Introduction to the Theory of Computing 1.

Exercise-set 12.

1. The matrix of the linear mapping $f : \mathbf{R}^4 \to \mathbf{R}^3$ is given below. Determine the values dim Im f and dim Ker f and find bases in the subspaces Im f and Ker f, resp.

$$\left(\begin{array}{rrrrr}1 & 3 & 1 & 5\\4 & 12 & 1 & 14\\3 & 9 & 1 & 11\end{array}\right)$$

- 2. Let $f : \mathbf{R}^n \to \mathbf{R}^n$ be a linear mapping and let A = [f] be the matrix of f. Decide whether the following statements are true or not:
 - a) If Ker f contains a vector different from the zero vector, then det A = 0.
 - b) If $\det A=0$ then $\mathrm{Ker}f$ contains a vector different from the zero vector.
 - c) If $\operatorname{Im} f \subseteq \operatorname{Ker} f$ then $A^2 = 0$.
 - d) If $A^2 = 0$ then $\text{Im} f \subseteq \text{Ker} f$.
- 3. Let f,g: R² → R² be linear transformations. Determine the linear transformation g ∘ f, if
 (a) f is the reflection through the x axis and g is the reflection through the y axis;
 (b) f is the projection onto the x axis and g is the projection onto the y axis.
- 4. Determine the matrix of the linear transformation which rotates the vectors of the (3-dimensional) space around the z axis by 90 degrees and reflects them through the xy plane. Determine the image of the vector $\underline{i} + \underline{j} + \underline{k}$.
- 5. Let $f : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation. Decide whether the following statements are true or not:
 - a) If f is invertible then $\operatorname{Ker} f = \{\underline{0}\}.$
 - b) If $\operatorname{Ker} f = \{\underline{0}\}$ then f is invertible.
 - c) If f is invertible then $\text{Im} f = \mathbf{R}^n$.
 - d) If $\text{Im} f = \mathbf{R}^n$ then f is invertible.
- 6. MT'09 (a) Is there a linear transformation on \mathbf{R}^3 (the usual 3-dimensional vector space) whose image and kernel are the same?

(b) Is there a linear transformation on \mathbf{R}^2 whose image and kernel are the same?

- 7. MT'14 Let $f : \mathbf{R}^{20} \to \mathbf{R}^{10}$ be a linear mapping, $B = \{\underline{b}_1, \underline{b}_2, \dots, \underline{b}_{20}\}$ a basis in \mathbf{R}^{20} , and $\underline{v} \in \mathbf{R}^{10}$, $\underline{v} \neq \underline{0}$ a fixed vector. Determine the value of dim(Ker f) if we know that f maps each of the vectors $\underline{b}_1, \underline{b}_2, \dots, \underline{b}_{20}$ to the vector \underline{v} .
- 8. MT+'14 Let f: R¹⁰ → R³ be a linear mapping.
 a) Show that there exist 7 linearly independent vectors in R¹⁰ in such a way that f maps them to the same vector.
 b) Is the same statement true with 8 vectors instead of 7?
- 9. MT'15 Let A be a 6×9 matrix. We know that there are 5 linearly independent vectors, $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_5 \in \mathbb{R}^9$ for which $A \cdot \underline{v}_1 = \underline{0}, A \cdot \underline{v}_2 = \underline{0}, \dots, A \cdot \underline{v}_5 = \underline{0}$ holds. Show that in this case $r(A) \leq 4$.
- 10. For the linear transformation $f : \mathbf{R}^3 \to \mathbf{R}^3$ and the basis $B = \{\underline{b}_1 = (1, 0, 0)^T, \underline{b}_2 = (2, 1, 0)^T, \underline{b}_3 = (2, 2, 1)^T\}$ holds that $f(\underline{b}_1) = \underline{b}_2, f(\underline{b}_2) = \underline{b}_3$ and $f(\underline{b}_3) = \underline{b}_1$. Determine the matrices $[f]_B$ and [f].
- 11. The linear transformation $f : \mathbf{R}^2 \to \mathbf{R}^2$ maps the vector $\underline{b}_1 = (2,3)^T$ to $(2,5)^T$ and the vector $\underline{b}_2 = (0,2)^T$ to $(2,1)^T$.
 - a) Determine the matrix $[f]_B$, i.e. the matrix of f in the basis $B = \{\underline{b}_1, \underline{b}_2\}$.
 - b) Determine [f], the matrix of f.
 - c) What is the image of the vector $(4, 6)^T$?
- 12. MT'10 Let $f : \mathbf{R}^2 \to \mathbf{R}^2$ be a linear transformation, and $B = \{\underline{b}_1, \underline{b}_2\}$ a basis of \mathbf{R}^2 . Suppose that the matrix $[f]_B$ (in the basis B) is the matrix A below. Determine the value of p and q if we know that $f(\underline{b}_1) = \underline{b}_2$.

$$A = \left(\begin{array}{cc} p & \sqrt{2} \\ q & \sqrt{3} \end{array}\right)$$