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Introduction

Let T be a graph property so that if Gy € Il and Gy is a subgraph of
G, then Go € IN. (i. e. being non-I1 is a hereditary graph property.)
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Introduction

Let T be a graph property so that if Gy € Il and Gy is a subgraph of
G, then Go € IN. (i. e. being non-I1 is a hereditary graph property.)
What is the minimum number of edges in a graph G € I on n vertices
if removing any k edges (or vertices) from the graph still preserves I1?
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Introduction

Let T be a graph property so that if Gy € Il and Gy is a subgraph of
G, then Go € IN. (i. e. being non-I1 is a hereditary graph property.)
What is the minimum number of edges in a graph G € I on n vertices
if removing any k edges (or vertices) from the graph still preserves 7?

Examples:

@ What is the minimum number of edges in a k-connected or
k-edge connected graph?
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Introduction

Let T be a graph property so that if Gy € Il and Gy is a subgraph of
G, then Go € IN. (i. e. being non-I1 is a hereditary graph property.)
What is the minimum number of edges in a graph G € I on n vertices
if removing any k edges (or vertices) from the graph still preserves 7?

Examples:

@ What is the minimum number of edges in a k-connected or
k-edge connected graph?

@ What is the miminum number of edges in hypo-hamiltonian graph?

@ What is the mininum number of edges in graph that is still
Hamiltonian after removing k edges (or vertices)?
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Notations and definitions

We concentrate on the problem where I is the property that G
contains a given fixed subgraph H.
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We concentrate on the problem where I is the property that G
contains a given fixed subgraph H.

This clearly satisfies the assumption on 1.

We only consider simple, undirected graphs.
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Notations and definitions

We concentrate on the problem where I is the property that G
contains a given fixed subgraph H.

This clearly satisfies the assumption on 1.

We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing
any k edges of G, the resulting graph still contains (not necessarily

spans) a subgraph isomorphic with H, then we say that G is k-stable
with regard to H.
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Notations and definitions

We concentrate on the problem where I is the property that G
contains a given fixed subgraph H.

This clearly satisfies the assumption on 1.

We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing
any k edges of G, the resulting graph still contains (not necessarily

spans) a subgraph isomorphic with H, then we say that G is k-stable
with regard to H.

Definition

By Sn(k) we denote the minimum number of edges in any k-stable
graph.

| N\
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Notations and definitions

We concentrate on the problem where I is the property that G
contains a given fixed subgraph H.

This clearly satisfies the assumption on 1.

We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing
any k edges of G, the resulting graph still contains (not necessarily
spans) a subgraph isomorphic with H, then we say that G is k-stable
with regard to H.

Definition
By Sn(k) we denote the minimum number of edges in any k-stable
graph.

| N\

Note that there is no “in a graph with n vertices” in the definitiof
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A trivial case: H = P»

Proposition
Sp,(k) = k + 1
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A trivial case: H = P»

Proposition
Sp,(k) = k + 1

Extremal graph: Any graph with k + 1 edges.
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A trivial case: H = P>

Proposition
Sp,(k) = k + 1

Extremal graph: Any graph with k + 1 edges.

For any graph H, we have Sy (k) > k + |E(H)|.
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A trivial case: H = P»

Proposition
Sp,(k) = k + 1

Extremal graph: Any graph with k + 1 edges.

For any graph H, we have Sy (k) > k + |E(H)|.

Otherwise there aren’t enough edges to form H. O I
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An easy case: H = P3

Proposition
Sp,(k) = k +2 =k + |E(P3)|
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An easy case: H = P3

Proposition
Sp,(k) = k +2 =k + |E(P3)|

Extremal graph: A star with k + 2 edges.

1 2 3 4 k+1k+2
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An other easy case: H = 2P»

Proposition
Sop,(K) = k+2 = k + |[E(2P,)|
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An other easy case: H = 2P»

Proposition
Sop,(K) = k+2 = k + |[E(2P,)|

Extremal graph: k + 2 independent edges.
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Linear bounds

Proposition

Let H be fixed.
(a) S(k) > k + |E(H)|.
(b) S(k) < (|V(H)| + 1)k if k is large enough.
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Linear bounds

Proposition

Let H be fixed.
(@) S(k) > k + [E(H)|.
(b) S(k) < (|V(H)| + 1)k if k is large enough.

(a) is trivial,
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Linear bounds

Proposition

Let H be fixed.
(@) S(k) > k + [E(H)|.
(b) S(k) < (|V(H)| + 1)k if k is large enough.

(a) is trivial,
(b) is a consequence of Turan’s theorem.
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Linear bounds

Proposition

Let H be fixed.
(@) S(k) > k + [E(H)|.
(b) S(k) < (|V(H)| + 1)k if k is large enough.

(a) is trivial,
(b) is a consequence of Turan’s theorem. O

For a fixed H graphs we are interested in the exact value of S(k) and
also the extremal graphs.
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Main result: H = P4

S(1) =4, and fork > 2,

S(k) =k + {\/2k+§+g-‘.
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Main result: H = P4

S(1) =4, and for k > 2,

S(k) = k + {\/2k+i+g-‘.

The above formula is equivalent with the following:

S(1) = 4,5(2) = 6, and ifk > 3,

S(K) = S(k—1)+2 if k = (5) for some integer ¢
| S(k—1)+1 otherwise
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Covering with triangles and stars

Proposition

If G does not contain P, as a subgraph, then every component of G is
a triangle or a star.

— Y WV
SANEAN
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Covering with triangles and stars

Proposition

If G is a graph with e edges on n vertices, then
G is k-stable < the vertices of G cannot be covered by k + n— e
stars and any number of triangles.
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Covering with triangles and stars

Proposition
If G is a graph with e edges on n vertices, then

G is k-stable < the vertices of G cannot be covered by k + n— e

stars and any number of triangles.

Proof.

| \

G is not k-stable if there is a subgraph with e — k edges of G such that

it does not contain Pjy.
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Covering with triangles and stars

Proposition

If G is a graph with e edges on n vertices, then
G is k-stable < the vertices of G cannot be covered by k + n— e
stars and any number of triangles.

Proof.

G is not k-stable if there is a subgraph with e — k edges of G such that
it does not contain Pjy.

That subgraph is a union of triangles and stars, and the number of
starsis n — (e — k).

| A\
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Covering with triangles and stars

Proposition

If G is a graph with e edges on n vertices, then
G is k-stable < the vertices of G cannot be covered by k + n— e
stars and any number of triangles.

Proof.
G is not k-stable if there is a subgraph with e — k edges of G such that
it does not contain Pjy.

That subgraph is a union of triangles and stars, and the number of
starsis n — (e — k).

(In triangles, the number of edges is equal to the number of vertices,
while in a star, the number of edges is 1 less, so we “lose” an edge for
every star.)

| A\

Gyula Y. Katona (Hungary) Extremal stable graphs CTWO09 13/26



Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable
<= the vertices cannot be covered by k + n — e stars and any
number of triangles.
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable

<= the vertices cannot be covered by k + n — e stars and any
number of triangles.

k=23,S(k)=8
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable

<= the vertices cannot be covered by k + n — e stars and any
number of triangles.

k=23,S(k)=8
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable

<= the vertices cannot be covered by k + n — e stars and any
number of triangles.

k=3,S(k)=38
n=>5
e =
k+n—e=1
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable
<= the vertices cannot be covered by k + n — e stars and any
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable
<= the vertices cannot be covered by k + n — e stars and any
number of triangles.

k=3,S(k)=8
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable

<= the vertices cannot be covered by k + n — e stars and any
number of triangles.

k =86,S(k) =12
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable

<= the vertices cannot be covered by k + n — e stars and any
number of triangles.

k =86,S(k) =12

n:
e =11
k+n—e=2
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k-stable

<= the vertices cannot be covered by k + n — e stars and any
number of triangles.

k =86,S(k) =12

n:
e =11
k+n—e=2
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Lower bound

Definition

Given a graph G with e > 5 edges on n vertices, let ¢ be the largest
integer such that e > (“3') + 1 (that is, ¢ is the smallest possible
number of vertices that can fit e edges), and lets = n — ¢.

s > 0 because of the definition of {; s measures how 'spread-out’ G is.
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Lower bound

Definition

Given a graph G with e > 5 edges on n vertices, let ¢ be the largest
integer such that e > (“;') + 1 (that is, ¢ is the smallest possible
number of vertices that can fit e edges), and lets = n — ¢.

s > 0 because of the definition of {; s measures how 'spread-out’ G is.

v

Theorem (Lower bound)

If the graph G has e > 5 edges, then G can be covered by s + 1 stars

and any number of triangles.

A,
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Lower bound

Definition

Given a graph G with e > 5 edges on n vertices, let ¢ be the largest
integer such that e > (“;') + 1 (that is, ¢ is the smallest possible
number of vertices that can fit e edges), and lets = n — ¢.

s > 0 because of the definition of £; s measures how ‘spread-out’ G is.

v

Theorem (Lower bound)

If the graph G has e > 5 edges, then G can be covered by s + 1 stars
and any number of triangles.

A,

S(k) > k + L [2k + 9 + gw follows directly from the above.
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Lower bound - cases

For different values of s, the methods are different.
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Lower bound - cases

For different values of s, the methods are different.

Lemma(s=0o0ors=1)
The vertices can be covered by s + 1 stars and at most 1 triangle.
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Lower bound - cases

For different values of s, the methods are different.

Lemma(s=0o0ors=1)
The vertices can be covered by s + 1 stars and at most 1 triangle.

The proof is long but elementary.
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Lower bound - cases

For different values of s, the methods are different.

Lemma(s=0o0ors=1)
The vertices can be covered by s + 1 stars and at most 1 triangle.

The proof is long but elementary.

The vertices can be covered by s + 1 stars. l

No triangles are needed.
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Lower bound - cases

For different values of s, the methods are different.

Lemma(s=0o0ors=1)
The vertices can be covered by s + 1 stars and at most 1 triangle.

The proof is long but elementary.

The vertices can be covered by s + 1 stars. l

No triangles are needed.

If only stars are used, then the centers of the stars forms a "dominating
vertex set”.
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Lower bound - cases

The proof uses the following theorem:

Theorem (Vizing, 1965)

If G is a connected graph on n vertices and e edges, then the vertices
can be dominated by a set of size

5(G) < {1 +2n—2mJ

ife < %
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Upper bound

Theorem (Upper bound)

SU):&amekzzSMk§K+L@k+%+%_
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Upper bound

Theorem (Upper bound)

&U:4ﬁmMykzaamgk+[¢%+g+ﬂ_

Rephrased for coverings:

For every k > 2, there exists a graph G with e = k + L 2k + 9 + g]

edges that is k-stable, that is, it cannot be covered by s = k +n— e
stars and any number of triangles.
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Upper bound

Let ¢ be the unique integer for which (3?) < k < (37) — 1.
There are 2 types of constructions:
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Upper bound

Let ¢ be the unique integer for which (3?) < k < (37) — 1.
There are 2 types of constructions:

@ If 314, then an almost complete graph,
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Upper bound

Let ¢ be the unique integer for which (3?) < k < (37) — 1.
There are 2 types of constructions:

@ If 314, then an almost complete graph,
@ If 3|¢, then a complete graph with pendant edges.
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Constructions

| k | S(k) | extremal graph |

pxpxpzgm
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Application

Definition

A vy, vo,..., Vv, permutation of the vertices of an r-regular hypergraph
is a Hamiltonian chain if any r (cyclically) consecutive vertices form an
edge.

Definition

A hypergraph is k-edge-hamiltonian if it has the property that removing
any k edges, the resulting hypergraph still contains a Hamiltonian
chain.
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Application

Definition

A vy, vo,..., Vv, permutation of the vertices of an r-regular hypergraph
is a Hamiltonian chain if any r (cyclically) consecutive vertices form an
edge.

Definition

A hypergraph is k-edge-hamiltonian if it has the property that removing
any k edges, the resulting hypergraph still contains a Hamiltonian
chain.

Theorem (Frankl, Katona)

For every 3-regular k-edge-hamiltonian hypergraph with h edges on n
vertices,
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