Introduction to the Theory of Computing 1.

Exercise-set 5.

- 1. Let $V = \{\underline{u} = (u_1, u_2)^T \in \mathbf{R}^2 : u_1 \ge 0\}$ (the right halfplane). Is V a subspace of \mathbf{R}^2 ?
- 2. Determine whether the following subsets of \mathbf{R}^4 form a subspace or not: a) those vectors in \mathbf{R}^4 all of whose coordinates are between 0 and 1; b) those vectors in \mathbf{R}^4 in which the first coordinate equals the second.
- 3. Determine whether the following subsets of \mathbf{R}^6 form a subspace or not: a) those vectors in \mathbf{R}^6 in which the coordinates are increasing (from the top down), b) those vectors in \mathbf{R}^6 in which the sum of the upper three coordinates is the same as the sum of the lower three.
- 4. Let W_1 and W_2 be subspaces of \mathbb{R}^n . Are $W_1 \cup W_2$ and $W_1 \cap W_2$ (as sets of vectors) subspaces of \mathbf{R}^n as well?
- 5. a) Do all the arithmetic sequences of length n form a subspace of \mathbf{R}^n ? b) And the geometric sequences?
- 6. (MT'12) Let's call a vector in \mathbf{R}^5 Fibonacci-type if all of its coordinates, starting form the third one, are sums of the previous two coordinates. (E.g. the vector $(3, -1, 2, 1, 3)^T$ is Fibonacci-type.) Do the Fibonacci-type vectors form a subspace in \mathbb{R}^5 ?
- 7. (MT+'15) Let the set W consist of the vectors $v \in \mathbf{R}^5$ for which it holds that the difference of any two coordinates of \underline{v} is an integer. (E.g. the vector $(3.6, 1.6, 4.6, 8.6, 0.6)^T$ is like that.) Decide whether W forms a subspace in \mathbf{R}^5 or not.
- 8. (MT+'16) Do the vectors $(x, y)^T$ for which $x^2 = y^2$ holds form a subspace of \mathbf{R}^2 ?
- 9. (MT++'16) Do the vectors $(x, y, z)^T$ for which xy = yz holds form a subspace of \mathbb{R}^3 ?

10. In \mathbf{R}^4 let $\underline{u} = (1, 2, 0, 0)^T$, $\underline{v} = (0, 1, 2, 0)^T$, $\underline{w} = (0, 0, 1, 2)^T$, $\underline{a} = (1, 1, 0, 4)^T$ and $\underline{b} = (1, 1, 1, 4)^T$. a) Can <u>a</u> be written as a linear combination of $\underline{u}, \underline{v}$ and \underline{w} ?

- b) Can <u>b</u> be written as a linear combination of $\underline{u}, \underline{v}$ and \underline{w} ?
- c) Determine $\langle \underline{u}, \underline{v}, \underline{w} \rangle$, the subspace generated by $\underline{u}, \underline{v}$ and \underline{w} .
- d) Determine $\langle \underline{u}, \underline{v}, \underline{w}, \underline{a} \rangle$, the subspace generated by $\underline{u}, \underline{v}, \underline{w}$ and \underline{a} .
- e) Determine $\langle \underline{u}, \underline{v}, \underline{w}, \underline{b} \rangle$, the subspace generated by $\underline{u}, \underline{v}, \underline{w}$ and \underline{b} .
- 11. Determine the subspace of \mathbf{R}^4 spanned by $\underline{u} = (1, 1, 0, 0)^T$, $\underline{v} = (0, 1, 1, 0)^T$ and $w = (0, 0, 1, 1)^T$.
- 12. We know of the vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n$ that \underline{v}_1 is in the subspace generated by the other n-1 vectors, but none of the vectors $\underline{v}_2, \underline{v}_3, \ldots, \underline{v}_n$ is in the subspace generated by the other n-1 vectors. Prove that $\underline{v}_1 = \underline{0}$.
- 13. Determine the subspace generated by the vectors below. If that subspace is a line or a plane, determine its (system of) equation(s).

 - a) $(1,0,4)^T$, $(0,1,-1)^T$, b) $(2,-5,1)^T$, $(-6,15,-3)^T$,

c)
$$(3, 1, -4)^T$$
, $(4, 2, -3)^T$

- d) $(3, 1, -4)^T$, $(4, 2, -3)^T$, $(5, 3, -2)^T$.
- 14. (MT'08) Two vectors are given in 3-space, $\underline{a} = (2,5,1)^T$ and $\underline{b} = (1,-1,3)^T$. Decide whether the subspace spanned by them is a line or plane and determine the equation of the geometric object obtained.
- 15. (MT++'15) Determine the subspace spanned by the following sets of vectors in \mathbb{R}^3 . If the subspace is a line or plane, then determine its (system of) equation(s). a) $(2, -6, 8)^T$, $(3, -9, 12)^T$, b) $(2, -6, 8)^T$, $(3, -9, 11)^T$.
- 16. (MT'17) Determine the subspace generated by the vectors in \mathbf{R}^3 below. If that subspace is a line or a plane, determine its (system of) equation(s).

$$\underline{a} = (3, 1, 0)^T, \ \underline{b} = (5, 2, 1)^T, \ \underline{c} = (3, 2, 3)^T$$

- 17. (MT+'17) Let $\underline{u} = (0, 0, 1, 2)^T$, $\underline{v} = (0, 1, 2, 5)^T$ and $\underline{w} = (1, 2, 4, 11)^T$ be vectors in \mathbf{R}^4 . Determine $\langle \underline{u}, \underline{v}, \underline{w} \rangle$, the subspace generated by them. (That is, give a (system of) equation(s), satisfied by the vectors in $\langle \underline{u}, \underline{v}, \underline{w} \rangle$.)
- 18. Let $\underline{a}, \underline{b}, \underline{c}$ be linearly independent vectors in \mathbf{R}^n . Prove that in this case the vectors $\underline{a} \underline{b}, \underline{a} \underline{c}, \underline{b} + \underline{c}$ are linearly independent as well.
- 19. MT+'09 Let $\underline{a}, \underline{b}, \underline{c}$ be linearly independent vectors in \mathbf{R}^n . Is it true that the vectors $\underline{a} + \underline{b}, \underline{b} + \underline{c}, \underline{c} + \underline{a}$ are linearly independent as well?
- 20. MT'16 Let $\underline{a}, \underline{b}, \underline{c}$ be linearly independent vectors in \mathbf{R}^n . Is it true that in this case the vectors $\underline{a} + \underline{b} + \underline{c}, \ \underline{a} + \underline{b} + 3\underline{c}, \ 3\underline{a} + \underline{b} + \underline{c}$ are linearly independent as well?
- 21. Let <u>a</u>, <u>b</u>, <u>c</u> be arbitrary vectors in Rⁿ (for some n), and let <u>u</u> = <u>a</u> + <u>b</u>, <u>v</u> = <u>b</u> <u>c</u>, <u>w</u> = <u>c</u> + 2<u>a</u>. Determine whether the following statements are true or not:
 a) If <u>a</u>, <u>b</u>, <u>c</u> are linearly independent then <u>u</u>, <u>v</u>, <u>w</u> are linearly independent as well.
 b) If <u>u</u>, <u>v</u>, <u>w</u> are linearly independent then <u>a</u>, <u>b</u>, <u>c</u> are linearly independent as well.
- 22. Show that every set of vectors in \mathbf{R}^n containing the zero vector is linearly dependent.
- 23. Show that every set of vectors in \mathbf{R}^n containing a vector twice is linearly dependent.
- 24. Prove that a subset of a linearly independent set of vectors in \mathbf{R}^n is also linearly independent.
- 25. Let $\underline{a}_1, ..., \underline{a}_k$ be a linearly independent subset of \mathbf{R}^n and let $\underline{x} = \sum_{i=1}^k \lambda_i \underline{a}_i$. Prove that $\underline{a}_1 \in \langle \underline{x}, \underline{a}_2, ..., \underline{a}_k \rangle$ holds if and only if $\lambda_1 \neq 0$.
- 26. MT'15 Let $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k, \underline{w} \in \mathbf{R}^n$ be arbitrary vectors. Suppose that $\underline{w} \neq \underline{0}$ and the set of vectors $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_{i-1}, \underline{v}_i + \lambda \cdot \underline{w}, \underline{v}_{i+1}, \dots, \underline{v}_k$ is linearly independent for all the choices of the scalar $\lambda \in \mathbf{R}$ and the index $1 \leq i \leq k$. Is it true then that the set $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k, \underline{w}$ is also linearly independent?
- 27. MT++'15 Let $\underline{a}, \underline{b}$, and \underline{c} be vectors in \mathbb{R}^4 . Suppose that for any *integers* k, l and m not all of whose are 0, the linear combination $k \cdot \underline{a} + l \cdot \underline{b} + m \cdot \underline{c}$ is not the zero vector. Does it follow that $\underline{a}, \underline{b}, \underline{c}$ is a linearly independent set?
- 28. (MT'17) Suppose that the vectors $\underline{u}_1, \underline{u}_2, ..., \underline{u}_{10}$ in \mathbb{R}^n are linearly dependent, but any 9 of them are linearly independent. Show that any linear combination of $\underline{u}_1, \underline{u}_2, ..., \underline{u}_{10}$ giving the $\underline{0}$ either all the coefficients are 0 or none of the coefficients are 0.(That is, show that if $c_1\underline{u}_1 + c_2\underline{u}_2 + ... + c_{10}\underline{u}_{10} = \underline{0}$ holds then either $c_1 = c_2 = \cdots = c_{10} = 0$ or $c_1 \cdot c_2 \cdot ... \cdot c_{10} \neq 0$.)
- 29. (MT+'17) Suppose that for the vectors $\underline{v}_1, \underline{v}_2, ..., \underline{v}_{10}, \underline{w}$ in \mathbf{R}^n it holds that $\underline{v}_1, \underline{v}_2, ..., \underline{v}_{10}$ are linearly independent, but $\underline{v}_1, \underline{v}_2, ..., \underline{v}_{10}, \underline{w}$ are linearly dependent, and $\underline{w} \neq \underline{0}$. Show that there is an index $1 \leq i \leq 10$ and a scalar $\alpha \neq 0$, such that the vectors $\underline{v}_1, \underline{v}_2, ..., \underline{v}_{i-1}, \underline{v}_i + \alpha \cdot \underline{w}, \underline{v}_{i+1}, ..., \underline{v}_{10}$ are linearly dependent.
- 30. (MT++'17) Determine whether the vectors $\underline{u} = (4,3,8,1)^T$, $\underline{v} = (2,0,4,0)^T$ and $\underline{w} = (3,5,6,2)^T$ in \mathbb{R}^4 are linearly independent or not.