Extremal stable graphs

Illés Horváth1 \hspace{1cm} Gyula Y. Katona2

1Department of Stochastics
Budapest University of Technology and Economics

2Department of Computer Science and Information Theory
Budapest University of Technology and Economics

3 June, 2009
Outline

1. Introduction
2. Main result
3. Outline of proof
4. Application
Let \(\Pi \) be a graph property so that if \(G_1 \in \Pi \) and \(G_1 \) is a subgraph of \(G_2 \), then \(G_2 \in \Pi \). (i.e. being non-\(\Pi \) is a hereditary graph property.)

What is the minimum number of edges in a graph \(G \in \Pi \) on \(n \) vertices if removing any \(k \) edges (or vertices) from the graph still preserves \(\Pi \)?

Examples:
- What is the minimum number of edges in a \(k \)-connected or \(k \)-edge connected graph?
- What is the minimum number of edges in a hypo-hamiltonian graph?
- What is the minimum number of edges in a graph that is still Hamiltonian after removing \(k \) edges (or vertices)?
Introduction

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2, then $G_2 \in \Pi$. (i.e. being non-Π is a hereditary graph property.)

What is the minimum number of edges in a graph $G \in \Pi$ on n vertices if removing any k edges (or vertices) from the graph still preserves Π?

Examples:
- What is the minimum number of edges in a k-connected or k-edge connected graph?
- What is the minimum number of edges in a hypo-hamiltonian graph?
- What is the minimum number of edges in a graph that is still Hamiltonian after removing k edges (or vertices) from the graph still preserves Π?
Introduction

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2, then $G_2 \in \Pi$. (i.e. being non-Π is a hereditary graph property.)

What is the minimum number of edges in a graph $G \in \Pi$ on n vertices if removing any k edges (or vertices) from the graph still preserves Π?

Examples:

- What is the minimum number of edges in a k-connected or k-edge connected graph?
Introduction

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2, then $G_2 \in \Pi$. (i.e. being non-Π is a hereditary graph property.)

What is the minimum number of edges in a graph $G \in \Pi$ on n vertices if removing any k edges (or vertices) from the graph still preserves Π?

Examples:

- What is the minimum number of edges in a k-connected or k-edge connected graph?
- What is the minimum number of edges in hypo-hamiltonian graph?
Introduction

Question

Let Π be a graph property so that if $G_1 \in \Pi$ and G_1 is a subgraph of G_2, then $G_2 \in \Pi$. (i.e. being non-Π is a hereditary graph property.)

What is the minimum number of edges in a graph $G \in \Pi$ on n vertices if removing any k edges (or vertices) from the graph still preserves Π?

Examples:

- What is the minimum number of edges in a k-connected or k-edge connected graph?
- What is the minimum number of edges in hypo-hamiltonian graph?
- What is the minimum number of edges in graph that is still Hamiltonian after removing k edges (or vertices)?
Notations and definitions

We concentrate on the problem where Π is the property that G contains a given fixed subgraph H.

Definition (Stability) Let H be a fixed graph. If the graph G has the property that removing any k edges of G, the resulting graph still contains (not necessarily spans) a subgraph isomorphic with H, then we say that G is k-stable with regard to H.

Definition By $S_{H}(k)$ we denote the minimum number of edges in any k-stable graph.

Note that there is no "in a graph with n vertices" in the definition.
Notations and definitions

We concentrate on the problem where \(\Pi \) is the property that \(G \) contains a given fixed subgraph \(H \).
This clearly satisfies the assumption on \(\Pi \).
Notations and definitions

We concentrate on the problem where Π is the property that G contains a given fixed subgraph H. This clearly satisfies the assumption on Π. We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing any k edges of G, the resulting graph still contains (not necessarily spans) a subgraph isomorphic with H, then we say that G is k-stable with regard to H.

Definition

By $S_{H}(k)$ we denote the minimum number of edges in any k-stable graph. Note that there is no "in a graph with n vertices" in the definition.
Notations and definitions

We concentrate on the problem where Π is the property that G contains a given fixed subgraph H. This clearly satisfies the assumption on Π. We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing any k edges of G, the resulting graph still contains (not necessarily spans) a subgraph isomorphic with H, then we say that G is k-stable with regard to H.

Definition

By $S_{H}(k)$ we denote the minimum number of edges in any k-stable graph. Note that there is no "in a graph with n vertices" in the definition.
Notations and definitions

We concentrate on the problem where Π is the property that G contains a given fixed subgraph H. This clearly satisfies the assumption on Π. We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing any k edges of G, the resulting graph still contains (not necessarily spans) a subgraph isomorphic with H, then we say that G is k-stable with regard to H.

Definition

By $S_H(k)$ we denote the minimum number of edges in any k-stable graph.
Notations and definitions

We concentrate on the problem where Π is the property that G contains a given fixed subgraph H. This clearly satisfies the assumption on Π. We only consider simple, undirected graphs.

Definition (Stability)

Let H be a fixed graph. If the graph G has the property that removing any k edges of G, the resulting graph still contains (not necessarily spans) a subgraph isomorphic with H, then we say that G is k-stable with regard to H.

Definition

By $S_H(k)$ we denote the minimum number of edges in any k-stable graph.

Note that there is no “in a graph with n vertices” in the definition.
A trivial case: $H = P_2$

Proposition

$S_{P_2}(k) = k + 1$
A trivial case: $H = P_2$

Proposition

$S_{P_2}(k) = k + 1$

Extremal graph: Any graph with $k + 1$ edges.
A trivial case: $H = P_2$

Proposition

$S_{P_2}(k) = k + 1$

Extremal graph: Any graph with $k + 1$ edges.

Lemma

*For any graph H, we have $S_H(k) \geq k + |E(H)|$.***
A trivial case: $H = P_2$

Proposition

$S_{P_2}(k) = k + 1$

Extremal graph: Any graph with $k + 1$ edges.

Lemma

For any graph H, we have $S_H(k) \geq k + |E(H)|$.

Proof.

Otherwise there aren’t enough edges to form H. □
An easy case: $H = P_3$

Proposition

$S_{P_3}(k) = k + 2 = k + |E(P_3)|$
An easy case: $H = P_3$

Proposition

$S_{P_3}(k) = k + 2 = k + |E(P_3)|$

Extremal graph: A star with $k + 2$ edges.
An other easy case: $H = 2P_2$

Proposition

$$S_{2P_2}(k) = k + 2 = k + |E(2P_2)|$$
An other easy case: $H = 2P_2$

Proposition

\[S_{2P_2}(k) = k + 2 = k + |E(2P_2)| \]

Extremal graph: $k + 2$ independent edges.
Proposition

Let H be fixed.

(a) $S(k) \geq k + |E(H)|$.

(b) $S(k) \leq (|V(H)| + 1)k$ if k is large enough.
Linear bounds

Proposition

Let H be fixed.

(a) $S(k) \geq k + |E(H)|$.

(b) $S(k) \leq (|V(H)| + 1)k$ if k is large enough.

Proof.

(a) is trivial,
Linear bounds

Proposition

Let H be fixed.

(a) $S(k) \geq k + |E(H)|$.

(b) $S(k) \leq (|V(H)| + 1)k$ if k is large enough.

Proof.

(a) is trivial,

(b) is a consequence of Turán’s theorem.
Linear bounds

Proposition

Let H be fixed.

(a) $S(k) \geq k + |E(H)|$.

(b) $S(k) \leq (|V(H)| + 1)k$ if k is large enough.

Proof.

(a) is trivial,

(b) is a consequence of Turán’s theorem.

For a fixed H graphs we are interested in the exact value of $S(k)$ and also the extremal graphs.
Outline

1. Introduction
2. Main result
3. Outline of proof
4. Application
Main result: $H = P_4$

Theorem

$S(1) = 4$, and for $k \geq 2$,

$$S(k) = k + \left\lceil \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil.$$
Main result: $H = P_4$

Theorem

$S(1) = 4$, and for $k \geq 2$,

$$S(k) = k + \left\lceil \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil.$$

The above formula is equivalent with the following:

Theorem

$S(1) = 4$, $S(2) = 6$, and if $k \geq 3$,

$$S(k) = \begin{cases} S(k - 1) + 2 & \text{if } k = \binom{\ell}{2} \text{ for some integer } \ell \\ S(k - 1) + 1 & \text{otherwise} \end{cases}.$$
Outline

1. Introduction
2. Main result
3. Outline of proof
4. Application

Gyula Y. Katona (Hungary)
Extremal stable graphs

CTW09 11 / 26
Covering with triangles and stars

Proposition

If G does not contain \(P_4 \) as a subgraph, then every component of G is a triangle or a star.
Proposition

If G is a graph with e edges on n vertices, then
G is k-stable \iff the vertices of G cannot be covered by $k + n - e$
stars and any number of triangles.

Proof.
G is not k-stable if there is a subgraph with $e - k$ edges of G
such that it does not contain P_4.
That subgraph is a union of triangles and stars, and the number of
stars is $n - (e - k)$.
(In triangles, the number of edges is equal to the number of vertices,
while in a star, the number of edges is 1 less, so we “lose” an edge for
every star.)
Covering with triangles and stars

Proposition

If G is a graph with e edges on n vertices, then G is k-stable \iff the vertices of G cannot be covered by $k + n - e$ stars and any number of triangles.

Proof.

G is not k-stable if there is a subgraph with $e - k$ edges of G such that it does not contain P_4.
Covering with triangles and stars

Proposition

If G is a graph with e edges on n vertices, then G is k-stable \iff the vertices of G cannot be covered by $k + n - e$ stars and any number of triangles.

Proof.

G is not k-stable if there is a subgraph with $e - k$ edges of G such that it does not contain P_4. That subgraph is a union of triangles and stars, and the number of stars is $n - (e - k)$.
Proposition

If G is a graph with e edges on n vertices, then G is k-stable \iff the vertices of G cannot be covered by $k + n - e$ stars and any number of triangles.

Proof.

G is not k-stable if there is a subgraph with $e - k$ edges of G such that it does not contain P_4. That subgraph is a union of triangles and stars, and the number of stars is $n - (e - k)$. (In triangles, the number of edges is equal to the number of vertices, while in a star, the number of edges is 1 less, so we “lose” an edge for every star.)
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.
Examples for the lower bound

We need to show that any graph with \(< S(k)\) edges is not \(k\)-stable
\[\iff\] the vertices cannot be covered by \(k + n - e\) stars and any number of triangles.

\(k = 3, S(k) = 8\)
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 3, S(k) = 8$
Examples for the lower bound

We need to show that any graph with $S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 3, S(k) = 8$

$n = 5$
$e = 7$
$k + n - e = 1$
Examples for the lower bound

We need to show that any graph with \(< S(k)\) edges is not \(k\)-stable \(\iff\) the vertices cannot be covered by \(k + n - e\) stars and any number of triangles.

\[k = 3, S(k) = 8\]

\[n = 5\]
\[e = 7\]
\[k + n - e = 1\]
Examples for the lower bound

We need to show that any graph with \(< S(k)\) edges is not \(k\)-stable \iff \ the vertices cannot be covered by \(k + n - e\) stars and any number of triangles.

\(k = 3, S(k) = 8\)

\[\begin{align*}
n &= 5 \\
e &= 7 \\
k + n - e &= 1
\end{align*}\]
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 3, S(k) = 8$

$n = 5$
$e = 7$
$k + n - e = 1$
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 3, S(k) = 8$
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 3, S(k) = 8$

$n = 6$

$e = 7$

$k + n - e = 2$
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable ⇐⇒ the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 3, S(k) = 8$

$n = 6$
$e = 7$
$k + n - e = 2$
Examples for the lower bound

We need to show that any graph with \(< S(k)\) edges is not \(k\)-stable \iff\ the vertices cannot be covered by \(k + n - e\) stars and any number of triangles.

\(k = 3, S(k) = 8\)
Examples for the lower bound

We need to show that any graph with \(< S(k) \) edges is not \(k \)-stable \(\iff \) the vertices cannot be covered by \(k + n - e \) stars and any number of triangles.

\(k = 3, S(k) = 8 \)

\(n = 8 \)
\(e = 7 \)
\(k + n - e = 4 \)
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 3, S(k) = 8$

$n = 8$
$e = 7$
$k + n - e = 4$
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 6, S(k) = 12$
Examples for the lower bound

We need to show that any graph with \(< S(k)\) edges is not \(k\)-stable \iff the vertices cannot be covered by \(k + n - e\) stars and any number of triangles.

\(k = 6, S(k) = 12\)

\(n = 7\)
\(e = 11\)
\(k + n - e = 2\)
Examples for the lower bound

We need to show that any graph with $< S(k)$ edges is not k-stable \iff the vertices cannot be covered by $k + n - e$ stars and any number of triangles.

$k = 6$, $S(k) = 12$

$n = 7$
$e = 11$
$k + n - e = 2$
Lower bound

Definition

Given a graph G with $e \geq 5$ edges on n vertices, let ℓ be the largest integer such that $e \geq \binom{\ell-1}{2} + 1$ (that is, ℓ is the smallest possible number of vertices that can fit e edges), and let $s = n - \ell$. $s \geq 0$ because of the definition of ℓ; s measures how ‘spread-out’ G is.
Lower bound

Definition

Given a graph G with $e \geq 5$ edges on n vertices, let ℓ be the largest integer such that $e \geq \left(\frac{\ell-1}{2}\right) + 1$ (that is, ℓ is the smallest possible number of vertices that can fit e edges), and let $s = n - \ell$.

$s \geq 0$ because of the definition of ℓ; s measures how 'spread-out' G is.

Theorem (Lower bound)

If the graph G has $e \geq 5$ edges, then G can be covered by $s + 1$ stars and any number of triangles.
Lower bound

Definition

Given a graph G with $e \geq 5$ edges on n vertices, let ℓ be the largest integer such that $e \geq \left(\frac{\ell-1}{2}\right) + 1$ (that is, ℓ is the smallest possible number of vertices that can fit e edges), and let $s = n - \ell$. $s \geq 0$ because of the definition of ℓ; s measures how 'spread-out' G is.

Theorem (Lower bound)

If the graph G has $e \geq 5$ edges, then G can be covered by $s + 1$ stars and any number of triangles.

$S(k) \geq k + \left[\sqrt{2k + \frac{9}{4} + \frac{3}{2}}\right]$ follows directly from the above.
Lower bound - cases

For different values of s, the methods are different.
Lower bound - cases

For different values of s, the methods are different.

Lemma ($s = 0$ or $s = 1$)

*The vertices can be covered by $s + 1$ stars and *at most* 1 triangle.*
Lower bound - cases

For different values of s, the methods are different.

Lemma ($s = 0$ or $s = 1$)

The vertices can be covered by $s + 1$ stars and at most 1 triangle.

The proof is long but elementary.
Lower bound - cases

For different values of s, the methods are different.

Lemma ($s = 0$ or $s = 1$)

The vertices can be covered by $s + 1$ stars and at most 1 triangle.

The proof is long but elementary.

Lemma ($s \geq 2$)

The vertices can be covered by $s + 1$ stars.
Lower bound - cases

For different values of s, the methods are different.

Lemma ($s = 0$ or $s = 1$)

The vertices can be covered by $s + 1$ stars and at most 1 triangle.

The proof is long but elementary.

Lemma ($s \geq 2$)

The vertices can be covered by $s + 1$ stars.

No triangles are needed.
Lower bound - cases

For different values of s, the methods are different.

Lemma ($s = 0$ or $s = 1$)

The vertices can be covered by $s + 1$ stars and at most 1 triangle.

The proof is long but elementary.

Lemma ($s \geq 2$)

The vertices can be covered by $s + 1$ stars.

No triangles are needed.

If only stars are used, then the centers of the stars forms a ”dominating vertex set”.

Gyula Y. Katona (Hungary) Extremal stable graphs CTW09 19 / 26
The proof uses the following theorem:

Theorem (Vizing, 1965)

If G is a connected graph on n vertices and e edges, then the vertices can be dominated by a set of size

$$\beta(G) \leq \left\lfloor \frac{1 + 2n - \sqrt{8e + 1}}{2} \right\rfloor$$

if $e \leq \frac{(n-2)(n-3)}{2}$.
Theorem (Upper bound)

\[S(1) = 4, \text{ and for } k \geq 2, S(k) \leq k + \left\lceil \sqrt{2k + \frac{9}{4}} + \frac{3}{2} \right\rceil. \]
Upper bound

Theorem (Upper bound)

\[S(1) = 4, \text{ and for } k \geq 2, \ S(k) \leq k + \left\lceil \sqrt{2k + \frac{9}{4} + \frac{3}{2}} \right\rceil. \]

Rephrased for coverings:

Theorem

For every \(k \geq 2 \), *there exists a graph* \(G \) *with* \(e = k + \left\lceil \sqrt{2k + \frac{9}{4} + \frac{3}{2}} \right\rceil \) *edges that is* \(k \)-*stable, that is, it cannot be covered by* \(s = k + n - e \) *stars and any number of triangles.*
Upper bound

Proof.
Let ℓ be the unique integer for which \(\binom{\ell - 2}{2} \leq k \leq \binom{\ell - 1}{2} - 1 \).

There are 2 types of constructions:

1. If $3 \mid \ell$, then an almost complete graph,
2. If $3 \nmid \ell$, then a complete graph with pendant edges.
Proof.

Let ℓ be the unique integer for which $\binom{\ell-2}{2} \leq k \leq \binom{\ell-1}{2} - 1$. There are 2 types of constructions:

1. If $3 \nmid \ell$, then an almost complete graph,
Proof.

Let \(\ell \) be the unique integer for which \(\binom{\ell-2}{2} \leq k \leq \binom{\ell-1}{2} - 1 \).

There are 2 types of constructions:

1. If \(3 \nmid \ell \), then an almost complete graph,
2. If \(3 | \ell \), then a complete graph with pendant edges.
Constructions

<table>
<thead>
<tr>
<th>k</th>
<th>$S(k)$</th>
<th>Extremal Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Outline

1. Introduction
2. Main result
3. Outline of proof
4. Application
A v_1, v_2, \ldots, v_n permutation of the vertices of an r-regular hypergraph is a Hamiltonian chain if any r (cyclically) consecutive vertices form an edge.

A hypergraph is k-edge-hamiltonian if it has the property that removing any k edges, the resulting hypergraph still contains a Hamiltonian chain.
A \(v_1, v_2, \ldots, v_n \) permutation of the vertices of an \(r \)-regular hypergraph is a Hamiltonian chain if any \(r \) (cyclically) consecutive vertices form an edge.

A hypergraph is \(k \)-edge-hamiltonian if it has the property that removing any \(k \) edges, the resulting hypergraph still contains a Hamiltonian chain.

Theorem (Frankl, Katona)

For every 3-regular \(k \)-edge-hamiltonian hypergraph with \(h \) edges on \(n \) vertices,

\[
h \geq \frac{S(k)}{3} n.
\]
Bibliography

P. Frankl, G. Y. Katona,
Extremal k-edge-hamiltonian hypergraphs,

M. Paoli, W. W. Wong, C. K. Wong,
Minimum k-Hamiltonian graphs. II.,
J. Graph Theory (1986) **10**, no. 1, pp. 79–95

D. Rautenbach,
A linear Vizing-like relation between the size and the domination number of a graph,
J. Graph Theory (1999) **31**, no. 4, pp. 297–302

V. G. Vizing,
An estimate of the external stability number of a graph,