Introduction to the Theory of Computing 2.

Exercise-set 7. Solutions

- 1. When k committees have at least k members together, for k = 1, 2, ... (Hall's condition).
- 2. a) Yes.
- b) No (H, J, L, M like only B, E, F).
- 3. (a) Count the number of edges between A and B in two ways.
 - (b) Count the number of edges between X and N(X) in two ways.
 - (c) Frobenius' theorem.
- 4. Use Hall's condition for (for the people-chocolates bipartite graph) for $|X| \le n$ and $|X| \ge n+1$, resp.
- 5. Use Hall's condition for $|X| \leq \frac{n}{2}$ and $|X| \geq \frac{n}{2}$, resp.
- 6. There is a non-connected counterexample.
- 7. Can select the edges greedily or use Hall's condition.
- 8. a) Use Frobenius' theorem.b) Use Hall's theorem or unite the vertices of degree 3 and use Ex. 3.
- 9. No perfect matching: $N(\{a_1, a_2, a_4, a_6, a_8\}) = \{b_2, b_3, b_6, b_8\}.$
- 10. Hall's condition holds for the (rows, colums; coins) bipartite graph.
- 11. Hall's condition holds for the (figures, sets; containment) bipartite 4-regular (multi)graph.
- 12. $\nu(G) = \tau(G) = 8$, a minimum covering set is $\{a_2, a_3, a_6, a_8, b_1, b_4, b_7, b_9\}$.
- 13. $\nu(G) = \tau(G) = 100, \ \rho(G) = 102, \ a \text{ maximum matching e.g. is } \{\{a_i, b_{i+1}\}, \ i = 1, 2, \dots, 100\}.$
- 14. a) $\nu(G) = \tau(G) = 6$, b) $\nu(G) = \tau(G) = 6$, c) $\nu(G) = \tau(G) = 9$, d) $\nu(G) = \tau(G) = 6$.
- 15. a) $\nu(G) = \tau(G) = 4$. b) $\alpha(G) = 6$.
- 16. $\nu(G) = \tau(G) = 4$, $\rho(G) = 10$.
- 17. a) The two endpoints of the edges in the matching can get the same color.
- b) \overline{G} is a regular bipartite graph $\implies \omega(G) = 50$ and also \overline{G} contains a perfect matching $\implies \chi(G) = 50$.