Exercise-set 5. Solutions

- 1. Not a subspace (not closed under multiplication by negative scalars).
- 2. a) Not a subspace (not closed under multiplication by large scalars),
 - b) Subspace.
- 3. a) Not a subspace (not closed under multiplication by negative scalars),
 - b) Subspace.
- 4. $W_1 \cup W_2$ is not a subspace (not closed under addition), but $W_1 \cap W_2$ is.
- 5. a) Yes,
 - b) No (not closed under addition).
- 6. Yes.
- 7. Not a subspace (not closed under multiplication by non-integer scalars).
- 8. No (not closed under addition).
- 9. No (not closed under addition).
- 10. a) Yes, $\underline{a} = \underline{u} \underline{v} + 2\underline{w}$.
 - b) No. c) $\{\underline{x} \in \mathbf{R}^4 : 8x_1 4x_2 + 2x_3 x_4 = 0\}.$
 - d) Same as in c).
 - e) ${\bf R}^4$.
- 11. Those for which $x_1 + x_3 = x_2 + x_4$.
- 12. In the linear combination for \underline{v}_1 all the coefficients must be 0.
- 13. a) Plane, with equation 4x 4y z = 0,

 - b) Line, with equation $\frac{x}{2} = \frac{y}{-5} = z$, c) Plane, with equation 5x 7y + 2z = 0,
 - d) Plane, with equation 5x 7y + 2z = 0.
- 14. Plane, with equation 16x 5y 7z = 0.
- 15. a) Line, with equation $x = \frac{y}{-3} = \frac{z}{4}$. b) Plane, with equation 3x + y = 0.
- 16. Plane (since $\underline{c} = -4\underline{a} + 3\underline{b}$), with equation x 3y + z = 0.
- 17. $\{\underline{x} \in \mathbf{R}^4 : x_1 + x_2 + 2x_3 x_4 = 0\}.$
- 18. Use the definition.
- 19. Yes.
- 20. Yes.
- 21. a) True.
 - b) True (always, when $\underline{u}, \underline{v}$ and \underline{w} are linear combinations of $\underline{a}, \underline{b}, \underline{c}$.
- 22. Find approriate coefficients in the definition.
- 23. Find approriate coefficients in the definition.
- 24. By contradiction.
- 25. Check the cases $\lambda_1 = 0$ and $\lambda_1 \neq 0$
- 26. Yes (by contradiction).
- 27. No, e.g. $(1,0,0,0)^T$, $(0,1,0,0)^T$, $(\sqrt{2},0,0,0)^T$ is a counterexample.
- 28. By contradiction.
- 29. Use the definition.
- 30. Linearly independent.