C D ). The upp er trie stores

the frequen t t w o itemsets. Belo w, on the left a trie is depicted, whic h is obtained after

candidate generation if equisupp ort pruning and coloring is used. The trie on the righ t

is generated if no equisupp ort pruning is used.

A

B

C

B

C

D

C

D

D

E

A

B

C

C

C

D

C

D

E

D

C

A

B

C

B

C

C D

C

D

D D E

Figure 7.4: Example: distinguishing dead-end edges when equisupp ort pruning is ap-

plied

Notice that when determining whic h candidates are con tained in transaction h AB C D E F GH i ,

only four no des are visited in the colored trie, nine in the original equisupp ort and 13

in the non-equisupp ort case.

Although distinguishing the edges seems to b e a go o d practice, it also has some dra w-

bac ks. Eac h no de stores t w o lists of edges, that means double o v erhead. In databases

that do not con tain non-closed itemsets, the second t yp e of edges are nev er used. W e

ha v e seen (in section 4.2) that increasing the size of the trie no des deteriorates run-time
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and memory need. With an other solution w e ma y get rid of large part of the o v er-

head. Instead of this tec hnique, here w e prop ose a di�eren t solution that w e call lev el

2 equisupp ort pruning .

7.2.5 Lev el 2 equisupp ort pruning

It seems con tradictory to restrict our equisupp ort pruning to pre�xes in the case of

Apriori since all subsets together with the supp orts are a v ailable and the equisupp ort

Prop ert y 7.1.1 (see page 47 ) is ful�lled for ev ery subset. T o understand wh y w e can not

apply a general equisupp ort pruning w e ha v e to understand, that

� complete pruning do es not allo w simple remo ving of equisupp ort lea v es. A lo op

edge can b e regarded as a classic edge that leads to a no de that is fairly similar to

its paren t. It is lik e cop ying an iden tical subtree of a c hild to the no de itself. Th us

a no de with man y self lo ops is a compact represen tation of a whole imaginary

subtrie, whic h is tra v ersed during the complete pruning.

� for e�cien t supp ort coun ting and candidate generation the trie has to store ordered

sequences, i.e. the lab els on all paths that start from the ro ot and lead to a leaf

ha v e to b e ordered. In other w ords when an inclusion of an itemset X is c hec k ed w e

start from the ro ot and c hec k if there exist a link with lab el equal to the smallest

elemen t of X . If there exists w e follo w the link, and then c hec k the second smallest

elemen t, etc.

Based on a non-pre�x subset equiv alence, remo ving a leaf and adding a lo op link,

ho w ev er, ma y in v alidate the second assumption. Let us consider the example, where

F

2

= f AB ; AC ; B C ; B D ; C D g and sup ( B C ) = sup ( C ). Since leaf B C has same supp ort

as its subset, it can b e remo v ed, and a lo op edge with lab el B has to b e added to no de

C . This is seen in Figure 7.5.

A

B

C

B

C

D D

B

Figure 7.5: Example: nonpre�x equisupp ort pruning ruins ordering

The trie obtained b y a nonpre�x equisupp ort pruning do es not meet the ordering

requiremen t. No de B C cannot b e reac hed from the ro ot, b y �rst c hec king item B and
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then C . Therefore, itemset AB C is not generated as a candidate b ecause its subset B C

can not b e v eri�ed.

F ortunately , there exists a set of subsets that allo ws a second t yp e of equisupp ort

tec hnique, b ecause it do es not in v alidate the ordering.

Here w e prop ose a new equisupp ort pruning tec hnique, whic h meets the ordering re-

quiremen t of the trie, th us it can b e applied. It can b e used only if the pre�x equisupp ort

pruning is used as w ell.

Prop ert y 7.2.2 L et Y b e the pr e�x of itemset Y [ z , wher e j z j = 1 . If ther e exists a

subset X of Y such that j X j + 1 = j Y j and sup ( X [ z ) = sup ( X ) , then sup ( Y [ z ) =

sup ( Y ) .

The ab o v e prop ert y is a sp ecial case of the general equisupp ort pruning prop ert y . W e

emphasized on the purp ose to b etter illustrate whic h itemsets pla y role in this pruning

tec hnique. T o use the pruning, it requires that w e kno w the equisupp ort sets of all

subsets. This information is only a v ailable in Apriori.

This sp ecial equisupp ort pruning can b e easily adapted in the candidate generation

phase. The second step of the candidate generation is c hec king all ` -subsets if they are

frequen t. These are reac hed b y the ( ` � 1)-elemen t pre�xes of them. W e can add an

extra c hec k to apply the equisupp ort pruning. If the largest item of the candidate is

in the equisupp ort set of a subset of the pre�x, then the candidate is pruned and this

largest item is placed in its generator's equisupp ort set.

Example 7.2.3 The set of fr e quent two itemsets ar e f AB ; AC ; AD ; B C ; B D g and the

only e quisupp ort is sup( B C ) = sup( C ) . We do not gener ate AB C as a c andidate b e c ause

it has a 2-element subset that c ontains C in the e quisupp ort set of its pr e�x. Figur e

7.6 depicts the trie b efor e and after the c andidate gener ation. Ple ase ke ep in mind, that

de ad-end br anch pruning (with the virtual depth mo di�c ation) is applies during c andidate

gener ation.

The example also sho ws that this tec hnique ma y also reduce the n um b er of itera-

tions of Apriori. Consider the ab o v e example except that itemset B D is not frequen t.

Three iterations are needed in non-equisupp ort case b ecause AB C w ould b e a candi-

date. Equisupp ort pruning, ho w ev er, prev en ts us from generating AB C as a candidate,

and terminates Apriori after the second iteration.

7.2.6 Lev el 2 equisupp ort pruning and further dead-end prun-

ing

F urther pruning can b e applied if lev el 2 equisupp ort pruning is used. This is based on

the follo wing lemma.
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A

B

B

C

D

D

C

A

B

D

C

Figure 7.6: Example: sp ecial pre�x equisupp ort pruning

Lemma 7.2.4 In the c andidate gener ation phase when che cking al l subsets of an ( ` + 1) -

itemset, no e quisupp ort sets of no des at depth d for al l d < ` � 1 ne e d to b e c onsider e d,

if level 2 e quisupp ort pruning is use d.

Pr oof: W e pro v e this statemen t b y con tradiction. Let us assume the pre�x of the

candidate is denoted b y P and item i

j

of subset Q = f i

1

; i

2

; : : : ; i

j

; : : : i

`

g , is in the

equisupp ort set of itemset P

Q

= f i

1

; i

2

; : : : ; i

j � 1

g . W e claim that itemset Q

0

= P

Q

[ ( P n

Q ) could not ha v e b een generated as a candidate at iteration j . If i

j

� P n Q , then the

pre�x equisupp ort c hec k prunes Q

0

(b ecause it prev en ts extending P

Q

), otherwise the

lev el 2 pruning do es this w ork, b ecause the largest item of Q

0

is in the equisupp ort set

of its subset P

Q

. �

T able 7.5 illustrates the rationale of the pro of ( P = f AB C D g ). The table con tains

the subset of P that is not generated as a candidate, if the items corresp onding to the

indices of the ro w and column, are i

j

and Q resp ectiv ely . F or example item B cannot

b e in the equisupp ort set of itemset A b ecause it con tradicts to the fact that AB C w as

a candidate. Also, if item C is in the equisupp ort list of itemset B , then equisupp ort

pruning in candidate generation prev en ts generating itemset AB C as a candidate. In

general, the existence of itemsets ab o v e the diagonal as a candidate con tradicts to pre�x

equisupp ort pruning, while under the diagonal the itemset con tradicts to equisupp ort

pruning in the candidate generation phase.

Lemma 7.2.4 allo ws us to (1.) simplify the co de (equisupp ort sets need to b e con-

sidered only at lev el ` � 1) and (2.) remo v e some dead-end branc hes. No des at depth

` � 1 with no c hildren can b e remo v ed after the candidate generation, ev en if their

equisupp ort sets are not empt y . This pruning do es not require an y extra mo v emen t in

the trie. The preorder tra v ersal of the trie ensures that an y ` -itemset can b e a subset

of an ( ` + 1)-itemset that is generated b y the preceding no des. This corresp onds to the

prop ert y 4.4.1 (see page 31) used in dead-end pruning. W e call lev el 2 pruning together
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P n Q Q

i

j

A B C D

ABC D AD ABD ABCD {

ABD C A C ABC { ABCD

A CD B AB { ABC ABCD

BCD A { AB ABC ABCD

T able 7.5: Illustration of the pro of of Lemma 7.2.4

with dead-end pruning presen ted in this section as level 3 e quisupp ort pruning .

Example 7.2.5 The Figur e 7.7 il lustr ates level 3 e quisupp ort pruning. The trie on

the left side is obtaine d after infr e quent r emoval phase at iter ation 2. After c andidate

gener ation and the new de ad-end pruning, we get the trie that is depicte d on the right side

of the �gur e. Notic e that no des A and B ar e pr esent in the next iter ation if e quisupp ort

A

B

D

B,C,D

D

E

E

B

D

E

Figure 7.7: Example: remo ving dead-end branc hes when lev el 3 equisupp ort pruning is

applied

pruning in c andidate gener ation is not applie d b e c ause their virtual depth is 4 and 3.

These unne c essary br anches slow down supp ort c ount thr oughout two iter ations.

The example also sho ws that this dead-end pruning also reduces the n um b er of iteration

in Apriori. The virtual depth of no de A is 4, therefore this no de is remo v ed during the

candidate generation in iteration 5. Dead-end branc h remo v al, ho w ev er, terminates the

algorithm b efore the supp ort coun t of the 4

th

iteration b egins.

Exp erimen ts with equisupp ort pruning

Equisupp ort pruning is not necessarily run-time safe. If the database do es not con tain

non-closed itemsets, then the memory allo cations of the nev er used equisupp ort lists
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require extra pro cessor op erations. F urthermore, this tec hnique is not necessarily mem-

ory safe. The equisupp ort sets need memory ev en if they are empt y and nev er used.

Exp erimen ts, ho w ev er, sho w that the p erformance deterioration is not signi�can t. The

highest run-time and memory need degradation w ere 26% and 20%, resp ectiv ely . W e

b eliev e that this is attributed to the fact that equisupp ort c hec k do es not require an y

extra mo v emen t in the trie and can b e p erformed quic kly . In the exp erimen ts, whose

results are sho wn in Figure 7.8, lev el 3 equisupp ort pruning w as emplo y ed.
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Figure 7.8: Equisupp ort pruning

Some hardw are friendliness diagrams are giv en in Figure 7.9 .
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Figure 7.9: Hardw are friendliness diagrams of Aprioris with di�eren t equisupp ort prun-

ing tec hniques

The results meet our exp ectation. In dense datasets the run-time and memory need

drop to their fraction. The decrease ma y b e of sev eral orders of magnitude. Please

notice the logarithmic scale.

Next, w e tested if the sp eed-up is attributed to pre�x equisupp ort or the other t w o

prunings also pla y signi�can t role. The answ er is found in Fig. 7.10 .

Exp erimen ts sho w that equisupp ort pruning prop osed in candidate generation and

this sp ecial dead-end pruning do not only p ossess a nice theoretical foundation but it is
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Figure 7.10: pre�x equisupp ort pruning vs. lev el 3 equisupp ort pruning

an e�cien t sp eed-up tec hnique in practice as w ell. In some cases the run-time dropp ed

to its half.

historical remark: Similar pruning tec hnique based on itemsets with equal

supp ort w as �rst presen ted in algorithm P ASCAL prop osed b y Bastide et al.

[5]. Their solution di�ers from our in man y resp ectiv e. First of all, they ap-

ply ful l e quisupp ort pruning , i.e. they do not calculate the supp ort of an y

prop er sup erset of itemset I if sup ( I ) = sup ( I

0

) for any I

0

� I . They use

the term key p attern for those itemset that ha v e no prop er subsets with the

same supp ort. The authors of P ASCAL describ e full equisupp ort remo v al in

conceptual terms. This description suggests a naiv e/straigh tforw ard imple-

men tation that k eeps the whole com binatorial set of equisupp ort expansions.

The edges ma y b e distinguished so that man y of them are not considered

during supp ort coun t, but the no des ha v e to exist in order to p erform full

pruning. W e declare that the main merit of equisupp ort pruning is the fact

that man y no des can b e deleted and ev en more need not b e generated. In

dense databases the main b ottlenec k of Apriori is the hea vy memory need of

the large candidate trie. This is not reduced b y the P ASCAL tec hnique. On

the con trary , our solution solv es this problem. The results of the exp erimen ts

sho wn in Figure 7.8 justi�es this argumen tation.

7.2.7 In tersection-based pruning

The classical candidate generation consists of t w o steps. First taking the union of t w o

frequen t itemsets that ha v e common ( ` � 1)-pre�x, and then w e c hec k the subsets. This

latter step is called the complete pruning of Apriori. F rom a trie p oin t of view, eac h

itemset that ful�lls the complete pruning requiremen t can b e obtained b y taking the

union of the represen tations of t w o sibling no des in the trie. In the so called simple

pruning w e go through all no des at depth ` � 1, tak e the pairwise union of the c hildren
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and do the complete pruning c hec k. Tw o straigh tforw ard mo di�cations can b e applied

to reduce unnecessary w ork. On one hand, w e do not c hec k those subsets that are

obtained b y remo ving the last and the one b efore the last elemen ts of the union (the

resulting sets are the generators). On the other hand, the prune c hec k is terminated as

so on as a subset is infrequen t, i.e. not con tained in the trie.

A problem with the simple pruning metho d is that it unnecessarily tra v erses some

parts of the trie man y times. W e illustrate this b y an example. Let AB C D , AB C E ,

AB C F , AB C G b e the four frequen t 4-itemsets. When w e c hec k the subsets of p oten tial

candidates AB C D E , AB C D F , AB C D G , then w e tra v el through no des AB D , AC D

and B C D three times. This gets ev en w orse if w e tak e in to consideration all p oten tial

candidates that stem from no de AB C . W e tra v el to eac h subset of AB C 6 times.

T o sa v e these sup er
uous tra v ersals, w e prop ose an in tersection-based pruning

metho d [8]. Let us assume that w e w an t to add new lea v es to no de P [ x , where P

denotes the pre�x. When c hec king the subsets of itemset P [ f x; y g , w e c hec k P [ x ,

P [ y and Q [ f x; y g where Q � P and j Q j + 1 = j P j . P [ x , P [ y are the generators, they

ha v e to b e frequen t. Therefore when c hec king the subsets of P [ f x; y g it is enough to

examine if item y extends no des Q [ x for all Q subsets. Similarly , when c hec king subsets

of P [ f x; z g w e examine if item z extends no des Q [ x for all Q � P . Consequen tly

no de P [ x is extended b y those sibling items that extend all Q [ x no des, i.e. the

extending set equals to the in tersection of lab els of edges that start from no des Q [ x .

This is the p oin t where w e sa v e the tra v ersals. If no des that represen t Q itemsets are

stored, then c hec king the subsets of P [ f x; z g means determining the c hild no des of Q

no des that are reac hed b y lab el z and doing the in tersection. F urthermore, if the edges

are stored ordered and w e memorize the index of edges used in the actual searc h (and

it at a starting p oin t in the next searc h), then in determining the items that extend the

c hildren of p the edges of all Q no des are tra v ersed at most once.

In in tersection-based candidate generation when extending the c hildren of P , w e �rst

�nd no des Q , where Q � P , j Q j + 1 = j P j . Then w e tak e eac h lab el i of no des that

start from P and determine if x extends all Q no des. If not, then P [ x can not b e

extended, otherwise w e tak e the in tersection of the extender lab els of Q [ x and the

lab el of siblings P [ x . The elemen ts of the result set are the items that extend P [ x ,

b ecause they meet the complete pruning requiremen t.

Note the real adv an tage of this metho d. The ( ` � 2)-subset no des of the P are reused,

hence the paths represen ting the subsets are tra v ersed only once, instead of

�

n

2

�

, where

n is the n um b er of the c hildren of the pre�x.

Example 7.2.6 L et us assume that the trie obtaine d after r emoving infr e quent itemsets

of size 4 and de ad-end p aths is depicte d in Fig. 7.11 .

T o get the childr en of no de AB C D that ful�l l the c omplete pruning r e quir ement (al l

subsets ar e fr e quent), we �nd the no des that r epr esent the 2-subsets of the pr e�x ( AB C ).

These no des ar e denote d by Q

1

, Q

2

, Q

3

. Next, we �nd their childr en that ar e r e ache d
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Figure 7.11: Example: in tersection-based pruning

by e dges with lab el D . These childr en ar e denote d by Q

0

1

, Q

0

2

and Q

0

3

in the trie. The

interse ction of the lab el sets asso ciate d to the childr en of the pr e�x, Q

0

1

, Q

0

2

and Q

0

3

is:

f D ; E ; F ; G g \ f E ; F ; G g \ f F ; G g \ f F g = f F g , henc e only one child is adde d to no de

AB C D , and F is the lab el of this new e dge.

When determining the extender items of no de AB C E , we �nd the new Q

0

j

no de,

i.e. childr en of no des Q

j

, that ar e r e ache d by e dge with lab el E . The lack of any such

no de indic ates that AB C E c annot b e extende d, b e c ause it has a pr op er subset that is

infr e quent.

In tersection-based candidate generation is not necessarily faster than the traditional

candidate generation. If the �rst, non-generator subset of the candidate is infrequen t,

then the traditional metho d terminates quic kly . On the con trary in tersection-based

metho d �rst determines the no des for all subsets of the pre�x. Therefore the in tersection-

based metho d is faster under the negativ e b order, and the traditional metho d ma y b e

the b etter solution when the elemen ts of the negativ e b order are generated. The distance

from the negativ e b order, ho w ev er, is not kno w in adv ance.

W e tested in tersection-based pruning with and without the equisupp ort tec hnique

(Figure 7.12).

Some hardw are friendliness diagrams are giv en in Figure 7.13 .

Ob viously at databases where supp ort coun t dominates, the o v erall run-time decrease

is insigni�can t. Exp erimen ts sho ws that at databases where candidate generation tak es

a signi�can t time of the o v erall run-time, the in tersection-based candidate generation is

an e�cien t tec hnique.

Equisupp ort pruning in
uences e�ciency of in tersection-based pruning at databases

whic h con tain non-closed itemsets. Equisupp ort pruning reduces the n um b er of supp ort

coun t and candidate generation calls, b ecause it replaces these op erations with subset

en umeration. It is not kno wn, ho w ev er, ho w do es the ratio of supp ort coun t and can-

didate generation c hanges (this dep ends on the c haracteristics of the database). If the

candidate generation b ecomes more signi�can t, then the adv an tage of the in tersection-

based pruning gro ws.

67



7.2. IMPR O VEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES F OR IMPR O VING EFFICIENCY

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

pentium 4 (ESP)
opteron (ESP)

Figure 7.12: Sp eed-up ratios of in tersection-based candidate generation without and

with Lev el 3 equisupp ort pruning
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Figure 7.13: Hardw are friendliness diagrams of Aprioris with the simple classic and with

the in tersection-based candidate generation
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7.2.8 Omitting complete pruning

Complete pruning is declared to b e an inheren t and imp ortan t step of algorithm Apriori.

It seems to b e natural to use pruning, since { in con trast to the DFS algorithms { all

subsets of a p oten tial candidate are a v ailable. The main merit of Apriori against DFS

algorithms is that Apriori generates a smaller n um b er of candidates. In [8 ] it w as

sho wn that the e�ciency of Apriori is not necessarily attributed to complete pruning,

furthermore, complete pruning slo ws do wn Apriori most of the times. In the rest of the

pap er w e refer to Apriori that do es not apply complete pruning (i.e. the second step of

the candidate generation is omitted) as Apriori-Noprune.

The adv an tage of the pruning is to reduce the n um b er of candidates. The n um b er

of candidates in Apriori equals to the n um b er of frequen t itemsets plus the n um b er

of infrequen t candidates, i.e. the negativ e b order of the frequen t itemsets. If pruning

is not used, then the n um b er of infrequen t candidates b ecomes the size of the order-

based negativ e b order of the frequen t itemsets, where the order corresp onds to the order

used in con v erting the sets to sequences (An itemset I is an elemen t of the order-based

negativ e b order of F if it is not in F , but its pre�x P

I

j I j� 1

and the subsequen t subset of I

of the same size are in F ). It follo ws, that if w e w an t to decrease the redundan t w ork (i.e

determining a supp ort of the infrequen t candidates), then w e ha v e to use the order that

results in the smallest order-based negativ e b order. This issue is further in v estigated in

Section 7.3 , here let us accept that the ascending order according to supp orts is exp ected

to result in the minimal negativ e b order.

The disadv an tage of the pruning strategy is simple: w e ha v e to tra v erse some part

of the trie to decide if all subsets are frequen t or not. Ob viously this needs some time.

Here w e state that pruning is not necessarily an imp ortan t part of Apriori. This

statemen t is supp orted b y the follo wing observ ation, that applies in most cases:

j N B

�

A

( F ) n N B ( F ) j � j F j :

The left-hand side of the inequalit y giv es the n um b er of infrequen t itemsets that

are not candidates in the original Apriori, but are candidates in Apriori-Noprune. So

the left-hand side is prop ortional to the extra w ork to b e done b y omitting pruning.

On the other hand, j F j is prop ortional to the extra w ork done b y pruning. Candidate

generation with pruning c hec ks all the maximal prop er subsets of eac h elemen t of F ,

while Apriori-Noprune do es not. The outcomes of the t w o approac hes are the same for

frequen t itemsets, but the pruning-based solution determines the outcome with m uc h

more e�ort (i.e. tra v erses the trie man y times).

Although the ab o v e inequalit y holds for most cases, this do es not imply that pruning

is unnecessary , and slo ws do wn Apriori. The extra w ork is just prop ortional to the quan-

tities in the form ulas ab o v e. Extra w ork caused b y omitting pruning means determining

the supp ort of some candidates. The resource requiremen t of this is a�ected b y man y

factors, suc h as the size of these candidates, the n um b er of transactions, the n um b er
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of elemen ts in the transactions, and the length of matc hing pre�xes in the transaction.

The extra w ork caused b y pruning comes in a form of redundan t tra v ersals of the tree

during c hec king the subsets. This also dep ends on man y other parameters.

As so on as the pruning strategy is omitted, Apriori can b e further tuned b y merging

the candidate generation and the infrequen t no de deletion phases. After remo ving the

infrequen t c hildren of a no de, w e extend eac h c hild the same w a y as w e w ould do in

candidate generation. This w a y w e spare an en tire tra v ersal of the trie. This solution

com bines candidate generation and infrequen t candidates remo v al phases.

This tric k can also b e used in the original Apriori, ho w ev er { as opp osed to the

application of Apriori-Noprune { it do es not necessarily sp eed up the algorithm. T o

understand this, w e ha v e to observ e that candidate generation is alw a ys after the in-

frequen t no de deletion phase, in whic h some lea v es and ev en en tire branc hes of the trie

ma y b e remo v ed. Since the trie is tra v ersed man y times during the complete pruning

c hec ks of the candidate generation, this trie purge ma y result in a signi�can t run-time

decrease. If the second step, and th us the n umerous trie tra v ersals are omitted, then

w e can merge infrequen t candidate remo v al and candidate generation phase without the

threat of causing p erformance degradation.

Figure 7.14 sho ws the p erformance gain of Apriori-Noprune compared to Apriori with

classical pruning. W e also c hec k the results when equisupp ort pruning w as turned on.

This means full equisupp ort pruning in the case of classic Apriori and pre�x equisupp ort

pruning in Apriori-Noprune.

Some hardw are friendliness diagrams are giv en in Figure 7.15 .

Exp erimen ts sho w that complete pruning is not necessarily an imp ortan t step of

Apriori, furthermore it increases run-time most of the times. The highest di�erence

w as at database BMS-WebView-1 , where the run-time dropp ed to its quarter as so on as

complete pruning w as omitted Similar to in tersection-based candidate generation, the

equisupp ort pruning also c hanges the imp ortance of complete pruning.

7.2.9 Summary of the tec hniques

W e ha v e presen ted man y tec hniques that aim to reduce run-time or memory need.

The follo wing table summarizes our results. The tic k in the second (third) column

denotes that the tec hnique is run-time (memory) safe. The sign S stands for the strict

safeness, i.e. for all databases the tec hnique did not result in a slo w er (less memory-

e�cien t) implemen tation. If no sign is found, then this tec hnique has no in
uence on

that measuremen t. F or example routing strategies, when the edges are stored in an

ordered v ector do not ha v e e�ect on memory need.

The fourth column stores the largest run-time drop. F or example if the run-time

of the base algorithm w as 20 sec, and with the tec hnique it dropp ed to 10 sec., then

this v alue is 2. Therefore higher n um b ers here mean more e�cien t algorithms. If the

tec hnique resulted in a slo w er algorithm { for example the run-time increased to 30 sec
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Figure 7.14: Omitting complete pruning
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{ then the �fth column stores the largest p erformance degradation (2/3 in this case).

The last t w o columns store the same indicators but for the memory consumption.

tec hnique

run-

time

memory

need

largest

run-

time

ratio

smallest

run time

ratio

largest

memory

need

ratio

smallest

memory

need

ratio

inhomogeneous trie

with sp ecial blo c k

allo cator

S S
2.18 2.86

dead-end pruning S S
4.24 2.56

h ybrid edge repre-

sen tation

X S
1.62 0.94 1.37 0.97

transaction cac hing X {
706 0.94 0.17

lev el 3 equisupp ort

pruning

X X
105 0.77 42 0.88

pre�x vs. lev el 3

equisupp ort prun-

ing

S S
3.35 1.9

in tersection-based

pruning

X
6.12 0.98

omitting complete

pruning

{ {
7.36 0.81 0 0.76

T able 7.6: Summary of the tec hniques

7.3 The in
uence of item ordering

A t the theoretical lev el w e w ork with sets. In the implemen tations there exist no sets

but v ectors, lists, arra ys, trees. Sets are con v erted to sequences using a total order on

the items. The lexicographic order according to this order de�nes a total order on the

itemsets. The order greatly a�ects the algorithms and the sp eed-up tec hniques. Till

this p oin t w e carefully a v oided this issue, but this subsection is dedicated to this topic.

7.3.1 The order-preserving assumption

In man y FIM pap ers certain algorithms and sp eed-up tec hniques are explained with

the indep endenc e assumption . Indep endence assumption states that if the frequencies

of disjoin t itemsets I

1

and I

2

are resp ectiv ely freq ( I

1

) and freq ( I

2

), then the frequency

of itemset I

1

[ I

2

is (or at least close to) freq ( I

1

) � freq ( I

2

). This tries to encapsulate the

indep endence of t w o binary random v ariables, but the probabilities are substituted b y

frequencies (relativ e supp orts). The assumption seems to con tradict to our original goal

whic h is disco v ering un usual, unexp ected, correlated patterns in the form of asso ciation
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rules. If indep endence holds then the itemset that consists of the most frequen t items

w ould b e largest itemset with the highest supp ort. If w e assume that item frequencies are

freq( i

1

) � freq( i

2

) � � � � � freq( i

`

), then the size of the largest itemset w ould b e k where

freq( i

1

) freq( i

2

) � � � freq ( i

k

) � min f r eq but freq ( i

1

) freq( i

2

) � � � freq( i

k +1

) < min f r eq .

In general the n um b er of frequen t itemsets of size ` w ould b e jf I = f i

1

; i

2

; : : : i

`

g :

freq( i

1

) freq( i

2

) � � � freq ( i

`

) � min f r eq gj .

W e compared the distribution of frequen t itemsets of real databases to their \inde-

p enden t v ersion". The latter has the same item frequencies ad the original one, and

the frequencies for larger sets are deriv ed from the indep endence assumption (form ula).

The results of t w o randomly selected databases are seen in Figure 7.16 .
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Figure 7.16: Distribution of the size of the frequen t itemsets and the distribution of

frequen t itemsets under indep endence assumption

W e can see that realit y is quite far form the assumption. W e get similar consequences

when w e compare the n um b er of frequen t sets, the size of the largest frequen t set, the

a v erage size of a frequen t sets, etc.

When using a mo del w e exp ect the consequences dra wn from the mo del to b e close

to realit y . It seems that almost all observ able consequences that are dra wn from the

indep endence assumption ha v e nothing to do with realit y .

Do es there exist a mo del that suits the c haracteristics of the frequen t itemsets and

at the same time it can b e used to mak e further consequences?

Here w e prop ose the follo wing assumption.

De�nition 7.3.1 The or der-pr eserving assumption r e quir es that sup ( X [ Y ) �

sup ( X [ Z ) holds whenever sup( Y ) � sup ( Z ) for any disjoint sets X ; Y ; Z .

W e get an equiv alen t de�nition if supp ort is substituted with frequency . The order-

preserving assumption follo ws from the indep endence assumption, but not con v ersely .

An immediate consequence of the indep endence assumption is that sup ( X [ Y ) =

sup ( X [ Z ), if sup ( Y ) = sup ( Z ). If w e w an t that the relativ e orders according to
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frequencies of t w o itemsets are not c hanged when adding certain items to b oth itemsets,

then w e ha v e to mo dify sligh tly the de�nition.

De�nition 7.3.2 The soft order-preserving assumption r e quir es that sup ( X [ Y ) �

sup ( X [ Z ) holds whenever sup ( Y ) < sup ( Z ) for any disjoint sets X ; Y ; Z .

Some immediate consequences for later use are listed in the follo wing.

Corollary 7.3.3 L et I = f i

1

; i

2

; : : : ; i

`

g . If sup ( i

1

) � sup ( i

2

) � � � � � sup ( i

`

) , then

sup ( f i

1

; i

2

; : : : ; i

` � 1

g ) � sup ( I

0

) for al l I

0

� I , with j I

0

j = ` � 1 . A lso, sup ( f i

2

; i

3

; : : : ; i

`

g ) �

sup ( I

00

) for al l I

00

� I , j I

00

j = ` � 1 .

Pr oof: If I

0

= I n f i

j

g then set X = I n f i

j

; i

`

g , Y = f i

j

g and Z = f i

`

g . The

order=preserving assumption giv es the �rst claim. The second claim can b e obtained

similarly . �

The soft order-preserving assumption v ersion of the ab o v e corollary is the follo wing.

Corollary 7.3.4 L et I b e a set of items of size ` . If soft or der-pr eserving assumption

holds, then the subset of size ` � 1 that c onsists of the most (le ast) fr e quent items, that

has the lar gest (smal lest) supp ort among the subset of I of size ` � 1 .

The corollary claims, that the subset of I that con tains the most (least) frequen t

items has the largest (smallest) supp ort among all the subsets of I of the same size.

According to the follo wing corollary (whic h giv es an equiv alen t v ersion of de�nition

7.3.6), the order-preserving assumption is hereditary to the pro jected databases, i.e.,

the ordering based on the supp orts of the items is equal to the ordering based on the

supp orts of the items in pro jected databases.

Corollary 7.3.5 L et T b e a set of itemsets in which the or der-pr eserving assumption

holds. Then sup

T j X

( Y ) � sup

T j X

( Z ) if and only if sup

T

( Y ) � sup

T

( Z ) holds for any

disjoint sets X ; Y ; Z .

Pr oof: Using the fact that the supp ort of X [ Y in T equals to the supp ort of Y in T j X

w e get the claim, since the de�nition of order-preserving assumption can b e rewritten

suc h as: sup

T j X

( Y ) � sup

T j X

( Z ) holds whenev er sup

T

( Y ) < sup

T

( Z ) for an y disjoin t

sets X ; Y ; Z . �

The prop ert y , ho w ev er, do es not hold to the complemen t of the pro jected database.

This is pro v en b y the follo wing example. Let T = h Y ; X Z ; X W Z i . It is easy to v er-

ify that the order-preserving assumption holds. Nev ertheless sup( Y ) < sup ( Z ) while

sup

T j X

( Y ) > sup

T j X

( Z ).
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The order-preserving assumption is quite rigid, and its v alidit y is sensitiv e to noise,

whic h is alw a ys presen t in real-w orld databases. If the probabilities of the o ccurrences

of t w o itemsets are equal, then it is quite lik ely that in their supp ort in a dataset will b e

close to eac h other but the c hance of equalit y is small and con v erges to 0 as the n um b er of

transactions increases. This applies to all of their extensions with indep enden t itemsets.

Consequen tly , half of the extension do es not ful�ll the order preserving assumption.

Here w e prop ose a relaxation of our assumption.

De�nition 7.3.6 L et 0 � � � 1 b e a given c onstant. The � order-preserving assump-

tion r e quir es that � � sup ( X [ Y ) � sup ( X [ Z ) holds whenever sup( Y ) < sup ( Z ) for

any disjoint sets X ; Y ; Z .

Ob viously , if � = 1, then w e get the soft order-preserving assumption.

It is quite easy to v erify the v alidit y of the � order-preserving assumption in a set

of itemsets S , in whic h do wn w ard closure prop ert y holds, in a sequence of itemset T .

W e c hec k all di�eren t itemset pairs I ; I

0

2 S if their in tersection is nonempt y . F or suc h

itemset pairs w e calculate I

1

= I n I

0

, I

2

= I

0

n I . If the order of supp orts according to I ; I

0

di�ers from the order of supp ort according to I

1

; I

2

then the order-preserving assumption

fails, otherwise holds. The or der-pr eserving r atio is then giv en b y the n um b er of itemset

pairs that result a p ositiv e c hec k divided b y the n um b er of itemsets pairs considered (i.e.,

I and I

0

are not disjoin t sets). The order-preserving ratio can similarly b e calculated

for the � order-preserving assumption. T able con tains the order preserving ratio of the

frequen t itemsets in our b enc hmark databases.

The �gures sho w that the order-preserving assumption holds in most of the cases.

No w let us turn to the consequences of the order-preserving assumption that are

quite v aluable in frequen t itemset mining.

7.3.2 The n um b er of candidates

The n um b er of candidates is indep enden t of the ordering in the case of Apriori. In

con trast, it dep ends on the pre�xes { and th us on the ordering as w ell { in the case

of Eclat, Fp-gro wth and Apriori-Noprune. The set of infrequen t candidates is equal to

the order based negativ e b order of the frequen t itemsets. An ` -itemset is an elemen t

of the order-based negativ e b order if it is infrequen t and its ( ` � 1)-elemen t pre�x and

the subsequen t (with resp ect to the ordering) subset of the same size are frequen t. The

follo wing lemma indicates whic h ordering results in the smallest order based negativ e

b order.

Lemma 7.3.7 If the or der-pr eserving assumption holds, then the asc ending or der with

r esp e ct to the supp orts r esults in the smal lest or der b ase d ne gative b or der.
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database minsup

order-preserving ratio

1 0.95 0.9

T40I10D100 900 0.912 0.998 0.999

k osarak 1 800 0.817 0.980 0.998

T10I4D100K 8 0.690 0.693 0.726

connect 56 000 0.725 1.000 1.000

pumsb

41 000 0.863 0.994 1.000

38 000 0.219 0.974 0.999

acciden ts 114 000 0.882 0.960 0.988

retail 11 0.870 0.876 0.909

BMS-POS

400 0.809 0.860 0.901

350 0.116 0.354 0.544

BMS-W ebView-1

37 0.857 0.942 0.984

36 0.351 0.802 0.961

BMS-W ebView-2 30 0.790 0.819 0.853

w eb do cs 220 000 0.877 0.966 0.990

m ushro om

1 600 0.910 0.955 0.990

900 0.868 0.896 0.913

T10I5N1KP5K C0

100 0.915 0.961 0.967

10 0.790 0.809 0.819

8 0.714 0.729 0.739

T20I10N1KP5K C0 400 0.963 0.999 0.999

T30I15N1KP5K C0.25D200K 650 0.999 1.000 1.000

pumsb*

17 000 0.850 0.963 0.986

15 000 0.434 0.833 0.928

T able 7.7: The order-preserving ratio of the frequen t itemsets
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Pr oof: F or eac h elemen t I = f i

1

; i

2

; : : : i

`

g of the order-based negativ e b order the

prop er pre�xes of I are frequen t. Without loss of generalit y w e can assume that i

1

�

i

2

� � � � � i

`

. If sup ( i

j

) � sup ( i

j +1

) for all j = 1 ; 2 ; : : : ; ` � 1 and the order-preserving

assumption holds, then the corollary 7.3.3 states that sup( f i

1

; i

2

; : : : ; i

` � 1

g ) � sup ( I

0

)

for all I

0

� I , where j I

0

j = ` � 1. Itemset f i

1

; i

2

; : : : i

` � 1

g is the pre�x whic h is frequen t

and hence all prop er subsets of I are frequen t. Consequen tly N B

�

( F ) = N B ( F ) if

� denotes the ascending order according to frequencies. By Corollary 2.0.8 (see page

11 ) no other ordering results in smaller n um b er of candidates, hence the lemma follo ws.

�

Corollary 7.3.8 If or der-pr eserving assumption holds, then

N B ( F ) = N B

�

AS C

( F ) ;

wher e F denotes the set of fr e quent itemsets, and �

AS C

denotes the asc ending or dering

ac c or ding to the supp orts.

7.3.3 Size of the trie

Itemsets inserted in to a trie are �rst con v erted to sequences based on an ordering. The

ordering a�ects the shap e and the n um b er of no des of the trie. This is illustrated b y

the tries depicted in Figure 7.17 . Both tries stores sets AB and AC . The �rst trie uses

ordering A � B � C the second uses the rev erse.

0

1

2 3

A

B

C

0

1 2

3 4

C

B

A A

Figure 7.17: tries storing the same sets but using di�eren t orderings

F or the sak e of reducing the memory need whic h has strong correlation to the tra v er-

sal times (see page 27 ), it w ould b e useful to use the ordering that results in a trie with

minimal size. The size of the trie is giv en b y the n um b er of no des. Comer and Sethi

pro v ed in [13] that the minimal trie problem, i.e., to determine the ordering whic h giv es a

minimal trie (denoted b y T

O P T

), is NP-complete. On the other hand, a simple heuristic

(whic h w as emplo y ed in FP-gro wth) p erforms v ery w ell in practice: use the descending

order according to the frequencies. This is inspired b y the fact that tries store an y giv en

77



7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES F OR IMPR O VING EFFICIENCY

pre�x only once, and there is a higher c hance of itemsets ha ving the same pre�xes if the

more frequen t items are closer to the ro ot.

Di�eren t orderings ma y result isomorphic tries (and di�eren t orderings can result in

a minim um-size trie). F or example tries that store sets A; B ; AB ; AC and use ordering

A � B � C and A � C � A are isomorphic and minimal. F urthermore di�eren t

ordering ma y result di�eren t, non-isomorphic minimal tries. This is sho wn in Figure

7.18.

T

O P T

0

1 2

3 4 5

6

A

B

B

C

C

D

T

0

O P T

0

1 2

3 4 5

6

C

A

A

B

B

D

Figure 7.18: Example: minimal non-isomorphic tries

Note that w e ha v e to distinguish t w o frequencies of the items; frequency in the

database, and frequency among the itemsets inserted in to the trie. W e call this latter

frequency as un w eigh ted frequency . Ob viously ordering based on the t w o v alues are

not necessary equal. If the elemen ts of the database AB ; AC ; AD ; B C ; B C ; B C then

A is the most frequen t according to un w eigh ted frequency , but according to database

frequency it is only in third place. Next w e pro v e that under the order-preserving

assumption the t w o orderings are equal.

De�nition 7.3.9 L et T b e a se quenc e of itemsets and denote by T

�

the se quenc e that

is obtaine d fr om T by ke eping only the di�er ent elements (i.e. T

�

c ontains the same

itemsets as T but with multiplicity exactly one). The unweighte d supp ort of itemset

I in T e quals to the supp ort of I in T

�

, i.e.

u w sup

T

( I ) = sup

T

�

( I ) :

Lemma 7.3.10 L et T b e a se quenc e of itemsets over I . If or der-pr eserving assumption

holds, then the or dering with r esp e ct to the unweighte d supp ort e quals to the or dering with

r esp e ct to the supp ort, i.e. if sup ( f i

j

g < sup ( f i

k

g ) then u w sup ( f i

j

g � u w sup( f i

k

g ) .

Pr oof: W e pro v e the statemen t b y con tradiction. Let us assume that sup ( i ) � supp ( i

0

)

but u w sup ( i ) < u w sup ( i

0

). Let us denote the elemen ts of the co v er of i

0

in T

�

b y
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t

0

1

; t

0

2

; : : : ; t

0

n

( i

0

2 t

j

, t

j

2 T

�

, t

0

k

6= t

0

l

). According to the order-preserving assumption

sup (( t n ) i

0

[ i ) � sup ( t ) for all t 2 cov er

�

T

( i

0

). This is a con tradiction, b ecause the n um b er

of ( t n i

0

) [ i sets is smaller or equal than uw supp ( i

0

), they are di�eren t and all con tain

i , therefore the size of u w sup ( i ) cannot b e less than u w sup ( i

0

). �

T

�

D E S C

0

1 2 3

4 5 6 7

8

Z

B

C

B

C

A A

C

T

O P T

0

1 2

3 4 5 6

7

Z

A

B

C

B

C

C

Figure 7.19: Example: descending order do es not result in the smallest trie

The failure of the descending order pro ducing the minim um size trie stems from

the fact that the order-preserving assumption do es not hold. Note that in the example

sup ( Z ) > sup ( A ), but sup ( Z B ) < sup ( AB ).

Conjecture 7.3.11 L et T b e a set of itemsets and denote �

D E S C

the desc ending or der

of items ac c or ding to the numb er of o c curr enc es of the items in T . If or der-pr eserving

assumption holds then T

�

D E S C

( T ) is the minimum-size trie among the tries that stor e

T , i.e., ther e exists no or dering � such that T

�

( T ) has fewer no des than T

�

D E S C

( T ) .

If the conjecture follo ws, then w e kno w that the heuristic w orks �ne under ideal

circumstances (the order-preserving assumption holds for all sets). T able 7.7 sho ws that

the real-w orld is \close"to the ideal, but still sligh tly di�eren t. One of the most v aluable

kno wledge of frequen t itemset mining w ould b e a form ula ab out the relationship of the �

order-preserving ratio of a set of itemset T and the ratio of j T

�

D E S C

( T ) j and j T

O P T

( T ) j ,

where T

O P T

denotes a minim um-size trie.

7.3.4 T ec hniques in Apriori

Supp ort coun t

One ma y tend to follo w the observ ation a smaller memory need results in b etter data

lo calit y and hence faster algorithms. Therefore w e should use the descending order

according to the frequency when building the candidate trie. This is, ho w ev er, just one

side of the problem.
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T o understand the other side w e ha v e to recall the supp ort coun t pro cedure. T o

decide whic h candidates are con tained in a giv en transaction, a part of the trie has to

b e tra v ersed. Eac h path of the tra v ersals starts from the ro ot. Some paths reac h a leaf,

others do not. The n um b er and the length of paths that reac h a leaf is indep enden t of

the ordering. This, ho w ev er, do es not apply to the length of the remaining paths. T o

reduce the exp ected n um b er of unnecessarily visited no des, �rst w e ha v e to c hec k if the

transaction con tains the least frequen t item since this is lik ely to pro vide the strongest

�ltering among the items of the candidate, i.e. this is the item that is con tained in the

least amoun t of transactions. Next, the second least frequen t is advised to c hec k, then

the third, and so on. The edges are c hec k ed from the ro ot to the lea v es, hence w e exp ect

the least amoun t of redundan t c hec ks and th us the b est run-time, if the order of items

corresp onds to the ascending order according to the supp orts.

0

1 2

3 4 5 5

A

B

C

D

C

D

0

1 2

3 4 5 5

D

C

B

A

B

A

Figure 7.20: Example: T ries with di�eren t orders

7.20 . The t w o tries store the same sets, but one in the left uses the descending

order ( A � B � C � D ) and the other the ascending order according to un w eigh ted

frequencies. When determining the candidates in transaction f A; B ; E ; F g . No des 0,1

and 2 are visited if descending order is used, while the searc h is terminated immediately

at the ro ot in the case of the ascending order.

W e kno w, that transaction cac hing using a trie or a patricia tree requires descending

order according to the frequencies in order to b e storage e�cien t. In con trast, the

minimal n um b er of redundan t steps in the candidate trie during the supp ort coun t

prefers ascending order. These t w o requiremen ts can b e satis�ed at the same time b y

a little tric k. The items are reco ded according to ascending order according to the

supp orts, but the items are stored descending in eac h transaction when inserting in to

the cac her. Since the e�cien t supp ort coun t (i.e. merge ) requires the items of the

transaction to b e stored ascendingly , w e simply rev erse eac h transaction when it is

retriev ed from the cac her.

In summary , descending order is go o d for the compactness (and do es not require

to rev erse the transactions b efore b eing pro cessed), while ascending order results in a

few er redundan t steps in the trie. Exp erimen ts sho w also that there is no absolute

winner; most of the times the ascending order results in the faster algorithm, sometimes

the descending order. F or some results p ertaining to this dic hoton y , see Figure 7.21.
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V alues less than one mean that the Apriori that uses descending order according to the

frequencies is the faster.
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Figure 7.21: Ascending vs. Descending order according to the frequencies

Some hardw are friendliness diagrams are giv en in Figure 7.22 .

In all exp erimen ts the transaction cac hing do es not c hanges whic h ordering results

in the �rst place. This is attributed to the fact that w e used lo w supp ort threshold.

In suc h cases the memory need of a transaction cac her and the run-time of building it

are insigni�can t comparing to the memory need of the candidate trie and the run-time

of supp ort coun t. Di�eren t ordering ma y b e a b etter c hoice if w e raise the supp ort

threshold.

Pruning e�ciency

There is a strong connection b et w een the ordering and e�ciency of the Apriori that

do es not use complete pruning. W e w an t to use the ordering that minimizes the n um-

b er of false candidates. Candidates in Apriori-Noprune are the same as candidates in
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Figure 7.22: Hardw are friendliness diagrams of Aprioris with ascending and descending

order according to the frequencies

Eclat or FP-gro wth (see section 7.3.2) therefore the fastest Apriori-noprune is exp ected

when ascending order according to the frequencies is used. Exp erimen ts supp ort this

conclusion.

T able 7.8 sho ws the ratio of the n um b er infrequen t candidates and the n um b er of

frequen t itemsets in the case of complete pruning, Apriori-Noprune with ascending and

descending order according to the supp orts.

database complete NOPR UNE NOPR UNE

j C

D E S C

n F j

j C

AS C

n F j

prune ASC DESC

T40I10D100K 0 : 98 1 : 05 3.20 3.04

k osarak 0 : 05 0 : 74 1.61 2.16

T10I4D100K 6 : 62 15 : 57 27.98 1.79

connect 0 : 0001 0 : 002 2.07 766.83

pumsb 0 : 008 0 : 03 0.82 22.71

acciden ts 0 : 03 0 : 03 2.90 86.78

retail 4 : 82 5 : 71 578.54 101.15

BMS-POS 0 : 56 0 : 59 30.98 52.10

BMS-W ebView-1 0 : 002 0 : 02 0.09 3.53

BMS-W ebView-2 0 : 05 0 : 16 3.28 20.18

w eb do cs 0 : 21 0 : 22 12.91 58.41

m ushro om 0 : 001 0 : 005 2.87 515.85

T10I5N1KP5K C0.25D200 42 : 31 51 : 94 194.90 3.75

T20I10N1KP5K C0.25D200K 0 : 009 0 : 06 0.24 3.71

T30I15N1KP5K C0.25D200K 0 : 07 0 : 26 0.16 0.61

pumsb* 0 : 002 0 : 05 0.62 12.42

T able 7.8: Ratio of the n um b er of infrequen t candidates and the n um b er of frequen t

itemsets

W e can see that the n um b er of infrequen t candidates is m uc h larger when the de-

scending order is used (c hec k the v alues in the last column).

It follo ws from the rational that Apriori di�ers from Apriori-Noprune in terms of

sensitivit y of the ordering. Both orderings has their adv an tage in Apriori, but in Apriori-

Noprune the dra wbac k of descending order is dominating.
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Ev alutation

8.1 The battle of Apriori implemen tations

W e ha v e enrolled our three selected implemen tations ( Apriori , Apriori-Noprune and

Apriori-MEMSAFE ) in a comp etition with three kno wn Apriori co des. Apriori-MEMSAFE

emplo ys on-line candidate 2-itemset generation [19 ] and do es not use transaction cac hing.

Apriori-Noprune omits the complete pruning phase. Apriori and Apriori--MEMSAFE

adapt the in tersection-based candidate generation. Apriori-Noprune and Apriori use

transaction cac hing and apply a diagonal arra y for determining the supp orts of candi-

dates of size t w o. All three implemen tations use inhomogeneous trie with the sp ecial

blo c k allo cator, dead-end branc h pruning, h ybrid edge represen tation and full equisup-

p ort pruning.

W e compared our implemen tation to three C/C++ implemen tations co ded b y Chris-

tian Borgelt

1

, Bart Go ethals

2

and Tingshao Zh u

3

resp ectiv ely . This later w as �nally

excluded from the race, b ecause it ran extremely slo w, sev eral orders of magnitude slo w er

than the others. W e used the latest v ersions that are a v ailable on the authors' w ebsite

at 15

th

Decem b er 2005.

W e ha v e tested t w o implemen tations from Christian Borgelt, the one that w as sub-

mitted to FIMI'04 ( Apriori-Borgelt-FIMI ) and other that can b e do wnloaded from the

w ebpage. W e ran this implemen tation with t w o di�eren t parameters, in order to test the

sp eed- and memory-optimized v ersion resp ectiv ely (denoted b y Apriori-Borgelt-Speed

and Apriori-Borgelt-Mem resp ectiv ely). Apriori-Borgelt-Speed alw a ys consumed

the same amoun t of memory as Apriori-Borgelt-FIMI but sometimes ran slo w er.

In the memory optimized v ersion h ybrid edge represen tation is used and transactions

are not stored in the memory . The sp eed-optimized v ersion uses a trie with o�set-index

1

http://fuzzy.cs.u ni - ma gd ebu rg .de /

�

borgelt/apriori .ht ml

2

http://www.adrem. ua .ac .b e/

�

goethals/software /

3

http://www.cs.ual be rta .c a/

�

tszhu/software.ht ml
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edge represen tation, and a trie storing the transactions. It adapts a no v el supp ort

coun ting metho d, (the basis of whic h w as describ ed in section 7.2.2) together with the

simple unimp ortan t item �ltering tec hnique (see section 7.2.3).

Due to the space restrictions w e sho w only a small n um b er of test results. W e up-

loaded all results to the page http://www.cs.bme.hu/

�

bodon/fim/test.html . Three

t ypical run-time plots are depicted in Figure 8.1.
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Figure 8.1: Battle of the Apriori implemen tations, run-times

Go ethals' implemen tation is not comp etitiv e in sp eed with the other Apriori im-

plemen tations. Concerning just the lo w est supp ort threshold, Apriori-Borgelt-FIMI

�nished in the �rst place in 5 cases and our Apriori in 11 cases. The follo wing �gure

sho ws the adv an tage of Apriori o v er Apriori-Borgelt-FIMI . P ositiv e v alue means

that Apriori w as faster than Apriori-Borgelt-FIMI .
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Figure 8.2: Borgelt vs. Bo don (run-times)

The highest adv an tage of Apriori-Borgelt-FIMI is at database T10I5N1KP5K C0.-

25D200K where it is t w o times faster than Apriori . On the con trary , our Apriori often

outp erformed Apriori-Borgelt-FIMI with an order of magnitude, and in sev eral cases

Apriori-Borgelt-FIMI could not ev en cop e with the task.
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Concerning memory-optimized v ersions, our implemen tation outp erformed Borgelt's

implemen tation in run-time in 13 cases.

The adv an tage of our solution is quite clear if w e tak e a lo ok at the memory need.

Our implemen tations consumed only a fraction of the memory need of Borgelt's im-

plemen tation. This applies to all databases at all supp ort thresholds. Three t ypical

memory-need plots are in Figure 8.3.
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Figure 8.3: Battle of the Apriori implemen tations, memory need

The comparison of the t w o main riv als, i.e. Apriori and Apriori-Borgelt-FIMI is

found in Fig. 8.4.
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Figure 8.4: Borgelt vs. Bo don (memory needs)

In summary , our co de results in the fastest Apriori implemen tation in most of the

cases, and its memory requiremen t is outstanding in the �eld.
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8.2 The battle of Eclat implemen tations

8.3 The battle of FP-gro wth implemen tations

8.4 Comparing Aprior, Eclat and FP-gro wth

In compared the three algorithms w e endea v ored to b e as fair as p ossible. Common

metho ds (lik e frequen t item mining, input/output op erations, co ding/deco ding subset

en umeration) use the same co de. W e sp end man y e�orts on making these common

metho ds as e�cien t as p ossible in order the algorithm sp eci�c co des b e dominan t in

run-time and memory need.

W e determine the supp orts of the items b y using a simple v ector. The elemen t at

index i b elong to item i . Initially all elemen ts are zero, w e tak e the transactions one-

b y-one and increase the coun ter of those elemen ts that o ccur in the actual transaction.

In input and output routines w e use bu�ering (with a carefully c hosen bu�er size)

man ual in teger to string (and bac kw ard) con v ersion and lo w lev el �le op eration. T o

further reduce the output of the result, whic h is quite dominan t in dense datasets with

lo w supp ort threshold (lik e database mushroom with minsup = 30000), w e used a depth-

�rst output manager, whic h cac hes the string represen tation of the previously frequen t

itemset written out. F or further information and exp erimen t results of this sophisticated

solution the reader is referred to [46].

TEST RESUL TS COME HERE!!!

The test results immediately pro v es that the often cited misb elief \The numer ous

datab ase sc an is the r e ason for ine�e ctiveness of algorithm Apriori" has nothing to do

with the realit y . Our Apriori implemen tation uses transaction cac hing (see section 7.2.1)

th us Apriori scans the en tire dataset only t wice, the same times as Eclat and FP-gro wth

do. Apriori is still m uc h slo w er than the coun terparts in man y cases.

8.5 The b ottlenec k of Apriori, Eclat and FP-gro wth

W e ha v e seen that there is no single b est algorithm that outp erforms the other algorithms

at ev ery databases with ev ery supp ort thresholds. Eac h algorithm has its b ottlenec k.

On the con trary to the b eliev es (see section 1.2), the reason wh y Apriori falls b ehind

in e�ciency from Eclat and Fp-gro wth is that Apriori do es not utilize the information

gaine d in the pr evious iter ation. A lthough it determines the c over of al l subsets of a

c andidate in the pr evious iter ation, this information is not use d in determining the

supp ort of the c andidate. Eclat and FP-gro wth are smarter in this resp ect, i.e. only

those transactions are considered in determining the supp ort of a candidate that con tain

the pre�x of the candidate.
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TO BE CONTINUED!
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The furure: to w ard h ybrid algorithms

The fact that eac h algorithm has its dra wbac k, op ens the gate to w ard h ybrid algorithms.

The �rst h ybrid algorithm AprioriHybrid app eared quite early . It is a com bination of

Apriori and AprioriTid, based on the observ ation that Apriori p erforms b etter in the

initial phases while AprioriTid is a b etter c hoice in the later phases. The di�erence

b et w een Apriori and AprioriTid lies in the supp ort coun t metho d. AprioriTid uses a

table, eac h ro w of a table b elongs to a transaction and a ro w at iteration ` con tains

the candidates of size ` that o ccurs in the transaction (empt y ro ws are remo v ed from

the table). Both the supp ort of a candidate and the table of the next iteration can b e

coun ted directly from the table. The reason AprioriTid runs faster in the �nal iteration

is not the alw a ys emphasized prop ert y that it do es not use the input data (IO op erations

requires insigni�can t time compared to the other op erations in the supp ort coun t) but

the simpli�ed supp ort determination of a candidates.

The switc h p oin t dep ends on the size of the table. If the n um b er of candidates

decreases and the size of the table �ts in to the memory then Apriori switc hes to Aprior-

iTid. In [18] is w as sho wn that this heuristic do es not necessarily w orks (with our w ords

it is neither memory nor run-time safe), b ecause the n um b er of candidates ma y gro w

again, whic h ma y prev en t the table �tting in to the memory . This results in a signi�can t

p erformance deterioration.

The second h ybrid solution w as prop osed in [26] where the authors prop osed to use

Apriori is the b eginning and then switc h to Eclat. Unfortunately , the main question,

i.e. when to do the switc h is not answ ered and can b e simply set b y a parameter. In [19]

it w as sho wn that the h ybrid algorithm that switc hes to Eclat after the second iteration

and uses the arra y-based tec hnique to determine the supp ort of the pairs outp erforms

Apriori and Eclat at man y databases.Since the e�ciency of Apriori and Eclat fall far

b ehind from the e�ciency of our Apriori and Eclat, this observ ation do es not necessarily

hold. Also to understand this h ybrid solution w e don't ha v e to kno w an ything ab out

Apriori and its sp eed-up tec hniques, hence w e do not regard this solution as a h ybrid
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metho d, but rather a mo di�cation of Eclat.

W e b eliev e that the �rst remark able h ybrid solution is algorithm DCI [36] whose

impro v emen t kDCI [38] turned out to b e one of the most successful FIM implemen tations

in 2003. In the b eginning it w orks as an Apriori that used pre�x-arra y to store the

candidates and applies the unimp ortan t item �ltering tec hnique in order to reduce the

size of the database. As so on as the database �ts in to the memory it switc hes to a

no v el in tersection-based coun ting metho d. Moreo v er, it uses a heuristics to decide if the

input database is dense or sparse and c ho oses the coun ting pro cedure that is exp ected

to p erform b etter.

9.1 Conclusion
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