Number Theory

Definition: Let a,b be integers, a # 0. We say that a divides b, (or b is a multiple of a), if there is an
integer k for which b = ka.
Notation: alb.

Definition: The integer |p| > 1 is a prime, if p = ab, then either p = a or p = b (i.e. p has no proper
divisors, only 1 and itself).

Proposition: For an integer p, p is a prime if and only if it has the following property: if p divides ab,
then either p divides a or p divides b.

Theorem (Fundamental Theorem of Algebra): Every integer |n| > 1 can be written as a product
of primes in a unique way (up to the order and the signs of the primes).

Corollary: Every integer n > 1 has a unique canonical form, n = p{* - p5? - - -+ - pSr, where p; < pa <
-++ < p, are primes, and e; >0 for all i =1,2,...,7.

Proposition: If n = p{* - p5* - -+ - p& and m = p{’ -pgz -+ pfr with e;, f; > 0, then

1. m|nif and only if f; <e; foralli=1,2,...,r,

2. g.ed.(m,n) = pllnin{ehfl} _pmiﬂ{€27f2} o .plrniﬂ{@mfr}

b

3. Lem.(m,n) = pinax{el’fl} -p;“‘""‘{e?’h} ceen ‘prrnax{e"fr}.

Definition: m and n are relatively prime, if g.c.d.(m,n) = 1.
Definition: For an integer n > 1, d(n) is the number of divisors of n.

Proposition: 1. d(n) > 2; and d(n) = 2 if and only if n is a prime.

2. fn=pf ps? - -ptr then d(n) = (e1 + 1)(e2 +1)... (e, + 1).

3. The d(n) function is multiplicative, i.e. if g.c.d.(m,n) = 1, then d(mn) = d(m) - d(n).

Definition: For an integer n > 1, ¢(n), the value of the Euler’s ¢ function, is the number of positive
integers less than n which are relatively prime to n.

Proposition: 1. ¢(n) <n —1; and ¢(n) =n — 1 if and only if n is a prime.

2. Ifn =pi' -py* - pyr then p(n) = (py* — PP - (05— per ) (per — per—1) =
:n'<1_171)'<1_z72)”"(1_ﬁ)‘

3. The ¢(n) function is multiplicative, i.e. if g.c.d.(m,n) = 1, then p(mn) = ¢(m) - ¢(n).

Theorems about primes

Theorem (Euclid): There are infinitely many primes.
Theorem: There are arbitrarily large gaps between consecutive primes.

Theorem (prime number theorem): if 7(n) is the number of primes less than n, then 7(n) ~ n/Inn,
ie. m(n)/(n/Inn) = 1, as n — oo.

Theorem (Dirichlet): If g.c.d.(a,b) = 1, then there are infinitely many primes of the form ak + b,
where k is an integer.

Congruences

Definition: For m > 1, and a,b € Z we say that a is congruent to b modulo m, if m divides a — b.
Notation: a = b (mod m). m is the modulus of the congruence.

Proposition: The congruence mod m is compatible with the usual operations on integers (addition,
subtraction, multiplication, exponentiation), i.e. if a = b (mod m) and ¢ = d (mod m), then
a+c=b+d (mod m),

a—c=b-—d (mod m),

ac = bd (mod m)

and a* = v* (mod m) for every k € N.

Proposition (cancellation in congruences): ac = be (mod m) if and only if a = b (mod #W).

Definition: A congruence axz = b (mod m) with unkown z is called a linear congruence.



Theorem: 1. If g.c.d.(a,m) [ b, then the linear congruence ax = b (mod m) has no solutions.
2. If g.c.d.(a,m) | b, then the linear congruence axz = b (mod m) has g.c.d.(a, m) solutions mod m.

Definition: © = a; (mod my), * = ay (mod my) is a simultaneous congruence system.

Theorem: The simultaneous congruence system x = a; (mod my), £ = ay (mod ms) has a solution if
and only if g.c.d.(m1,m3) | a1 — az, and in this case it has a unique solution mod l.c.m.(my, ms2).

Definition: A reduced residue system mod m is a set of ¢(m) pairwise non-congruent integers mod m,
each relatively prime to m, i.e. a set of integers ai,as,...,ag, s.t.

1. g.cd.(a;;m)=1for all i =1,2,... k,

2. a; Za; (modm),ifi#j, i,j=1,2,...,k,

3. k= p(m).

Lemma: If g.c.d.(a,m) = 1and ai, ay, . .., Gy(m) is areduced residue system mod m, then a1 a, aza, . .. , ayma
is also a reduced residue system mod m.

Theorem (Euler-Fermat): If g.c.d.(a,m) = 1 then a#™ =1 (mod m).

Theorem (Fermat): 1. If p f a then a?~! =1 (mod p).
2. a? = a (mod p) for every integer a.

Euclidean algorithm for determining the g.c.d. of m and n, m > n:
Let m=ky-n+r, 0<r <n,

n:k2~7’1+7”2, 0<ry <y,

rr=ksy-ro+r3, 0<ry<rs,

ri1 = kg1 o+, 0 < <,
= kl+2 ‘T4l + 0,
then g.c.d.(m,n) = riy1.

Geometry of 3-space

Points and vectors in 3D have 3 coordinates.

Equation of a plane
A plane is determined by its normal vector n = (A, B, C) and one of its points Py(xo, Yo, 20)-
If P(x,y,z) is a point on the plane, then n - Poﬁ =0.
The equation of the plane (with coordinates): A(x—xo)+B(y—yo)+C(2—20) =0, or Az+By+Cz =D

System of equations of a line
A line is determined by its direction vector v = (a,b, ¢) and one of its points Py(zg, yo, 20)-

If P(x,y,z) is a point on the line, then PO?’ =t-v for some t € R.
The system of equations of the line (with coordinates): x — zo =ta, y —yo =tb, z — 20 = tc, t € R, or
T = Y200 = 2220 if none of a,b,cis 0. If a = 0, then © = x9, 5% = =20, and if a = b = 0, then

T =x0,Y = Yo, % € R.

The vector space R"

Definition 1: R" is the set of all column vectors with n real numbers (n coordinates).

The operations on R"™ are the (coordinatewise) addition of vectors and the (coordinatewise) multiplication
by a scalar(=real number).

Proposition: If u,v,w € R™, A\, p € R, then
(1) u+ v = v+ u (addition is commutative),
(2) (u+v)+w=1u+ (v+w) (addition is associative),
(3) Mu+v) = A+ v,

(4) AN+ p)u = Au + pu,

(5) (Awu = A(pw).

Definition 2: W C R", W # () is a subspace of R™, if it satisfies

(1) if u,v € W then u+v € W (i.e. W is closed under addition), and

(2) if u € W, A € R, then Au € W (i.e. W is closed under multiplication by a scalar).



Definition 3: Let u;,...,u; € R". Then for some Aq,...,\; € R, the vector v = A\ju; + ..., \py, is a
linear combination of u, ..., u.
(In other words, v can be expressed using u, ..., u.)

Definition 4: Let u,,...,u;, € R®. Then W, which is the set of all the linear combinations of u,, ..., u,
is the subspace spanned (or generated) by u, ..., u;.

We say that uq,...,u; is a generating system for the subspace W.

Notation: W = (uy,...,u;)

Proposition: W above is really a subspace of R" (according to Definition 2).

Definition 5: Let uy,...,u;, € R". u,,...,u; are linearly independent, if none of u,...,u; is a linear
combination of the remaining vectors.

Uy, ..., u;, are linearly dependent, if they are not linearly independent, i.e. at least one of the vectors
Uy, ... ,U; 1S a linear combination of the remaining vectors.

Definition 6: u,,...,u; are linearly independent, if the zero vector can be expressed using them only in
the trivial way (i.e. when all the coefficients are 0).

Proposition: Definitions 5 and 6 are equivalent.

Lemma: If the vectors u,,...,u; are linearly independent, but u,,...,u;,u; , are linearly dependent,
then uy ;€ (uy,...,uy).

Lemma: (Exchange theorem) Let W C R”™ be a subspace, uy,...,u;, € W linearly independent, and
Vy,...,0,, € W a generating system of W. Then for each 1 < ¢ < k there exists a 1 < j < m such that
Uy ooy Ui 1, V5, Uigqs-- -, Uy, € W are also linearly independent.

Theorem: (I-G inequality) Let W C R™ be a subspace, uy,...,u; € W linearly independent, and
Vy,--.,0, €W a generating system of W. Then k < m.

Definition 7: Let W C R" be a subspace. B = {b,...,b.} is a basis in W, if it is linearly independent
and a generating system in W.

Theorem: Let W C R"” be a subspace. If b;,...,b;, and ¢y, ... are both bases in W, then k = m.

»Cm
Definition 8: Let W C R" be a subspace. If b;,...,b; is a basis in W, then the dimension of W is k.
Notation: dim(W) = k.

Remark: The dimension of W is well-defined because of the previous theorem.

Proposition: {u; = (1,0,...,0)7,u, = (0,1,...,0)7,...,u, = (0,0,...,1)T} is a basis in R", the
standard basis. Therefore dim(R"™) = n.

Theorem: B = {b;,...,b,} is a basis in W if and only if each vector in W is a linear combination of
by,..., b, in a unique way.

Definition: The coordinate vector of v € W in a given basis B = {b;,...,b,} in Wis (A1, A, ..., \p)7,
if v=MAby +..., Agby-
Notation: [v]g = (A1, Ao, ..., )T

Theorem: Let W C R"™ be a subspace. If w,,...,u; are linearly independent vectors in W, then
Uy, ..., Uy, can be extended to a basis in W (with finitely many vectors, maybe 0).

Corollary 1: Every subspace of R™ has a basis (and a dimension).

Corollary 2: Let W C R" be a subspace of dimension k. If u,, ..., u,; are k linearly independent vectors
in W then they are a basis in W.

Corollary 3: If V C W, V # W are subspaces in R", then dim(V') < dim(W).

Proposition: Let W C R"™ be a subspace. If u;,...,u; is a generating system in W, then there is a
subset of u,...,u; which is a basis in W.
Corollary: Let W C R"™ be a subspace of dimension k. If uq,...,u, is a generating system in W

consisting of k vectors then they are a basis in W.

Linear mappings



Definition: A mapping f : R® — RF is a linear mapping, if there is a k x n matrix A for which
f(z) = Az for every z € R™.

If n =k, then f is a linear transformation.

A is the matrix of f, notation: A = [f].

Theorem: f:R" — R” is a linear mapping if and only if it preserves the addition and the multiplication
by a scalar, i.e.

1) fu+v) = f(u) + f(v) for all u,v € R™, and

2.) f(hu) = Af(u) forall A e R, u € R™.

In this case the ith column of the matrix of f is f(u;) for i = 1,2,...,n, where uy,...,u, is the standard
basis in R".

Definition: If f : R® — RF is a linear mapping, then the kernel of f is the set of vectors in R™ whose
image is the zero vector in RF.

The image of f is the set of vectors in R¥ which are images under f of some vector in R".
Notation: Kerf and Imf.

Proposition: Kerf is a subspace in R and Imf is a subspace in RF.
Theorem: (Dimension theorem) If f : R® — R* is a linear mapping, then dim Kerf + dim Imf = n.

Definition: If f : R® — R* and g : R¥ — R™ are linear mappings, then the product (or composition)
of them is go f : R™ — R™, for which (go f)(z) = g(f(x)) for every z € R™.

Theorem: If f: R" — R* and g : R* — R™ are linear mappings, then go f : R" — R™ is also a linear
mapping, and its matrix is [g o f] = [g] - [f].

Definition: The inverse of a mapping f: A > Bisg: B — A, if f(z) =y < g(y) = =.

Theorem: A linear transformation f: R™ — R is invertible if and only if det[f] # 0. In this case f~!
is also a linear transformation and [f~!] = [f]~!.

Remark: f is invertible <= Kerf = {0} <= Imf =R".

Theorem: Let f : R™ — R" be a linear transformation, B = {b;,...,b,,} a basis in R", and B the n xn
matrix whose columns are by, ...,b,,. Then the mapping g : [z]p — [f(«)]5 is also a linear transformation.

s Un

Definition: In this case we say that the matriz of f in the basis B is [g].
Notation: [g] = [f]5-

Theorem: With the above notations,
L) [fls=B""-[f]-B,

2) [f(@)]s = [z - [2]5,
3.) the ith column of [f]p is [f(b;)]p for i =1,2,...,n.

Definition: Let A be an n x n matrix. If A- 2z = X -z holds for a nonzero vector z € R® and A € R
then z is an eigenvector of A and ) is an eigenvalue of A.

Theorem: ) € R is an eigenvalue of the square matrix A if and only if det(A — AI) = 0, where I is the
identity matrix. In this case the eigenvectors belonging to A are the nontrivial solutions of the system of
equations (A — Al)z = 0.

Definition: The characteristic polynomial of the square matrix A is det(A — AI), where X is a variable.

Proposition: (Diagonalisation of the matrix of a linear transformation) Let f : R™ — R"™ be a linear
transformation, and B = {b;,...,b,} a basis in R™. Then [f]p is a diagonal matrix if and only if each
vector b; in B is an eigenvector of [f].

Determinants
Definition: If A is an n x n (square) matrix with entries a; ;, 4,7 =1,2,...,n, then
det(A4) = Z (_1)1(70 CA1m(1) C02,m(2) " Onym(n)

all permutations 7

where I(7) is the number of inversions of the permutation 7(1),7(2),...,7(n).



