List of Questions

- 1. Enumeration: permutations, variations, combinations (without and with repetition). Simple relations between binomial coefficients^{**}, binomial theorem^{**}, Pascal's triangle.
- 2. Basic notions of graph theory: graph, simple graph, degree, isomorphism, complement, subgraph, walk, trail, circuit, path, cycle, connectedness, components. Trees: basic properties**, spanning trees, their existence**.
- 3. Euler trail and circuit, necessary and sufficient conditions for their existence^{**}. Hamilton path and cycle, necessary conditions^{**}, sufficient conditions: Dirac's^{**} and Ore's^{**} theorem.
- 4. Vertex coloring: the notion of $\chi(G)$ and its relationship to $\omega(G)^{**}$ and $\Delta(G)^{**}$. Zykov's construction**. Greedy coloring**. Interval graphs, their coloring**.
- 5. Bipartite graphs, relationship with odd cycles^{**}. Covering and independent vertices and edges. Gallai's theorems^{*} Tutte's theorem^{*}.
- 6. Matchings. Augmenting paths. Theorems of König^{**}, Hall^{**} and Frobenius^{**}. Edge-chromatic number, its relationship to $\Delta(G)^{**}$. Vizing's theorem, Shannon's theorem. König's theorem^{**} (edge-chromatic number of bipartite graphs).
- 7. Network, flow, value of a flow, s-t cut, capacity of a cut, augmenting paths. Ford-Fulkerson theorem**, Edmonds-Karp theorem. Integrality lemma**.
- 8. Generalizations of flows. Menger's theorems about paths between pairs of points^{*}. Higher connectivity and edge-connectivity in graphs. Menger's related theorems^{*}.
- 9. BFS algorithm, it's usage for determining connectedness and distances. Minimum weight spanning tree, Kruskal's theorem.
- 10. Algorithms for finding shortest paths: Dijkstra's algorithm*, Ford's algorithm*.
- 11. DFS algorithm, DFS tree, classification of the edges^{*}. DAG, topological ordering^{**}. Shortest and longest paths in acyclic graphs.

Theorems and statements with an * were partially proved in the lecture. Theorems and statements with a ** were completely proved in the lecture.