1. Determine the value of a maximum flow in the networks below, and prove that they are maximum.

![Network Diagrams](image)

2. (MT++'12) Determine the capacity of the cut between S, A, G and the rest of the vertices in the network below and determine whether this cut is minimum or not (between S and T).

![Network Diagram](image)

3. (MT'16, MT'+16, MT++'16) Determine a maximum flow and a minimum cut in the networks below.

![Network Diagrams](image)
4. (MT’18) Determine a maximum flow in the network below (from \(S\) to \(T\)).

![Network](image)

5. (MT+’18) Determine a maximum flow and a minimum \(s,t\)-cut in the network below.

![Network](image)

6. (MT+’20) Determine a minimum cut in the network below.

![Network](image)

7. (MT+’10) In a network the capacity of the edge \(e\) is 3, the capacities of all the other edges are 2, and we know that the value of the maximum flow \(f\) is an odd integer. Is it true then that \(f(e) = 3\)?

8. In a network with rational capacities the value of the maximum flow is \(m\). Is it true then that for each value \(0 \leq x \leq m\) there is a flow of value \(x\) in this network?

9. (MT+’13) Let a directed graph \(G\), the vertex \(s \in V(G)\) and the capacity function \(c : E(G) \to \mathbb{R}^+\) be given. For all \(v \in V(G), v \neq s\) let \(m(v)\) denote the value of the maximum flow from \(s\) to \(v\). Suppose that for some vertex \(t \in V(G), m(t) = 100\) holds, but for every vertex \(v \in V(G), v \neq s,t\) \(m(v) > 100\). Show that in this case the total capacity of the edges arriving into \(t\) is 100.

10. Let a directed graph \(G\) and the capacity function \(c : E(G) \to \mathbb{R}^+\) be given. Suppose that for the vertices \(s,t\) and \(w \in V(G)\) there is a flow of value 100 from \(s\) to \(t\) and also from \(t\) to \(w\). Prove that there exists a flow of value 100 from \(s\) to \(w\) as well.

11. In a network all the capacities are integers. Which of the statements below holds always?
 a) Each maximum flow in the network has an integer value.
 b) There is a maximum flow in the network which takes an integer value on each edge.
 c) Each maximum flow in the network takes an integer value on each edge.
 d) What about the same questions if we substitute „integer“ for „even number“ everywhere?