Extremal stable graphs

¹Department of Stochastics Budapest University of Technology and Economics

²Department of Computer Science and Information Theory Budapest University of Technology and Economics

3 June, 2009

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 1 / 26

Outline

1 Introduction

3 Outline of proof

Application

Gyula Y. Katona (Hungary)

CTW09 2/26

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2 , then $G_2 \in \Pi$. (i. e. being non- Π is a hereditary graph property.)

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 3 / 26

- E - N

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2 , then $G_2 \in \Pi$. (*i. e. being non*- Π is a hereditary graph property.) What is the minimum number of edges in a graph $G \in \Pi$ on n vertices if removing any k edges (or vertices) from the graph still preserves Π ?

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 3 / 26

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2 , then $G_2 \in \Pi$. (i. e. being non- Π is a hereditary graph property.) What is the minimum number of edges in a graph $G \in \Pi$ on n vertices if removing any k edges (or vertices) from the graph still preserves Π ?

Examples:

• What is the minimum number of edges in a *k*-connected or *k*-edge connected graph?

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2 , then $G_2 \in \Pi$. (i. e. being non- Π is a hereditary graph property.) What is the minimum number of edges in a graph $G \in \Pi$ on n vertices if removing any k edges (or vertices) from the graph still preserves Π ?

Examples:

- What is the minimum number of edges in a *k*-connected or *k*-edge connected graph?
- What is the miminum number of edges in hypo-hamiltonian graph?

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2 , then $G_2 \in \Pi$. (i. e. being non- Π is a hereditary graph property.) What is the minimum number of edges in a graph $G \in \Pi$ on n vertices if removing any k edges (or vertices) from the graph still preserves Π ?

Examples:

- What is the minimum number of edges in a *k*-connected or *k*-edge connected graph?
- What is the miminum number of edges in hypo-hamiltonian graph?
- What is the mininum number of edges in graph that is still Hamiltonian after removing *k* edges (or vertices)?

4 E 5 4

We concentrate on the problem where Π is the property that *G* contains a given fixed subgraph *H*.

Gyula Y. Katona (Hungary)

CTW09 4 / 26

We concentrate on the problem where Π is the property that *G* contains a given fixed subgraph *H*. This clearly satisfies the assumption on Π .

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 4 / 26

We concentrate on the problem where Π is the property that *G* contains a given fixed subgraph *H*. This clearly satisfies the assumption on Π . We only consider simple, undirected graphs.

We concentrate on the problem where Π is the property that *G* contains a given fixed subgraph *H*. This clearly satisfies the assumption on Π . We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing any k edges of G, the resulting graph still contains (not necessarily spans) a subgraph isomorphic with H, then we say that G is k-stable with regard to H.

We concentrate on the problem where Π is the property that *G* contains a given fixed subgraph *H*. This clearly satisfies the assumption on Π . We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing any k edges of G, the resulting graph still contains (not necessarily spans) a subgraph isomorphic with H, then we say that G is k-stable with regard to H.

Definition

By $S_H(k)$ we denote the minimum number of edges in any k-stable graph.

We concentrate on the problem where Π is the property that *G* contains a given fixed subgraph *H*. This clearly satisfies the assumption on Π . We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing any k edges of G, the resulting graph still contains (not necessarily spans) a subgraph isomorphic with H, then we say that G is k-stable with regard to H.

Definition

By $S_H(k)$ we denote the minimum number of edges in any k-stable graph.

Note that there is no "in a graph with *n* vertices" in the definitio

▲ 同 ▶ ▲ ヨ ▶

Proposition

 $S_{P_2}(k) = k+1$

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 5 / 26

Proposition

 $S_{P_2}(k) = k + 1$

Extremal graph: Any graph with k + 1 edges.

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 5 / 26

Proposition

 $S_{P_2}(k) = k + 1$

Extremal graph: Any graph with k + 1 edges.

Lemma

For any graph H, we have $S_H(k) \ge k + |E(H)|$.

Gyula Y. Katona (Hungary)

CTW09 5 / 26

Proposition

 $S_{P_2}(k) = k + 1$

Extremal graph: Any graph with k + 1 edges.

Lemma

For any graph H, we have $S_H(k) \ge k + |E(H)|$.

Proof.

Otherwise there aren't enough edges to form *H*.

Gyula Y. Katona (Hungary)

An easy case: $H = P_3$

Proposition

 $S_{P_3}(k) = k + 2 = k + |E(P_3)|$

Gyula Y. Katona (Hungary)

Extremal stable graphs

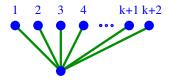
CTW09 6 / 26

An easy case: $H = P_3$

Proposition

$$S_{P_3}(k) = k + 2 = k + |E(P_3)|$$

Extremal graph: A star with k + 2 edges.



Gyula Y. Katona (Hungary)

CTW09 6 / 26

An other easy case: $H = 2P_2$

Proposition

 $S_{2P_2}(k) = k + 2 = k + |E(2P_2)|$

Gyula Y. Katona (Hungary)

CTW09 7/26

An other easy case: $H = 2P_2$

Proposition

 $S_{2P_2}(k) = k + 2 = k + |E(2P_2)|$

Extremal graph: k + 2 independent edges.

Gyula Y. Katona (Hungary)

CTW09 7 / 26

Proposition

Let H be fixed. (a) $S(k) \ge k + |E(H)|$. (b) $S(k) \le (|V(H)| + 1)k$ if k is large enough.

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 8 / 26

Proposition

Let H be fixed. (a) $S(k) \ge k + |E(H)|$. (b) $S(k) \le (|V(H)| + 1)k$ if k is large enough.

Proof.

(a) is trivial,

Gyula Y. Katona (Hungary)

Proposition

Let H be fixed. (a) $S(k) \ge k + |E(H)|$. (b) $S(k) \le (|V(H)| + 1)k$ if k is large enough.

Proof.

(a) is trivial,(b) is a consequence of Turán's theorem.

Gyula Y. Katona (Hungary)

CTW09 8 / 26

Proposition

Let H be fixed. (a) $S(k) \ge k + |E(H)|$. (b) $S(k) \le (|V(H)| + 1)k$ if k is large enough.

Proof.

(a) is trivial,(b) is a consequence of Turán's theorem.

For a fixed *H* graphs we are interested in the exact value of S(k) and also the extremal graphs.

Gyula Y. Katona (Hungary)

3 Outline of proof

4 Application

Gyula Y. Katona (Hungary)

Main result: $H = P_4$

Theorem

S(1) = 4, and for $k \ge 2$,

$$S(k)=k+\left\lceil \sqrt{2k+rac{9}{4}}+rac{3}{2}
ight
ceil.$$

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 10 / 26

Main result: $H = P_4$

Theorem

$$S(1) = 4$$
, and for $k \ge 2$,

$$S(k)=k+\left\lceil \sqrt{2k+rac{9}{4}}+rac{3}{2}
ight
ceil.$$

The above formula is equivalent with the following:

Theorem

S(1) = 4, S(2) = 6, and if $k \ge 3$,

$$\mathcal{S}(k) = \left\{ egin{array}{c} \mathcal{S}(k-1) + 2 & ext{if } k = \binom{\ell}{2} ext{ for some integer } \ell \ \mathcal{S}(k-1) + 1 & ext{otherwise} \end{array}
ight.$$

Gyula Y. Katona (Hungary)

CTW09 10 / 26

Application

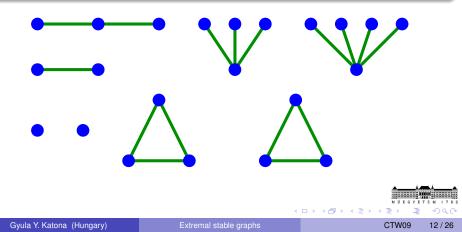
Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 11/26

Proposition

If G does not contain P_4 as a subgraph, then every component of G is a triangle or a star.



Proposition

If G is a graph with e edges on n vertices, then G is k-stable \iff the vertices of G cannot be covered by k + n - estars and any number of triangles.

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 13/26

Proposition

If G is a graph with e edges on n vertices, then G is k-stable \iff the vertices of G cannot be covered by k + n - estars and any number of triangles.

Proof.

G is not *k*-stable if there is a subgraph with e - k edges of *G* such that it does not contain P_4 .

Proposition

If G is a graph with e edges on n vertices, then G is k-stable \iff the vertices of G cannot be covered by k + n - estars and any number of triangles.

Proof.

G is not *k*-stable if there is a subgraph with e - k edges of *G* such that it does not contain P_4 .

That subgraph is a union of triangles and stars, and the number of stars is n - (e - k).

Proposition

If G is a graph with e edges on n vertices, then G is k-stable \iff the vertices of G cannot be covered by k + n - estars and any number of triangles.

Proof.

G is not *k*-stable if there is a subgraph with e - k edges of *G* such that it does not contain P_4 .

That subgraph is a union of triangles and stars, and the number of stars is n - (e - k).

(In triangles, the number of edges is equal to the number of vertices, while in a star, the number of edges is 1 less, so we "lose" an edge for every star.)

Examples for the lower bound

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

Examples for the lower bound

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8

Gyula Y. Katona (Hungary)

CTW09 14 / 26

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

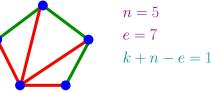
k = 3, S(k) = 8

$$n = 5$$
$$e = 7$$
$$k + n - e = 1$$

Gyula Y. Katona (Hungary)

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8



Gyula Y. Katona (Hungary)

CTW09 14/26

A (10) > A (10) > A

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8

Gyula Y. Katona (Hungary)

CTW09 14 / 26

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8

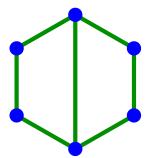


Gyula Y. Katona (Hungary)

CTW09 14 / 26

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

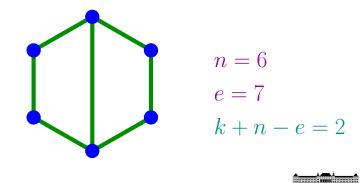
k = 3, S(k) = 8



Gyula Y. Katona (Hungary)

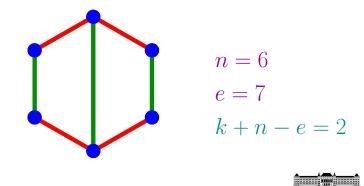
We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8



We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8



We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 16 / 26

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8

$$n = 8$$

$$e = 7$$

$$k + n - e = 4$$

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 3, S(k) = 8

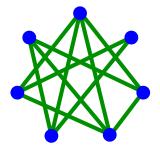
$$n = 8$$

$$e = 7$$

$$k + n - e = 4$$

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 6, S(k) = 12



MÜEGYETEM 1782

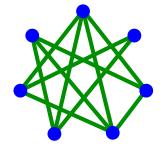
Gyula Y. Katona (Hungary)

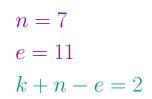
Extremal stable graphs

CTW09 17 / 26

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 6, S(k) = 12





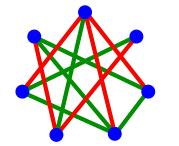
4 E N

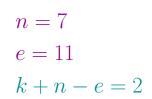
Gyula Y. Katona (Hungary)

CTW09 17/26

We need to show that any graph with < S(k) edges is not *k*-stable \iff the vertices cannot be covered by k + n - e stars and any number of triangles.

k = 6, S(k) = 12





Gyula Y. Katona (Hungary)

Lower bound

Definition

Given a graph G with $e \ge 5$ edges on n vertices, let ℓ be the largest integer such that $e \ge \binom{\ell-1}{2} + 1$ (that is, ℓ is the smallest possible number of vertices that can fit e edges), and let $s = n - \ell$. s > 0 because of the definition of ℓ ; s measures how 'spread-out' G is.

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 18 / 26

Lower bound

Definition

Given a graph G with $e \ge 5$ edges on n vertices, let ℓ be the largest integer such that $e \ge \binom{\ell-1}{2} + 1$ (that is, ℓ is the smallest possible number of vertices that can fit e edges), and let $s = n - \ell$.

 $s \ge 0$ because of the definition of ℓ ; s measures how 'spread-out' G is.

Theorem (Lower bound)

If the graph G has $e \ge 5$ edges, then G can be covered by s + 1 stars and any number of triangles.

Lower bound

Definition

Given a graph G with $e \ge 5$ edges on n vertices, let ℓ be the largest integer such that $e \ge \binom{\ell-1}{2} + 1$ (that is, ℓ is the smallest possible number of vertices that can fit e edges), and let $s = n - \ell$.

 $s \ge 0$ because of the definition of ℓ ; s measures how 'spread-out' G is.

Theorem (Lower bound)

If the graph G has $e \ge 5$ edges, then G can be covered by s + 1 stars and any number of triangles.

$$S(k) \ge k + \left\lceil \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil$$
 follows directly from the above.

Gyula Y. Katona (Hungary)

For different values of *s*, the methods are different.

Gyula Y. Katona (Hungary)

Extremal stable graphs

• • • • • • •

CTW09 19 / 26

For different values of *s*, the methods are different.

Lemma (s = 0 or s = 1)

The vertices can be covered by s + 1 stars and at most 1 triangle.

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 19/26

For different values of *s*, the methods are different.

Lemma (s = 0 or s = 1)

The vertices can be covered by s + 1 stars and at most 1 triangle.

The proof is long but elementary.

Gyula Y. Katona (Hungary)

CTW09 19/26

For different values of *s*, the methods are different.

Lemma (s = 0 or s = 1)

The vertices can be covered by s + 1 stars and at most 1 triangle.

The proof is long but elementary.

Lemma ($s \ge 2$)

The vertices can be covered by s + 1 stars.

Gyula Y. Katona (Hungary)

CTW09 19/26

For different values of *s*, the methods are different.

Lemma (s = 0 or s = 1)

The vertices can be covered by s + 1 stars and at most 1 triangle.

The proof is long but elementary.

Lemma ($s \ge 2$)

The vertices can be covered by s + 1 stars.

No triangles are needed.

MÜEGYETEM 178

For different values of *s*, the methods are different.

Lemma (s = 0 or s = 1)

The vertices can be covered by s + 1 stars and at most 1 triangle.

The proof is long but elementary.

Lemma $(s \ge 2)$

The vertices can be covered by s + 1 stars.

No triangles are needed.

If only stars are used, then the centers of the stars forms a "dominating vertex set".

The proof uses the following theorem:

Theorem (Vizing, 1965)

If G is a connected graph on n vertices and e edges, then the vertices can be dominated by a set of size

$$\beta(G) \leq \left\lfloor \frac{1+2n-\sqrt{8e+1}}{2} \right\rfloor$$

if
$$e \leq \frac{(n-2)(n-3)}{2}$$
.

MÜEGYETEM 1782

Theorem (Upper bound)

$$S(1) = 4$$
, and for $k \ge 2$, $S(k) \le k + \left\lceil \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil$.

Gyula Y. Katona (Hungary)

Theorem (Upper bound)

$$S(1) = 4$$
, and for $k \ge 2$, $S(k) \le k + \left\lceil \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil$.

Rephrased for coverings:

Theorem

For every $k \ge 2$, there exists a graph *G* with $e = k + \left| \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right|$ edges that is *k*-stable, that is, it cannot be covered by s = k + n - e stars and any number of triangles.

Gyula Y. Katona (Hungary)

CTW09 21 / 26

Proof.

Let ℓ be the unique integer for which $\binom{\ell-2}{2} \leq k \leq \binom{\ell-1}{2} - 1$. There are 2 types of constructions:

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 22 / 26

Proof.

Let ℓ be the unique integer for which $\binom{\ell-2}{2} \leq k \leq \binom{\ell-1}{2} - 1$. There are 2 types of constructions:

1 If $3 \nmid \ell$, then an almost complete graph,

Gyula Y. Katona (Hungary)

Proof.

Let ℓ be the unique integer for which $\binom{\ell-2}{2} \leq k \leq \binom{\ell-1}{2} - 1$. There are 2 types of constructions:

- If $3 \nmid \ell$, then an almost complete graph,
- 2 If $3|\ell$, then a complete graph with pendant edges.

Gyula Y. Katona (Hungary)

Constructions

<u>k</u>	S (k)	extremal graph
1	4	
1	6	X
1	6	X
1	6	X

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 23 / 26

Outline

1 Introduction

Outline of proof

Gyula Y. Katona (Hungary)

Extremal stable graphs

CTW09 24 / 26

Application

Definition

A v_1, v_2, \ldots, v_n permutation of the vertices of an *r*-regular hypergraph is a Hamiltonian chain if any *r* (cyclically) consecutive vertices form an edge.

Definition

A hypergraph is k-edge-hamiltonian if it has the property that removing any k edges, the resulting hypergraph still contains a Hamiltonian chain.

Application

Definition

A v_1, v_2, \ldots, v_n permutation of the vertices of an *r*-regular hypergraph is a Hamiltonian chain if any *r* (cyclically) consecutive vertices form an edge.

Definition

A hypergraph is k-edge-hamiltonian if it has the property that removing any k edges, the resulting hypergraph still contains a Hamiltonian chain.

Theorem (Frankl, Katona)

For every 3-regular k-edge-hamiltonian hypergraph with h edges on n vertices,

$$h\geq rac{\mathcal{S}(k)}{3}n.$$

Bibliography

P. FRANKL, G. Y. KATONA, Extremal *k*-edge-hamiltonian hypergraphs, *Discrete Mathematics* (2008) **308**, pp. 1415–1424

 M. PAOLI, W. W. WONG, C. K. WONG, Minimum *k*-Hamiltonian graphs. II., *J. Graph Theory* (1986) **10**, no. 1, pp. 79–95

D. RAUTENBACH,

A linear Vizing-like relation between the size and the domination number of a graph,

J. Graph Theory (1999) 31, no. 4, pp. 297–302

V. G. VIZING,

An estimate of the external stability number of a graph, *Dokl. Akad. Nauk SSSR* (1965) **52**, pp. 729–731