Exercise-set 6.

In R⁴ let <u>u</u> = (1,2,0,0)^T, <u>v</u> = (0,1,2,0)^T, <u>w</u> = (0,0,1,2)^T, <u>a</u> = (1,1,0,4)^T and <u>b</u> = (1,1,1,4)^T (like in exercise 5/10.).
a) Determine whether <u>u</u>, <u>v</u>, <u>w</u> and <u>a</u> form a basis in R⁴ or not.
b) Determine whether <u>u</u>, <u>v</u>, <u>w</u> and <u>b</u> form a basis in R⁴ or not.

b) Determine whether \underline{u} , \underline{v} , \underline{w} and \underline{b} form a basis in \mathbf{R}^4 or not. If yes, then determine the coordinate vector of \underline{a} in this basis.

- 2. Determine a basis in the following subspaces and determine their dimensions. a) $V = \{(x, y, z)^T \in \mathbf{R}^3 : 5x - 6y + 9z = 0\},$ b) $W = \{(x_1, x_2, x_3, x_4)^T \in \mathbf{R}^4 : 4x_1 + 3x_2 + 2x_3 + x_4 = 0\}.$
- 3. In the subspaces V below determine a basis containing the given vector \underline{v} , moreover determine the dimension of V.

a) V consists of those vectors in \mathbb{R}^4 in which the sum of the upper two coordinates is equal to the sum of the lower two coordinates, and $\underline{v} = (1, 1, 1, 1)^T$.

b) V consists of those vectors in \mathbf{R}^{100} whose coordinates form a geometric sequence with quotient 2 (from top down), and \underline{v} is the one from these whose first coordinate is 7.

- 4. Let $\underline{u} = (2, 3, 4, 4)^T$, $\underline{v} = (0, 1, 2, 6)^T$, $\underline{w} = (0, 0, 1, 1)^T$ and $\underline{a} = (8, 9, 11, -1)^T$. Determine a basis in \mathbf{R}^4 containing the vectors \underline{u} , \underline{v} and \underline{w} , then determine the coordinate vector of \underline{a} in this basis.
- 5. (MT'16) Let the subspace V of \mathbf{R}^4 consist of those column vectors $\underline{x} \in \mathbf{R}^4$ for which $x_1 = x_2$ and $x_3 = 3x_4$ holds (where x_i denotes the *i*th coordinate of \underline{x}). Determine a basis in the subspace V and show that it is really a basis. (For the solution you don't need to show that V is in fact a subspace.)
- 6. (MT'12) Determine the dimension of the subspace of \mathbf{R}^5 given in exercise 5/6.
- 7. (MT'15) Let the subspace V of \mathbf{R}^4 consist of those column vectors $\underline{x} \in \mathbf{R}^4$ for which $x_1 x_2 + x_3 = 0$ and $2x_1 + 3x_2 - x_3 + x_4 = 0$ holds. Determine the dimension of the subspace V. (Here $\underline{x} = (x_1, x_2, x_3, x_4)^T$, as usual. For the solution you don't need to show that V is in fact a subspace.)
- 8. (MT++'15) Let the set V consist of those vectors in \mathbf{R}^5 for which it holds that if we add an appropriate common number to each of their coordinates then we get a vector whose coordinates form a geometric progression with quotient 2. (E.g. the vector $(2, 7, 17, 37, 77)^T$ is like that, because if we add 3 to each of its coordinates we get a geometric progression with quotient 2.) Decide whether V forms a subspace in \mathbf{R}^5 or not. If yes, then determine the dimension of V.
- 9. (MT+'17) Let V be the subspace of \mathbf{R}^4 consisting of the vectors $\underline{x} = (x_1, x_2, x_3, x_4)^T$, whose coordinates satisfy the equation $x_4 = x_1 + 2x_2 3x_3$. Determine a basis in V containing the vector $\underline{v} = (1, 1, 1, 0)^T$.
- 10. Let $\underline{b}_1 = (2, 4, 1)^T$, $\underline{b}_2 = (3, -2, 2)^T$ and $\underline{v} = (2, 36, p)^T$. For which values of the parameter p does $\underline{v} \in \langle \underline{b}_1, \underline{b}_2 \rangle$ hold? For this value of p determine the coordinate vector $[\underline{v}]_{\{\underline{b}_1, \underline{b}_2\}}$.
- 11. (MT'17) The vectors $\underline{a}, \underline{b}, \underline{c}, \underline{d}$ form a basis of \mathbf{R}^4 . Determine the dimension of the subspace generated by the vectors $\underline{a} + \underline{b}, \underline{c} + \underline{d}, \underline{a} + \underline{c}, \underline{b} + \underline{d}$.
- 12. (MT'07) The vectors $\underline{v}_1, \underline{v}_2, \ldots, \underline{v}_{100}$ form a basis of the subspace V of \mathbf{R}^n . What is the dimension of the subspace generated by the set of vectors $\{\underline{v}_1 + \underline{v}_2, \underline{v}_2 + \underline{v}_3, \ldots, \underline{v}_{99} + \underline{v}_{100}, \underline{v}_{100} + \underline{v}_1\}$?
- 13. (MT++'04) Let \underline{u} , \underline{v} and \underline{w} be linearly independent vectors in \mathbf{R}^n . For which values of the parameter p does it hold that the vectors $\underline{a} = \underline{u} \underline{v}$, $\underline{b} = \underline{u} + \underline{w}$, $\underline{c} = \underline{u} + \underline{v} \underline{w}$ and $\underline{d} = p \cdot \underline{u} + \underline{v} + \underline{w}$ are linearly independent as well?
- 14. Suppose that in the subspace V of \mathbb{R}^n the vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$ form a basis. For which values of the parameter p does it hold that the vectors $\underline{v}_1 \underline{v}_2, \ \underline{v}_2 \underline{v}_3, \dots, \underline{v}_{k-1} \underline{v}_k, \ \underline{v}_k p \cdot \underline{v}_1$ form a basis in V as well?
- 15. (MT++'17) All that we know of the subspace V of \mathbf{R}^4 is that it contains each of the vectors $(1,0,1,0)^T, (1,0,0,1)^T, (0,1,0,1)^T$ and $(0,1,1,0)^T$. Can we determine the dimension of V from this?

- 16. (MT++'17) Let $\underline{a} = (1,2,4)^T$, $\underline{b} = (0,1,2)^T$ and $\underline{c} = (0,0,1)^T$ be vectors in \mathbf{R}^3 . a) Do the vectors $\underline{a}, \underline{b}, \underline{c}$ form a generating system in \mathbf{R}^3 ? b) Do the vectors $\underline{a}, 3\underline{a} + \underline{b}, 6\underline{a} + 2\underline{b} + \underline{c}$ form a generating system in \mathbf{R}^3 ?
- 17. We know of the subspace V of \mathbb{R}^n that dim V = k, and the vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$ form a generating system in V. Is it always true, that in this case $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k$ form a basis in V?
- 18. (MT'14) Can we give four vectors in \mathbf{R}^4 in such a way that any two of them are linearly independent, but no three of them are linearly independent?
- 19. (MT+'14) Can we give five vectors in \mathbb{R}^5 in such a way that any three of them are linearly independent, but no four of them are linearly independent?
- 20. (MT++'14) Can we give five vectors in \mathbb{R}^4 in such a way that they form a generating system, but no four of them form a generating system?
- 21. The subspaces V and W of \mathbb{R}^{99} both have dimension 50. Show that V and W have a common element which is not the zero vector.