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Purpose of the work

The three central FIM algorithms:
• APRIORI,
• Eclat,
• FP-growth.

Two of them use tries.

Small details have considerable influence on efficiency.

5 details were theoretically and experimentally examined.
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What kind of a trie

Three-level specification:

• Trie type: full trie , pruned trie, collapsed trie ≈ Patricia,

O-trie,

• edge representation:

nB nD nG

B
D

G

[(B,&nB), (D,&nD), (G,&nG)]

tabular:

[NIL, &nB , NIL, &nD, NIL, NIL, &nG, NIL, · · ·]
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What kind of trie

• memory occupation

167

123 102
B

D

contiguous-memory based:

[2,167,B,6,D,8,0,123,0,102]
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memory need: 16n (20n) 24n (28n)

modification: difficult easy
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1/5: effect of ordering

Tries store sequences.
sequence← itemset + total order on the items
The itemsets and the order together determines the trie

0

1

2 3

A

B

C

0

1 2

3 4

B

C

A A

Question: Which order results in the minimum-size trie?

Theorem (Comer and Sethi). Given I , T ⊆ 2I and integer k, it is
NP-complete to decide if there exists a full trie that stores T , and the number
of nodes is no more than k.
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1/5: effect of ordering

A simple heuristic: use the descending order according to the
frequencies.
Reasoning: it has the most chance that two randomly chosen
itemsets have the same prefix.

Example when heuristic does not result in the smallest trie:
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1/5: effect of ordering

The heuristic works well on synthetic and real-life datasets. A
kind of homogeneity exists.
Why is this important?
• In FP-growth: size of FP-tree is critical.
• In APRIORI: (1.) size of the trie that stores candidates is

critical, (2.) order affects the support count method

Sensitivity of FP-tree:
min_freq (%) 1 0.2 0.09 0.035 0.02

ascending 42.48 58.03 61.34 63.6 65.04
descending 27.58 39.74 41.69 43.66 44.10
random 1 29.84 42.30 44.49 46.60 46.41
random 2 36.98 48.97 55.02 56.85 56.72
random 3 34.87 52.18 55.68 58.01 55.50

Database: BMS-POS
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1/5: effect of ordering

• In FIM the sensitivity does not matter.
• In FIM-related problems, where order can not be chosen

freely this side-effect has to be taken into consideration

Support count of APRIORI and the order
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1/5: effect of ordering

Results of the experiments:
• The memory need of APRIORI is not sensitive to the order.
• Ascending order according to frequencies results in the

fastest APRIORI.

Argument: the most selective items are checked first.
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2/5: storing the transactions

Let t be a transaction.
filtered t: infrequent items are removed from t.
Collect and store filtered transactions in memory

Advantages:
• IO cost is reduced,

• parsing costs are reduced,
• the number of support count method calls is reduced.

Disadvantage:
• needs extra memory.

Question: What data-structure should be used?
Some possibilities: ordered list, trie, red-black tree
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2/5: storing the transactions

Expectation: a trie needs the least memory.
Reasoning: it stores same prefixes only once.
Experiments:

min_ sorted trie RB-
freq list tree

0.05 12.4 52.5 13.8
0.02 16.2 76.0 17.1

0.0073 17.0 81.5 18.0
0.006 17.1 81.7 18.1

Database: T40I10D100K

In most cases trie needs the most memory (exception:
connect, accidents)

Cause: a trie has much more nodes than a RB-tree has, and a
node is expensive.
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3/5: routing strategies at the nodes

How to find the edge to follow in APRIORI?
Given a node with a list of n edges and a part of the filtered
transaction (t′), find matching labels.

• simultaneous traversal, O(n + |t′|)

• binary search, O(|t′| log n) or O(n log |t′|)

• binary vector based, O(n)

• indexvector based, O(n)

Experiment: APRIORI is sensitive to the routing strategy
Winner: indexvector based

Runner up: simultaneous traversal
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4/5: storing frequent itemsets

Only frequent itemsets of size ` are needed for generating
candidates of size ` + 1.
Nodes that are not on a path to any candidate slow down
support count method.
• remove from the trie

• store maximum length values for each node
• differentiate edges

Experiments:
• run-time is insensitive
• memory need can be greatly reduced.
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5/5: deleting unimportant transactions

A filtered transaction is unimportant from the `
th iteration, if it

does not contain any (`− 1)-itemset candidate.

Heuristic: Unimportant transactions should be ignored.

Reasoning: They slow down support count (part of the trie is
visited).

Experiments: Ignoring unimportant transactions slows down
the algorithm.

Argument: It needs resources to determine if a transaction is
unimportant or not. In most cases transactions are important
(drawback of generate-and-test, breadth-first search method).
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Conclusion

In a trie-based FIM algorithms trie-related issues have to be
carefully examined.

Thank you for your attention!
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