Number Theory

Definition: Let a, b be integers, $a \neq 0$. We say that a divides b, (or b is a multiple of a), if there is an **integer** k for which b = ka. Notation: a|b.

Definition: The integer |p| > 1 is a *prime*, if p = ab, then either p = a or p = b (i.e. p has no proper divisors, only 1 and itself).

Proposition: For an integer p, p is a prime if and only if it has the following property: if p divides ab, then either p divides a or p divides b.

Theorem (Fundamental Theorem of Algebra): Every integer |n| > 1 can be written as a product of primes in a unique way (up to the order and the signs of the primes).

Corollary: Every integer n > 1 has a unique canonical form, $n = p_1^{e_1} \cdot p_2^{e_2} \cdot \cdots \cdot p_r^{e_r}$, where $p_1 < p_2 < \cdots < p_r$ are primes, and $e_i > 0$ for all $i = 1, 2, \ldots, r$.

Proposition: If $n = p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_r^{e_r}$ and $m = p_1^{f_1} \cdot p_2^{f_2} \cdot \dots \cdot p_r^{f_r}$ with $e_i, f_i \ge 0$, then 1. m|n if and only if $f_i \le e_i$ for all $i = 1, 2, \dots, r$, 2. g.c.d. $(m, n) = p_1^{\min\{e_1, f_1\}} \cdot p_2^{\min\{e_2, f_2\}} \cdot \dots \cdot p_r^{\min\{e_r, f_r\}}$, 3. l.c.m. $(m, n) = p_1^{\max\{e_1, f_1\}} \cdot p_2^{\max\{e_2, f_2\}} \cdot \dots \cdot p_r^{\max\{e_r, f_r\}}$.

Definition: m and n are relatively prime, if g.c.d.(m, n) = 1.

Definition: For an integer n > 1, d(n) is the number of divisors of n.

Proposition: 1. $d(n) \ge 2$; and d(n) = 2 if and only if n is a prime. 2. If $n = p_1^{e_1} \cdot p_2^{e_2} \cdot \cdots \cdot p_r^{e_r}$ then $d(n) = (e_1 + 1)(e_2 + 1) \dots (e_r + 1)$. 3. The d(n) function is multiplicative, i.e. if g.c.d.(m, n) = 1, then $d(mn) = d(m) \cdot d(n)$.

Definition: For an integer n > 1, $\varphi(n)$, the value of the *Euler's* φ *function*, is the number of positive integers less than n which are relatively prime to n.

Proposition: 1. $\varphi(n) \le n-1$; and $\varphi(n) = n-1$ if and only if *n* is a prime. 2. If $n = p_1^{e_1} \cdot p_2^{e_2} \cdots \cdot p_r^{e_r}$ then $\varphi(n) = (p_1^{e_1} - p_1^{e_1-1}) \cdot (p_2^{e_2} - p_2^{e_2-1}) \cdots \cdot (p_r^{e_r} - p_r^{e_r-1}) = n \cdot (1 - \frac{1}{p_1}) \cdot (1 - \frac{1}{p_2}) \cdots \cdot (1 - \frac{1}{p_r}).$ 3. The $\varphi(n)$ function is multiplicative, i.e. if g.c.d.(m, n) = 1, then $\varphi(mn) = \varphi(m) \cdot \varphi(n)$.

Theorems about primes

Theorem (Euclid): There are infinitely many primes.

Theorem: There are arbitrarily large gaps between consecutive primes.

Theorem (prime number theorem): if $\pi(n)$ is the number of primes less than n, then $\pi(n) \sim n/\ln n$, i.e. $\pi(n)/(n/\ln n) \to 1$, as $n \to \infty$.

Theorem (Dirichlet): If g.c.d.(a, b) = 1, then there are infinitely many primes of the form ak + b, where k is an integer.

Congruences

Definition: For m > 1, and $a, b \in Z$ we say that a is congruent to b modulo m, if m divides a - b. Notation: $a \equiv b \pmod{m}$. m is the modulus of the congruence.

Proposition: The congruence mod m is compatible with the usual operations on integers (addition, subtraction, multiplication, exponentiation), i.e. if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$, $a - c \equiv b - d \pmod{m}$, $ac \equiv bd \pmod{m}$ and $a^k \equiv b^k \pmod{m}$ for every $k \in N$.

Proposition (cancellation in congruences): $ac \equiv bc \pmod{m}$ if and only if $a \equiv b \pmod{\frac{m}{a.c.d.(c.m)}}$.

Definition: A congruence $ax \equiv b \pmod{m}$ with unkown x is called a *linear congruence*.

Theorem: 1. If g.c.d. $(a, m) \not\mid b$, then the linear congruence $ax \equiv b \pmod{m}$ has no solutions. 2. If g.c.d. $(a, m) \mid b$, then the linear congruence $ax \equiv b \pmod{m}$ has g.c.d.(a, m) solutions mod m.

Definition: $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2}$ is a simultaneous congruence system.

Theorem: The simultaneous congruence system $x \equiv a_1 \pmod{m_1}$, $x \equiv a_2 \pmod{m_2}$ has a solution if and only if g.c.d. $(m_1, m_2) \mid a_1 - a_2$, and in this case it has a unique solution mod l.c.m. (m_1, m_2) .

Definition: A reduced residue system mod m is a set of $\varphi(m)$ pairwise non-congruent integers mod m, each relatively prime to m, i.e. a set of integers a_1, a_2, \ldots, a_k , s.t.

1. $g.c.d.(a_i, m) = 1$ for all i = 1, 2, ..., k, 2. $a_i \not\equiv a_j \pmod{m}$, if $i \neq j, i, j = 1, 2, ..., k$, 3. $k = \varphi(m)$.

Lemma: If g.c.d. (a, m) = 1 and $a_1, a_2, \ldots, a_{\varphi(m)}$ is a reduced residue system mod m, then $a_1a, a_2a, \ldots, a_{\varphi(m)}a$ is also a reduced residue system mod m.

Theorem (Euler-Fermat): If g.c.d.(a, m) = 1 then $a^{\varphi(m)} \equiv 1 \pmod{m}$.

Theorem (Fermat): 1. If $p \not\mid a$ then $a^{p-1} \equiv 1 \pmod{p}$. 2. $a^p \equiv a \pmod{p}$ for every integer a.

Euclidean algorithm for determining the g.c.d. of m and n, m > n:

Let $m = k_1 \cdot n + r_1$, $0 < r_1 < n$, $n = k_2 \cdot r_1 + r_2$, $0 < r_2 < r_1$, $r_1 = k_3 \cdot r_2 + r_3$, $0 < r_3 < r_2$, \vdots $r_{l-1} = k_{l+1} \cdot r_l + r_{l+1}$, $0 < r_l < r_{l+1}$, $r_l = k_{l+2} \cdot r_{l+1} + 0$, then g.c.d. $(m, n) = r_{l+1}$.

Geometry of 3-space

Points and vectors in 3D have 3 coordinates.

Equation of a plane

A plane is determined by its normal vector $\underline{n} = (A, B, C)$ and one of its points $P_0(x_0, y_0, z_0)$. If P(x, y, z) is a point on the plane, then $\underline{n} \cdot \overrightarrow{P_0P} = 0$. The equation of the plane (with coordinates): $A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$, or Ax + By + Cz = D.

System of equations of a line

A line is determined by its direction vector $\underline{v} = (a, b, c)$ and one of its points $P_0(x_0, y_0, z_0)$.

If P(x, y, z) is a point on the line, then $\overrightarrow{P_0P} = t \cdot \underline{v}$ for some $t \in \mathbf{R}$.

The system of equations of the line (with coordinates): $x - x_0 = ta$, $y - y_0 = tb$, $z - z_0 = tc$, $t \in \mathbf{R}$, or $\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$, if none of a, b, c is 0. If a = 0, then $x = x_0$, $\frac{y - y_0}{b} = \frac{z - z_0}{c}$, and if a = b = 0, then $x = x_0, y = y_0, z \in \mathbf{R}$.

The vector space \mathbf{R}^n

Definition 1: \mathbb{R}^n is the set of all column vectors with *n* real numbers (*n* coordinates).

The operations on \mathbb{R}^n are the (coordinatewise) addition of vectors and the (coordinatewise) multiplication by a scalar(=real number).

Proposition: If $\underline{u}, \underline{v}, \underline{w} \in \mathbf{R}^n$, $\lambda, \mu \in \mathbf{R}$, then (1) $\underline{u} + \underline{v} = \underline{v} + \underline{u}$ (addition is commutative), (2) $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$ (addition is associative), (3) $\lambda(\underline{u} + \underline{v}) = \lambda \underline{u} + \lambda \underline{v}$, (4) $(\lambda + \mu)\underline{u} = \lambda \underline{u} + \mu \underline{u}$, (5) $(\lambda\mu)\underline{u} = \lambda(\mu\underline{u})$. **Definition 2:** $W \subset \mathbf{R}^n$, $W \neq \emptyset$ is a subspace of \mathbf{R}^n if it satisfies

Definition 2: $W \subseteq \mathbf{R}^n$, $W \neq \emptyset$ is a *subspace* of \mathbf{R}^n , if it satisfies (1) if $\underline{u}, \underline{v} \in W$ then $\underline{u} + \underline{v} \in W$ (i.e. W is closed under addition), and (2) if $\underline{u} \in W$, $\lambda \in \mathbf{R}$, then $\lambda \underline{u} \in W$ (i.e. W is closed under multiplication by a scalar). **Definition 3:** Let $\underline{u}_1, \ldots, \underline{u}_k \in \mathbf{R}^n$. Then for some $\lambda_1, \ldots, \lambda_k \in \mathbf{R}$, the vector $\underline{v} = \lambda_1 \underline{u}_1 + \ldots, \lambda_k \underline{u}_k$ is a *linear combination* of $\underline{u}_1, \ldots, \underline{u}_k$. (In other words, \underline{v} can be expressed using $\underline{u}_1, \ldots, \underline{u}_k$.)

Definition 4: Let $\underline{u}_1, \ldots, \underline{u}_k \in \mathbf{R}^n$. Then W, which is the set of all the linear combinations of $\underline{u}_1, \ldots, \underline{u}_k$ is the subspace spanned (or generated) by $\underline{u}_1, \ldots, \underline{u}_k$. We say that $\underline{u}_1, \ldots, \underline{u}_k$ is a generating system for the subspace W. **Notation:** $W = \langle \underline{u}_1, \ldots, \underline{u}_k \rangle$

Proposition: W above is really a subspace of \mathbf{R}^n (according to Definition 2).

Definition 5: Let $\underline{u}_1, \ldots, \underline{u}_k \in \mathbf{R}^n$. $\underline{u}_1, \ldots, \underline{u}_k$ are *linearly independent*, if none of $\underline{u}_1, \ldots, \underline{u}_k$ is a linear combination of the remaining vectors.

 $\underline{u}_1, \ldots, \underline{u}_k$ are *linearly dependent*, if they are not linearly independent, i.e. at least one of the vectors $\underline{u}_1, \ldots, \underline{u}_k$ is a linear combination of the remaining vectors.

Definition 6: $\underline{u}_1, \ldots, \underline{u}_k$ are *linearly independent*, if the zero vector can be expressed using them only in the trivial way (i.e. when all the coefficients are 0).

Proposition: Definitions 5 and 6 are equivalent.

Lemma: If the vectors $\underline{u}_1, \ldots, \underline{u}_k$ are linearly independent, but $\underline{u}_1, \ldots, \underline{u}_k, \underline{u}_{k+1}$ are linearly dependent, then $\underline{u}_{k+1} \in \langle \underline{u}_1, \ldots, \underline{u}_k \rangle$.

Lemma: (Exchange theorem) Let $W \subseteq \mathbf{R}^n$ be a subspace, $\underline{u}_1, \ldots, \underline{u}_k \in W$ linearly independent, and $\underline{v}_1, \ldots, \underline{v}_m \in W$ a generating system of W. Then for each $1 \leq i \leq k$ there exists a $1 \leq j \leq m$ such that $\underline{u}_1, \ldots, \underline{u}_{i-1}, \underline{v}_j, \underline{u}_{i+1}, \ldots, \underline{u}_k \in W$ are also linearly independent.

Theorem: (I-G inequality) Let $W \subseteq \mathbf{R}^n$ be a subspace, $\underline{u}_1, \ldots, \underline{u}_k \in W$ linearly independent, and $\underline{v}_1, \ldots, \underline{v}_m \in W$ a generating system of W. Then $k \leq m$.

Definition 7: Let $W \subseteq \mathbb{R}^n$ be a subspace. $B = \{\underline{b}_1, \ldots, \underline{b}_k\}$ is a *basis* in W, if it is linearly independent and a generating system in W.

Theorem: Let $W \subseteq \mathbf{R}^n$ be a subspace. If $\underline{b}_1, \ldots, \underline{b}_k$ and $\underline{c}_1, \ldots, \underline{c}_m$ are both bases in W, then k = m.

Definition 8: Let $W \subseteq \mathbf{R}^n$ be a subspace. If $\underline{b}_1, \ldots, \underline{b}_k$ is a basis in W, then the *dimension* of W is k. Notation: dim(W) = k.

Remark: The dimension of W is well-defined because of the previous theorem.

Proposition: $\{\underline{u}_1 = (1, 0, \dots, 0)^T, \underline{u}_2 = (0, 1, \dots, 0)^T, \dots, \underline{u}_n = (0, 0, \dots, 1)^T\}$ is a basis in \mathbf{R}^n , the standard basis. Therefore dim $(\mathbf{R}^n) = n$.

Theorem: $B = \{\underline{b}_1, \ldots, \underline{b}_k\}$ is a basis in W if and only if each vector in W is a linear combination of $\underline{b}_1, \ldots, \underline{b}_k$ in a unique way.

Definition: The coordinate vector of $\underline{v} \in W$ in a given basis $B = \{\underline{b}_1, \ldots, \underline{b}_k\}$ in W is $(\lambda_1, \lambda_2, \ldots, \lambda_k)^T$, if $\underline{v} = \lambda_1 \underline{b}_1 + \ldots, \lambda_k \underline{b}_k$. **Notation:** $[\underline{v}]_B = (\lambda_1, \lambda_2, \ldots, \lambda_k)^T$.

Theorem: Let $W \subseteq \mathbf{R}^n$ be a subspace. If $\underline{u}_1, \ldots, \underline{u}_k$ are linearly independent vectors in W, then $\underline{u}_1, \ldots, \underline{u}_k$ can be extended to a basis in W (with finitely many vectors, maybe 0).

Corollary 1: Every subspace of \mathbf{R}^n has a basis (and a dimension).

Corollary 2: Let $W \subseteq \mathbf{R}^n$ be a subspace of dimension k. If $\underline{u}_1, \ldots, \underline{u}_k$ are k linearly independent vectors in W then they are a basis in W.

Corollary 3: If $V \subset W$, $V \neq W$ are subspaces in \mathbb{R}^n , then dim $(V) < \dim(W)$.

Proposition: Let $W \subseteq \mathbf{R}^n$ be a subspace. If $\underline{u}_1, \ldots, \underline{u}_k$ is a generating system in W, then there is a subset of $\underline{u}_1, \ldots, \underline{u}_k$ which is a basis in W.

Corollary: Let $W \subseteq \mathbf{R}^n$ be a subspace of dimension k. If $\underline{u}_1, \ldots, \underline{u}_k$ is a generating system in W consisting of k vectors then they are a basis in W.

Linear mappings

Definition: A mapping $f : \mathbf{R}^n \to \mathbf{R}^k$ is a *linear mapping*, if there is a $k \times n$ matrix A for which $f(\underline{x}) = A \cdot \underline{x}$ for every $\underline{x} \in \mathbf{R}^n$. If n = k, then f is a *linear transformation*.

A is the matrix of f, notation: A = [f].

Theorem: $f : \mathbf{R}^n \to \mathbf{R}^k$ is a linear mapping if and only if it preserves the addition and the multiplication by a scalar, i.e.

1.) $f(\underline{u} + \underline{v}) = f(\underline{u}) + f(\underline{v})$ for all $\underline{u}, \underline{v} \in \mathbf{R}^n$, and

2.) $f(\lambda \underline{u}) = \lambda f(\underline{u})$ for all $\lambda \in \mathbf{R}, \ \underline{u} \in \mathbf{R}^n$.

In this case the *i*th column of the matrix of f is $f(\underline{u}_i)$ for i = 1, 2, ..., n, where $\underline{u}_1, ..., \underline{u}_n$ is the standard basis in \mathbf{R}^n .

Definition: If $f : \mathbf{R}^n \to \mathbf{R}^k$ is a linear mapping, then the *kernel* of f is the set of vectors in \mathbf{R}^n whose image is the zero vector in \mathbf{R}^k .

The *image* of f is the set of vectors in \mathbf{R}^k which are images under f of some vector in \mathbf{R}^n . Notation: Kerf and Imf.

Proposition: Ker f is a subspace in \mathbf{R}^n and Im f is a subspace in \mathbf{R}^k .

Theorem: (Dimension theorem) If $f : \mathbf{R}^n \to \mathbf{R}^k$ is a linear mapping, then dim Kerf + dim Imf = n.

Definition: If $f : \mathbf{R}^n \to \mathbf{R}^k$ and $g : \mathbf{R}^k \to \mathbf{R}^m$ are linear mappings, then the product (or composition) of them is $g \circ f : \mathbf{R}^n \to \mathbf{R}^m$, for which $(g \circ f)(\underline{x}) = g(f(\underline{x}))$ for every $\underline{x} \in \mathbf{R}^n$.

Theorem: If $f : \mathbf{R}^n \to \mathbf{R}^k$ and $g : \mathbf{R}^k \to \mathbf{R}^m$ are linear mappings, then $g \circ f : \mathbf{R}^n \to \mathbf{R}^m$ is also a linear mapping, and its matrix is $[g \circ f] = [g] \cdot [f]$.

Definition: The *inverse* of a mapping $f : A \to B$ is $g : B \to A$, if $f(x) = y \iff g(y) = x$.

Theorem: A linear transformation $f : \mathbf{R}^n \to \mathbf{R}^n$ is invertible if and only if $\det[f] \neq 0$. In this case f^{-1} is also a linear transformation and $[f^{-1}] = [f]^{-1}$.

Remark: f is invertible \iff Ker $f = \{\underline{0}\} \iff$ Im $f = \mathbf{R}^n$.

Theorem: Let $f : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation, $B = \{\underline{b}_1, \dots, \underline{b}_n\}$ a basis in \mathbf{R}^n , and B the $n \times n$ matrix whose columns are $\underline{b}_1, \dots, \underline{b}_n$. Then the mapping $g : [\underline{x}]_B \to [f(\underline{x})]_B$ is also a linear transformation.

Definition: In this case we say that the matrix of f in the basis B is [g]. Notation: $[g] = [f]_B$.

Theorem: With the above notations,

- 1.) $[f]_B = B^{-1} \cdot [f] \cdot B$,
- 2.) $[f(\underline{x})]_B = [f]_B \cdot [\underline{x}]_B,$
- 3.) the *i*th column of $[f]_B$ is $[f(\underline{b}_i)]_B$ for i = 1, 2, ..., n.

Definition: Let A be an $n \times n$ matrix. If $A \cdot \underline{x} = \lambda \cdot x$ holds for a nonzero vector $\underline{x} \in \mathbf{R}^n$ and $\lambda \in \mathbf{R}$ then \underline{x} is an *eigenvector* of A and λ is an *eigenvalue* of A.

Theorem: $\lambda \in \mathbf{R}$ is an eigenvalue of the square matrix A if and only if $\det(A - \lambda I) = 0$, where I is the identity matrix. In this case the eigenvectors belonging to λ are the nontrivial solutions of the system of equations $(A - \lambda I)\underline{x} = \underline{0}$.

Definition: The *characteristic polynomial* of the square matrix A is $det(A - \lambda I)$, where λ is a variable.

Proposition: (Diagonalisation of the matrix of a linear transformation) Let $f : \mathbf{R}^n \to \mathbf{R}^n$ be a linear transformation, and $B = \{\underline{b}_1, \ldots, \underline{b}_n\}$ a basis in \mathbf{R}^n . Then $[f]_B$ is a diagonal matrix if and only if each vector \underline{b}_i in B is an eigenvector of [f].

Determinants

Definition: If A is an $n \times n$ (square) matrix with entries $a_{i,j}$, i, j = 1, 2, ..., n, then

$$\det(A) = \sum_{\text{all permutations } \pi} (-1)^{I(\pi)} \cdot a_{1,\pi(1)} \cdot a_{2,\pi(2)} \cdot \cdots \cdot a_{n,\pi(n)},$$

where $I(\pi)$ is the number of inversions of the permutation $\pi(1), \pi(2), \ldots, \pi(n)$.