Introduction to the Theory of Computing 1.

Exercise-set 1.

- 1. a) How many positive divisors does 8800 have? b) How many common positive divisors do 8800 and 99000 have?
- 2. How many integers are there between 1 and 1000 which have an equal number of even and odd divisors?
- 3. a) Show that if $2^n 1$ is prime for an integer $n \ge 1$, then n is also a prime. b) Show that if $2^n + 1$ is prime for an integer $n \ge 1$, then n is power of 2.
- 4. Determine whether the following statements are true or not:
 - a) $100 \equiv 43 \pmod{19}$,
 - b) $50 \equiv -15 \pmod{13}$,
 - c) $10000 \equiv 4300 \pmod{19}$.
- 5. For which positive integers do the following statements hold?
 - a) $149 \equiv 139 \pmod{m}$,
 - b) $13 \equiv 613 \pmod{m}$ and $23 \equiv 617 \pmod{m}$,
 - c) $7m + 61 \equiv 4m + 76 \pmod{m}$.
- 6. (MT+'08) Determine all the integers n for which $3n + 1 \equiv 6 \pmod{2n}$ holds.
- 7. If we divide 11275 and 12299 by the same three-digit integer, we get the same remainder. What is this remainder?
- 8. (MT + + 14) Determine whether the following statements are true for all integers n or not: a) If $n^2 \equiv 1 \pmod{39}$ then $n \equiv 1 \pmod{39}$ or $n \equiv -1 \pmod{39}$. b) If $n^2 \equiv 1 \pmod{39}$ then $n \equiv 1 \pmod{13}$ or $n \equiv -1 \pmod{13}$.
- 9. Determine the remainder we get if we divide
 - a) 70^{70} by 23,
 - b) 55^{100} by 48,
 - c) 2017⁶⁵⁴³ by 2018,
 - d) 1025¹⁰⁰⁵ by 1023,
 - e) 138^{139} by 65?
- 10. Determine the last two digits of the following numbers:
 - a) 2001^{2017} ,

 - b) $99^{77^{55}}$, c) 51^{151} ,
 - d) $51^{151}/9$.