Introduction to the Theory of Computinge 1.

Exercise-set 13.

1. MT+'12 Determine all the eigenvalues and eigenvectors of the following matrix:

$$\left(\begin{array}{cc} 2 & 1 \\ 3 & 4 \end{array}\right)$$

2. Let $f : \mathbf{R}^2 \to \mathbf{R}^2$ be the linear transformation which maps an arbitrary vector $(x, y) \in \mathbf{R}^2$ into the vector (2x + y, 3x + 4y).

a) Determine all the eigenvalues and eigenvectors of [f], the matrix of f.

b) Determine a basis B consisting of the eigenvectors of f, and give $[f]_B$, the matrix of f in the basis B.

3. Determine the eigenvalues and eigenvectors of the following matrix:

- 4. MT+'10 Let A be the 5×5 matrix with 2's on its main diagonal, and 1's everywhere else.
 - a) Determine one eigenvalue of A.
 - b) Determine one eigenvector of A.
- 5. MT'14 Is 3 an eigenvalue of the matrix A below? If yes, then determine an eigenvector of A belonging to 3.

$$A = \left(\begin{array}{rrr} 4 & 3 & 2 \\ 2 & 4 & 5 \\ 1 & 8 & 4 \end{array}\right)$$

- 6. MT'10 We know that $\lambda = 3$ is an eigenvalue of the matrix A below.
 - (a) Determine the value of the parameter p.
 - (b) Determine an eigenvector of the matrix A.

$$A = \left(\begin{array}{rrr} 4 & 0 & p \\ 5 & 7 & 7 \\ 1 & 1 & 5 \end{array}\right)$$

- 7. MT+'14 a) Is the vector \underline{v} below an eigenvector of the matrix A below?
 - b) Determine one eigenvalue of the matrix A, and all the eigenvectors belonging to this eigenvalue.

$$\underline{v} = \begin{pmatrix} 2\\1\\1 \end{pmatrix}, \quad A = \begin{pmatrix} 4 & 3 & -5\\-2 & -3 & 10\\1 & 3 & -2 \end{pmatrix}$$

8. MT+'15 Determine the value of the parameter p if we know that the vector \underline{v} below is an eigenvalue of the matrix A below. Determine all the eigenvalues and eigenvectors of the matrix A as well.

$$A = \begin{pmatrix} 6 & p \\ 9 & 6 \end{pmatrix}, \quad \underline{v} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

- 9. Show that a square matrix is invertible if and only if 0 is not an eigenvalue of it.
- 10. MT'07 Let $f : \mathbf{R}^3 \to \mathbf{R}^3$ be a linear transformation, furthermore let $B = \{\underline{b}_1, \underline{b}_2, \underline{b}_3\}$ be a basis of \mathbf{R}^3 . Suppose that \underline{b}_1 is an eigenvector that belongs to the eigenvalue $\lambda_1 = 1, \underline{b}_2$ is an eigenvector that belongs to the eigenvalue $\lambda_3 = 3$ of f. Determine the matrix of the linear transformation f^2 with respect to the basis B. $(f^2$ is defined by $f^2(\underline{v}) = f(f(\underline{v}))$.)