
Number Theory

De�nition: Let a, b be integers, a 6= 0. We say that a divides b, (or b is a multiple of a), if there is an
integer k for which b = ka.
Notation: a|b.

De�nition: The integer |p| > 1 is a prime, if p = ab, then either p = a or p = b (i.e. p has no proper
divisors, only 1 and itself).

Proposition: For an integer p, p is a prime if and only if it has the following property: if p divides ab,
then either p divides a or p divides b.

Theorem (Fundamental Theorem of Algebra): Every integer |n| > 1 can be written as a product
of primes in a unique way (up to the order and the signs of the primes).

Corollary: Every integer n > 1 has a unique canonical form, n = pe11 · p
e2
2 · · · · · perr , where p1 < p2 <

· · · < pr are primes, and ei > 0 for all i = 1, 2, . . . , r.

Proposition: If n = pe11 · p
e2
2 · · · · · perr and m = pf11 · p

f2
2 · · · · · pfrr with ei, fi ≥ 0, then

1. m|n if and only if fi ≤ ei for all i = 1, 2, . . . , r,

2. g.c.d.(m,n) = p
min{e1,f1}
1 · pmin{e2,f2}

2 · · · · · pmin{er,fr}
r ,

3. l.c.m.(m,n) = p
max{e1,f1}
1 · pmax{e2,f2}

2 · · · · · pmax{er,fr}
r .

De�nition: m and n are relatively prime, if g.c.d.(m,n) = 1.

De�nition: For an integer n > 1, d(n) is the number of divisors of n.

Proposition: 1. d(n) ≥ 2; and d(n) = 2 if and only if n is a prime.
2. If n = pe11 · p

e2
2 · · · · · perr then d(n) = (e1 + 1)(e2 + 1) . . . (er + 1).

3. The d(n) function is multiplicative, i.e. if g.c.d.(m,n) = 1, then d(mn) = d(m) · d(n).

De�nition: For an integer n > 1, ϕ(n), the value of the Euler's ϕ function, is the number of positive
integers less than n which are relatively prime to n.

Proposition: 1. ϕ(n) ≤ n− 1; and ϕ(n) = n− 1 if and only if n is a prime.
2. If n = pe11 · p

e2
2 · · · · · perr then ϕ(n) = (pe11 − p

e1−1
1 ) · (pe22 − p

e2−1
2 ) · · · · · (perr − per−1r ) =

= n · (1− 1
p1
) · (1− 1

p2
) · · · · (1− 1

pr
).

3. The ϕ(n) function is multiplicative, i.e. if g.c.d.(m,n) = 1, then ϕ(mn) = ϕ(m) · ϕ(n).

Theorems about primes

Theorem (Euclid): There are in�nitely many primes.

Theorem: There are arbitrarily large gaps between consecutive primes.

Theorem (prime number theorem): if π(n) is the number of primes less than n, then π(n) ∼ n/ lnn,
i.e. π(n)/(n/ lnn)→ 1, as n→∞.

Theorem (Dirichlet): If g.c.d.(a, b) = 1, then there are in�nitely many primes of the form ak + b,
where k is an integer.

Congruences

De�nition: For m > 1, and a, b ∈ Z we say that a is congruent to b modulo m, if m divides a− b.
Notation: a ≡ b (mod m). m is the modulus of the congruence.

Proposition: The congruence mod m is compatible with the usual operations on integers (addition,
subtraction, multiplication, exponentiation), i.e. if a ≡ b (mod m) and c ≡ d (mod m), then
a+ c ≡ b+ d (mod m),
a− c ≡ b− d (mod m),
ac ≡ bd (mod m)
and ak ≡ bk (mod m) for every k ∈ N .

Proposition (cancellation in congruences): ac ≡ bc (mod m) if and only if a ≡ b (mod m
g.c.d.(c,m) ).

De�nition: A congruence ax ≡ b (mod m) with unkown x is called a linear congruence.



Theorem: 1. If g.c.d.(a,m) 6 | b, then the linear congruence ax ≡ b (mod m) has no solutions.
2. If g.c.d.(a,m) | b, then the linear congruence ax ≡ b (mod m) has g.c.d.(a,m) solutions mod m.

De�nition: x ≡ a1 (mod m1), x ≡ a2 (mod m2) is a simultaneous congruence system.

Theorem: The simultaneous congruence system x ≡ a1 (mod m1), x ≡ a2 (mod m2) has a solution if
and only if g.c.d.(m1,m2) | a1 − a2, and in this case it has a unique solution mod l.c.m.(m1,m2).

De�nition: A reduced residue system mod m is a set of ϕ(m) pairwise non-congruent integers mod m,
each relatively prime to m, i.e. a set of integers a1, a2, . . . , ak, s.t.
1. g.c.d.(ai,m) = 1 for all i = 1, 2, . . . , k,
2. ai 6≡ aj (mod m), if i 6= j, i, j = 1, 2, . . . , k,
3. k = ϕ(m).

Lemma: If g.c.d.(a,m) = 1 and a1, a2, . . . , aϕ(m) is a reduced residue system modm, then a1a, a2a, . . . , aϕ(ma
is also a reduced residue system mod m.

Theorem (Euler-Fermat): If g.c.d.(a,m) = 1 then aϕ(m ≡ 1 (mod m).

Theorem (Fermat): 1. If p 6 | a then ap−1 ≡ 1 (mod p).
2. ap ≡ a (mod p) for every integer a.

Euclidean algorithm for determining the g.c.d. of m and n, m > n:
Let m = k1 · n+ r1, 0 < r1 < n,
n = k2 · r1 + r2, 0 < r2 < r1,
r1 = k3 · r2 + r3, 0 < r3 < r2,
...
rl−1 = kl+1 · rl + rl+1, 0 < rl < rl+1,
rl = kl+2 · rl+1 + 0,
then g.c.d.(m,n) = rl+1.

Geometry of 3-space

Points and vectors in 3D have 3 coordinates.

Equation of a plane
A plane is determined by its normal vector n = (A,B,C) and one of its points P0(x0, y0, z0).

If P (x, y, z) is a point on the plane, then n ·
−−→
P0P = 0.

The equation of the plane (with coordinates): A(x−x0)+B(y−y0)+C(z−z0) = 0, or Ax+By+Cz = D.

System of equations of a line
A line is determined by its direction vector v = (a, b, c) and one of its points P0(x0, y0, z0).

If P (x, y, z) is a point on the line, then
−−→
P0P = t · v for some t ∈ R.

The system of equations of the line (with coordinates): x− x0 = ta, y − y0 = tb, z − z0 = tc, t ∈ R, or
x−x0

a = y−y0
b = z−z0

c , if none of a, b, c is 0. If a = 0, then x = x0,
y−y0
b = z−z0

c , and if a = b = 0, then
x = x0, y = y0, z ∈ R.

The vector space Rn

De�nition 1: Rn is the set of all column vectors with n real numbers (n coordinates).

The operations onRn are the (coordinatewise) addition of vectors and the (coordinatewise) multiplication
by a scalar(=real number).

Proposition: If u, v, w ∈ Rn, λ, µ ∈ R, then
(1) u+ v = v + u (addition is commutative),
(2) (u+ v) + w = u+ (v + w) (addition is associative),
(3) λ(u+ v) = λu+ λv,
(4) (λ+ µ)u = λu+ µu,
(5) (λµ)u = λ(µu).

De�nition 2: W ⊆ Rn, W 6= ∅ is a subspace of Rn, if it satis�es
(1) if u, v ∈W then u+ v ∈W (i.e. W is closed under addition), and
(2) if u ∈W, λ ∈ R, then λu ∈W (i.e. W is closed under multiplication by a scalar).



De�nition 3: Let u1, . . . , uk ∈ Rn. Then for some λ1, . . . , λk ∈ R, the vector v = λ1u1 + . . . , λkuk is a
linear combination of u1, . . . , uk.
(In other words, v can be expressed using u1, . . . , uk.)

De�nition 4: Let u1, . . . , uk ∈ Rn. Then W , which is the set of all the linear combinations of u1, . . . , uk
is the subspace spanned (or generated) by u1, . . . , uk.
We say that u1, . . . , uk is a generating system for the subspace W .
Notation: W = 〈u1, . . . , uk〉

Proposition: W above is really a subspace of Rn (according to De�nition 2).

De�nition 5: Let u1, . . . , uk ∈ Rn. u1, . . . , uk are linearly independent, if none of u1, . . . , uk is a linear
combination of the remaining vectors.
u1, . . . , uk are linearly dependent, if they are not linearly independent, i.e. at least one of the vectors
u1, . . . , uk is a linear combination of the remaining vectors.

De�nition 6: u1, . . . , uk are linearly independent, if the zero vector can be expressed using them only in
the trivial way (i.e. when all the coe�cients are 0).

Proposition: De�nitions 5 and 6 are equivalent.

Lemma: If the vectors u1, . . . , uk are linearly independent, but u1, . . . , uk, uk+1 are linearly dependent,
then uk+1 ∈ 〈u1, . . . , uk〉.

Lemma: (Exchange theorem) Let W ⊆ Rn be a subspace, u1, . . . , uk ∈ W linearly independent, and
v1, . . . , vm ∈ W a generating system of W . Then for each 1 ≤ i ≤ k there exists a 1 ≤ j ≤ m such that
u1, . . . , ui−1, vj , ui+1, . . . , uk ∈W are also linearly independent.

Theorem: (I-G inequality) Let W ⊆ Rn be a subspace, u1, . . . , uk ∈ W linearly independent, and
v1, . . . , vm ∈W a generating system of W . Then k ≤ m.

De�nition 7: Let W ⊆ Rn be a subspace. B = {b1, . . . , bk} is a basis in W , if it is linearly independent
and a generating system in W .

Theorem: Let W ⊆ Rn be a subspace. If b1, . . . , bk and c1, . . . , cm are both bases in W , then k = m.

De�nition 8: Let W ⊆ Rn be a subspace. If b1, . . . , bk is a basis in W , then the dimension of W is k.
Notation: dim(W ) = k.

Remark: The dimension of W is well-de�ned because of the previous theorem.

Proposition: {u1 = (1, 0, . . . , 0)T , u2 = (0, 1, . . . , 0)T , . . . , un = (0, 0, . . . , 1)T } is a basis in Rn, the
standard basis. Therefore dim(Rn) = n.

Theorem: B = {b1, . . . , bk} is a basis in W if and only if each vector in W is a linear combination of
b1, . . . , bk in a unique way.

De�nition: The coordinate vector of v ∈W in a given basis B = {b1, . . . , bk} in W is (λ1, λ2, . . . , λk)
T ,

if v = λ1b1 + . . . , λkbk.
Notation: [v]B = (λ1, λ2, . . . , λk)

T .

Theorem: Let W ⊆ Rn be a subspace. If u1, . . . , uk are linearly independent vectors in W , then
u1, . . . , uk can be extended to a basis in W (with �nitely many vectors, maybe 0).

Corollary 1: Every subspace of Rn has a basis (and a dimension).

Corollary 2: LetW ⊆ Rn be a subspace of dimension k. If u1, . . . , uk are k linearly independent vectors
in W then they are a basis in W .

Corollary 3: If V ⊂W, V 6=W are subspaces in Rn, then dim(V ) < dim(W ).

Proposition: Let W ⊆ Rn be a subspace. If u1, . . . , uk is a generating system in W , then there is a
subset of u1, . . . , uk which is a basis in W .

Corollary: Let W ⊆ Rn be a subspace of dimension k. If u1, . . . , uk is a generating system in W
consisting of k vectors then they are a basis in W .

Linear mappings



De�nition: A mapping f : Rn → Rk is a linear mapping, if there is a k × n matrix A for which
f(x) = A · x for every x ∈ Rn.
If n = k, then f is a linear transformation.
A is the matrix of f , notation: A = [f ].

Theorem: f : Rn → Rk is a linear mapping if and only if it preserves the addition and the multiplication
by a scalar, i.e.
1.) f(u+ v) = f(u) + f(v) for all u, v ∈ Rn, and
2.) f(λu) = λf(u) for all λ ∈ R, u ∈ Rn.
In this case the ith column of the matrix of f is f(ui) for i = 1, 2, . . . , n, where u1, . . . , un is the standard
basis in Rn.

De�nition: If f : Rn → Rk is a linear mapping, then the kernel of f is the set of vectors in Rn whose
image is the zero vector in Rk.
The image of f is the set of vectors in Rk which are images under f of some vector in Rn.
Notation: Kerf and Imf .

Proposition: Kerf is a subspace in Rn and Imf is a subspace in Rk.

Theorem: (Dimension theorem) If f : Rn → Rk is a linear mapping, then dimKerf + dim Imf = n.

De�nition: If f : Rn → Rk and g : Rk → Rm are linear mappings, then the product (or composition)
of them is g ◦ f : Rn → Rm, for which (g ◦ f)(x) = g(f(x)) for every x ∈ Rn.

Theorem: If f : Rn → Rk and g : Rk → Rm are linear mappings, then g ◦ f : Rn → Rm is also a linear
mapping, and its matrix is [g ◦ f ] = [g] · [f ].

De�nition: The inverse of a mapping f : A→ B is g : B → A, if f(x) = y ⇐⇒ g(y) = x.

Theorem: A linear transformation f : Rn → Rn is invertible if and only if det[f ] 6= 0. In this case f−1

is also a linear transformation and [f−1] = [f ]−1.

Remark: f is invertible ⇐⇒ Kerf = {0} ⇐⇒ Imf = Rn.

Theorem: Let f : Rn → Rn be a linear transformation, B = {b1, . . . , bn} a basis in Rn, and B the n×n
matrix whose columns are b1, . . . , bn. Then the mapping g : [x]B → [f(x)]B is also a linear transformation.

De�nition: In this case we say that the matrix of f in the basis B is [g].
Notation: [g] = [f ]B .

Theorem: With the above notations,
1.) [f ]B = B−1 · [f ] ·B,
2.) [f(x)]B = [f ]B · [x]B ,
3.) the ith column of [f ]B is [f(bi)]B for i = 1, 2, . . . , n.

De�nition: Let A be an n × n matrix. If A · x = λ · x holds for a nonzero vector x ∈ Rn and λ ∈ R
then x is an eigenvector of A and λ is an eigenvalue of A.

Theorem: λ ∈ R is an eigenvalue of the square matrix A if and only if det(A− λI) = 0, where I is the
identity matrix. In this case the eigenvectors belonging to λ are the nontrivial solutions of the system of
equations (A− λI)x = 0.

De�nition: The characteristic polynomial of the square matrix A is det(A− λI), where λ is a variable.

Proposition: (Diagonalisation of the matrix of a linear transformation) Let f : Rn → Rn be a linear
transformation, and B = {b1, . . . , bn} a basis in Rn. Then [f ]B is a diagonal matrix if and only if each
vector bi in B is an eigenvector of [f ].

Determinants

De�nition: If A is an n× n (square) matrix with entries ai,j , i, j = 1, 2, . . . , n, then

det(A) =
∑

all permutations π

(−1)I(π) · a1,π(1) · a2,π(2) · · · · · an,π(n),

where I(π) is the number of inversions of the permutation π(1), π(2), . . . , π(n).


