1. When \(k \) committees have at least \(k \) members together, for \(k = 1, 2, \ldots \) (Hall’s condition).

2. a) Yes.
 b) No (\(H, J, L, M \) like only \(B, E, F \)).

3. (a) Count the number of edges between \(A \) and \(B \) in two ways.
 (b) Count the number of edges between \(X \) and \(N(X) \) in two ways.
 (c) Frobenius’ theorem.

4. Use Hall’s condition for (for the people-chocolates bipartite graph) for \(|X| \leq n \) and \(|X| \geq n + 1 \), resp.

5. Use Hall’s condition for \(|X| \leq \frac{n}{2} \) and \(|X| \geq \frac{n}{2} \), resp.

6. There is a non-connected counterexample.

7. Can select the edges greedily or use Hall’s condition.

8. a) Use Frobenius’ theorem.
 b) Use Hall’s theorem or unite the vertices of degree 3 and use exercise 3.

9. No perfect matching: \(N(\{a_1, a_2, a_4, a_6, a_8\}) = \{b_2, b_3, b_6, b_8\} \).

10. The (rows, columns; coins) bipartite graph is 4-regular.

11. Hall’s condition holds for the (figures, sets; containment) bipartite 4-regular (multi)graph.

12. First: \(|A| = |B| = 10\), then check Hall’s condition.

13. a) \(\nu(G) = \tau(G) = 8 \), a minimum covering set is \(\{a_2, a_3, a_6, a_8, b_1, b_4, b_7, b_9\} \).
 b) \(\nu(G) = \tau(G) = 8 \), a minimum covering set is \(\{a_1, a_3, a_6, a_9, b_1, b_3, b_6, b_8\} \).

14. \(\nu(G) = \tau(G) = 100 \), \(\rho(G) = 102 \), a maximum matching e.g. is \(\{a_i, b_{i+1}\}, \ i = 1, 2, \ldots, 100\} \).

15. a) \(\nu(G) = \tau(G) = 6 \).
 b) \(\nu(G) = \tau(G) = 6 \).
 c) \(\nu(G) = \tau(G) = 9 \).
 d) \(\nu(G) = \tau(G) = 6 \).

16. a) \(\nu(G) = \tau(G) = 4 \).
 b) \(\alpha(G) = 6 \).

17. \(\nu(G) = \tau(G) = 4 \), \(\rho(G) = 10 \).

18. a) The two endpoints of the edges in the matching can get the same color.
 b) \(\overline{G} \) is a regular bipartite graph \(\implies \omega(G) = 50 \) and also \(\overline{G} \) contains a perfect matching \(\implies \chi(G) = 50 \).