List of Questions

- 1. Divisibility, prime numbers, fundamental theorem of algebra*, d(n) function, greatest common divisor, least common multiple*.
- 2. Congruences, operations with congruences*. Linear congruences, their solvability* and methods for their solutions. Simultaneous congruence systems*.
- 3. Euler's $\varphi(n)$ function, reduced residue system. Euler-Fermat theorem*, little Fermat theorem*. Euclidean algorithm*, its application for solving linear congruences.
- 4. Polynomial algorithms. Number theoretic algorithms: basic operations, exponentiation. Primality testing*, public key criptography, RSA-encoding*.
- 5. Geometry of 3-space: equations of planes*, lines*; intersections. Dot product, cross product: definitions, properties, evaluation.
- 6. Definition of \mathbb{R}^n and subspaces of \mathbb{R}^n . Linear combination, generated (spanned) subspace, generating system, linear independence (2 definitions and their equivalence*), exchange theorem (no proof), I-G inequality*.
- 7. Basis, dimension*. Standard basis, the dimension of \mathbb{R}^n . Coordinate vector, its uniqueness*. Existence of a basis in a subspace of \mathbb{R}^{n*} .
- 8. Systems of linear equations, Gaussian elimination. Row echelon form. Conditions on consistency (solvability) and uniqueness.
- 9. Determinant: definition, basic properties*, ways of evaluation, expansion theorem (partial proof).
- 10. Matrices, operations on matrices, their properties. Product theorem for determinants. Connections between systems of linear equations and matrix equations*.
- 11. Inverse of a matrix, necessary and sufficient condition for its existence*, calculation of the inverse. Rank of a matrix: definitions, evaluation.
- 12. Linear mappings: definition, basic properties, examples. Matrix of a linear mapping*. Composition (product) of linear mappings, its matrix*. Inverse of a linear transformation*.
- 13. Kernel and image of linear mappings*, examples. Dimension theorem*. Changing bases, the matrix of a linear transformation in a given basis*.
- 14. Eigenvalues and eigenvectors of matrices, characteristic polynomial*, examples. Diagonalisation*.

(Theorems and statements with a * were proved in the lecture.)