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Introduction

Question
Let Π be a graph property so that if G1 ∈ Π and G1 is a subgraph of
G2, then G2 ∈ Π. (i. e. being non-Π is a hereditary graph property.)

What is the minimum number of edges in a graph G ∈ Π on n vertices
if removing any k edges (or vertices) from the graph still preserves Π?

Examples:
What is the minimum number of edges in a k -connected or
k -edge connected graph?
What is the miminum number of edges in hypo-hamiltonian graph?
What is the mininum number of edges in graph that is still
Hamiltonian after removing k edges (or vertices)?
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Notations and definitions

We concentrate on the problem where Π is the property that G
contains a given fixed subgraph H.

This clearly satisfies the assumption on Π.
We only consider simple, undirected graphs.

Definition (Stability)
Let H be a fixed graph. If the graph G has the property that removing
any k edges of G, the resulting graph still contains (not necessarily
spans) a subgraph isomorphic with H, then we say that G is k-stable
with regard to H.

Definition
By SH(k) we denote the minimum number of edges in any k-stable
graph.

Note that there is no “in a graph with n vertices” in the definition.
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A trivial case: H = P2

Proposition
SP2(k) = k + 1

Extremal graph: Any graph with k + 1 edges.

Lemma
For any graph H, we have SH(k) ≥ k + |E(H)|.

Proof.
Otherwise there aren’t enough edges to form H.
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An easy case: H = P3

Proposition
SP3(k) = k + 2 = k + |E(P3)|

Extremal graph: A star with k + 2 edges.

1 2 3 4 k+1 k+2
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An other easy case: H = 2P2

Proposition
S2P2(k) = k + 2 = k + |E(2P2)|

Extremal graph: k + 2 independent edges.
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Linear bounds

Proposition
Let H be fixed.
(a) S(k) ≥ k + |E(H)|.
(b) S(k) ≤ (|V (H)|+ 1)k if k is large enough.

Proof.
(a) is trivial,
(b) is a consequence of Turán’s theorem.

For a fixed H graphs we are interested in the exact value of S(k) and
also the extremal graphs.
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Main result: H = P4

Theorem
S(1) = 4, and for k ≥ 2,

S(k) = k +

⌈√
2k +

9
4

+
3
2

⌉
.

The above formula is equivalent with the following:

Theorem
S(1) = 4, S(2) = 6, and if k ≥ 3,

S(k) =

{
S(k − 1) + 2 if k =

(
`
2

)
for some integer `

S(k − 1) + 1 otherwise
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Covering with triangles and stars

Proposition
If G does not contain P4 as a subgraph, then every component of G is
a triangle or a star.
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Covering with triangles and stars

Proposition
If G is a graph with e edges on n vertices, then
G is k-stable ⇐⇒ the vertices of G cannot be covered by k + n − e
stars and any number of triangles.

Proof.
G is not k -stable if there is a subgraph with e − k edges of G such that
it does not contain P4.
That subgraph is a union of triangles and stars, and the number of
stars is n − (e − k).
(In triangles, the number of edges is equal to the number of vertices,
while in a star, the number of edges is 1 less, so we “lose” an edge for
every star.)
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k -stable
⇐⇒ the vertices cannot be covered by k + n − e stars and any
number of triangles.

k = 3, S(k) = 8

e = 7

n = 5

k + n− e = 1
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Examples for the lower bound

We need to show that any graph with < S(k) edges is not k -stable
⇐⇒ the vertices cannot be covered by k + n − e stars and any
number of triangles.

k = 6, S(k) = 12

n = 7

k + n− e = 2

e = 11
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Lower bound

Definition
Given a graph G with e ≥ 5 edges on n vertices, let ` be the largest
integer such that e ≥

(
`−1

2

)
+ 1 (that is, ` is the smallest possible

number of vertices that can fit e edges), and let s = n − `.
s ≥ 0 because of the definition of `; s measures how ’spread-out’ G is.

Theorem (Lower bound)
If the graph G has e ≥ 5 edges, then G can be covered by s + 1 stars
and any number of triangles.

S(k) ≥ k +

⌈√
2k + 9

4 + 3
2

⌉
follows directly from the above.
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Lower bound - cases

For different values of s, the methods are different.

Lemma (s = 0 or s = 1)
The vertices can be covered by s + 1 stars and at most 1 triangle.

The proof is long but elementary.

Lemma (s ≥ 2)
The vertices can be covered by s + 1 stars.

No triangles are needed.

If only stars are used, then the centers of the stars forms a ”dominating
vertex set”.
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Lower bound - cases

The proof uses the following theorem:

Theorem (Vizing, 1965)
If G is a connected graph on n vertices and e edges, then the vertices
can be dominated by a set of size

β(G) ≤
⌊

1 + 2n −
√

8e + 1
2

⌋
if e ≤ (n−2)(n−3)

2 .
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Upper bound

Theorem (Upper bound)

S(1) = 4, and for k ≥ 2, S(k) ≤ k +

⌈√
2k + 9

4 + 3
2

⌉
.

Rephrased for coverings:

Theorem

For every k ≥ 2, there exists a graph G with e = k +

⌈√
2k + 9

4 + 3
2

⌉
edges that is k-stable, that is, it cannot be covered by s = k + n − e
stars and any number of triangles.
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For every k ≥ 2, there exists a graph G with e = k +

⌈√
2k + 9

4 + 3
2

⌉
edges that is k-stable, that is, it cannot be covered by s = k + n − e
stars and any number of triangles.
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Upper bound

Proof.
Let ` be the unique integer for which

(
`−2

2

)
≤ k ≤

(
`−1

2

)
− 1.

There are 2 types of constructions:

1 If 3|�`, then an almost complete graph,
2 If 3|`, then a complete graph with pendant edges.
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Constructions

k S(k) extremal graph

1 4

1 6

1 6

1 6
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Application

Definition
A v1, v2, . . . , vn permutation of the vertices of an r-regular hypergraph
is a Hamiltonian chain if any r (cyclically) consecutive vertices form an
edge.

Definition
A hypergraph is k-edge-hamiltonian if it has the property that removing
any k edges, the resulting hypergraph still contains a Hamiltonian
chain.

Theorem (Frankl, Katona)
For every 3-regular k-edge-hamiltonian hypergraph with h edges on n
vertices,

h ≥ S(k)

3
n.
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