Introduction to the Theory of Computing 2.

Exercise-set 9. Solutions

- 1. a) max m(f) = 8, min cut: $X = \{S, A, F\}$, b) max m(f) = 20, min cut: $X = \{S, A, B, C\}$, c) max m(f) = 30, min cut: $X = \{S, B, C, E\}$, d) max m(f) = 17, min cut: $X = \{S, B, C, D, E\}$, e) max m(f) = 24, min cut: $X = \{S, A, D, G\}$, f) max m(f) = 21, min cut: $X = \{S, A, B, F, I\}$, g) max m(f) = 14, min cut: $X = \{S, A, B, F, I\}$,
 - h) max m(f) = 24, min cut: $X = \{S, B, D, E, F\}$.
- 2. The cut with $X = \{S, C, D, F\}$ has capacity 15.
- 3. No, not true. Either find the max flow (which is 20), or notice that the capacity of a cut cannot be 19 (all the capacities are divisible by 3 except for 5), and use the Ford-Fulkerson theorem.
- 4. The capacity of the cut is 19, max m(f) = 18, min cut: $X = \{S, A, B, G, H\}$.
- 5. a) max m(f) = 21, min cut: $X = \{S, A, F, G\}$, b) max m(f) = 17, min cut: $X = \{S, B, D, F, G\}$, c) max m(f) = 24, min cut: $X = \{S, A, C, F, G\}$.
- 6. max m(f) = 20, min cut: $X = \{S, D, E\}$.
- 7. max m(f) = 22, min cut: $X = \{S, D, E\}$.
- 8. Yes: e must be in the minimum cut.
- 9. True (we can use augmenting paths of smaller values).
- 10. The s,t-cut with $X = V \setminus \{t\}$ is a minimum s,t-cut.
- 11. The min s, w-cut has capacity at least 100.