XSB

Pallinger Péter

2004. november 23.

Válogatott Fejezetek a Logikai Programozásból

1. A logikai programozás problémái

- A prolog nem deklaratív
(var/1, assert/1, !/0, ..és még valami...)
- Az SLD rezolúció minden ága:
- sikerül,
- meghiúsul,
- soha nem ér véget.
- Nehéz korrekt (minden esetben megálló) programot írni.
- Már egyszerú esetekben is előfordulhat végtelen hurok:
$\operatorname{tca}(X, Y):-a(X, Y)$.
$\operatorname{tca}(X, Y):-a(X, Z), t c a(Z, Y)$.
$a(1,1)$. $a(2,1)$.
:- tca(1,2).
(Ez az algoritmus csak DAG-ra ad helyes eredményt.)
- Programozásnál elkerülhetjük a ciklikus gráfokat, de adatbázisoknál...?
- Fixpont szemantikát érdemes használni: OLDT rezolúció

2. OLDT rezolúció

- SLD-rezolúcióhoz hasonló
- Elkerüli a rednudáns számítást: memoization/ tabling/ lemmatization/ stb.
- Megáll minden kérdésre, aminek véges a minimális modellje.
2.1. prolog példa $\# 1$
avoids(X,Y):- owes(X,Y). avoids(X,Y):- owes(X,Z), avoids(Z,Y). owes (andy,bill). owes(bill, carl). owes(carl,bill).
2.2. prolog példa $\# \mathbf{2}$

```
avoids(X,Y):-avoids(X,Y,[]).
avoids(X,Y,L):-owes(X,Y), \+ member(Y,L).
avoids(X,Y,L):-owes(X,Z), \+ member(Z,L),
avoids(Z,Y,[Z|L]).
owes(andy,bill). owes(andy,bob).
owes(bill,carl). owes(bob,carl).
owes(carl,dan). owes(carl,dave).
owes(dan,evan). owes(dave,evan).
owes(evan,fred). owes(evan,frank).
owes(fred,george). owes(frank,george).
```

2.3. XSB példa $\# 1$
:- table avoids/2.
avoids(X,Y):- owes(X,Y).
avoids(X,Y):- owes(X,Z), avoids(Z,Y).
owes(andy,bill). owes(bill, carl). owes(carl,bill).

3. Az XSB következtetôje

3.1. SLG rezolúció

- A célokat ún. "eredménytároló cél-szerver"-nek küldi, minden célhoz egy külön szerver jön létre, ha még nincs ilyen.
- Minden cél-szerverhez külön levezetési fa tartozik.
- Az alábbi három szabály írja le a szerverek múködését:
- Program klóz rezolúció (Program Clause Resolution)
- Részcél hívás (Subgoal call)
- Válasz klóz rezolúció (Answer Clause Resolution)

3.2. Alapötlet

- SLG rezolúció használata alapértelmezett stratégiaként
- SLDNF használata optimalizációra
3.3. X SB példa $\# 2$
:- table avoids/2.
avoids (X,Y):-owes (X,Y).
avoids(X,Y):-avoids(X,Z), owes(Z,Y).
owes $(1,2)$.
owes $(2,3)$.
owes $(99,100)$.
owes $(100,1)$.
- Jobbrekurzív esetben: $O\left(n^{2}\right)$
- Balrekurzív esetben: $O(n)$
3.4. XSB példa $\# 3$
$\operatorname{sameSCC}(X, Y):-r e a c h(X, Y), r e a c h(Y, Z)$.
:- table reach/2.
reach (X,X).
reach $(X, Y):-r e a c h(X, Z)$, edge (Z, Y).
- Időigény: $O(n e)$
3.5. XSB példa $\# 4$
sameSCC (X,Y):-reachfor (X,Y), reachback(X,Y).
:- table reachfor/2, reachback/2.
reachfor (X, X).
reachfor (X, Y) : -reachfor (X, Z), edge (Z, Y).
reachback (X, X).
reachback(X,Y):-reachback(X,Z), edge(Y, Z).
- Időigény: $O(e)$
3.6. Automatikus eredménytárolás
- : - auto_table.
- Minimális predikátumhalmazt keres úgy, hogy a köröket lefedje (predikátumok számában exponenciális).
- Datalog program (amiben nincs rekurzív adastruktúra) mindig meg fog állni.
- :- suppl_table(+Integer)
- Adatbázis-kezelés gyorsítása.

4. Adatbázis-kezelés

\%student(StdId, StdName, Yr).
\%enroll(StdId, CrsId).
\%course(CrsId, CrsName).
yrCourse(Yr,CrsName):-
student(StdId, _, Yr),
enroll(StdId, CrsId),
course(CrsId, CrsName).

- Az utolsó hívás minden hallgatóra lefut!
4.1. Adatbázis-kezelés gyorsítása
yrCourse(Yr,CrsName):yrCrsId(Yr, CrsId), course(CrsId, CrsName).
:- table yrCrsId/2.
yrCrsId(Yr,CrsId):-
student(StdId, _, Yr),
enroll(StdId, CrsId).
- Az XSB ezt a lépést automatikusan is képes elvégezni.
:- edb student/3, enroll/2, course/2.
:- suppl_table(2).
yrCourse(Yr,CrsName):-
student(StdId, _, Yr), enroll(StdId, CrsId), course(CrsId, CrsName).

4.2. Datalog programok max. komplexitása

Ha minden predikátum eredménytárolt:
$\sum_{\text {clause }}\left(\operatorname{len}(\right.$ clause $\left.)+k^{\text {num }} _^{\text {of }}{ }^{\text {vars }(b o d y(c l a u s e))}\right)$
Ahol k a program konstansainak száma
4.3. Max. komplexitás csökkentése

- :- p(A,B,C,D), $q(B, F, G, A), r(A, C, F, D)$, $s(D, G, A, E), t(A, D, F, G)$.
$O\left(n^{7}\right)$
- :- f1 (A, C, D, F,G), r(A,C,F,D), s(D,G,A,E), $t(A, D, F, G)$.
$f 1(A, C, D, F, G):-p(A, B, C, D), q(B, F, G, A)$.
$O\left(n^{6}\right)$
- Az optimális faktorizáció megtalálása NP-nehéz.

5. Nyelvi elemzés

:- table expr/2, term/2.
expr-->expr, [+],term.
expr-->term.
term-->term, [*], primary.
term-->primary.
primary-->['('], expr, [')']. primary-->[Int],\{integer(Int)\}.

Ez balrekurzív, de eredménytárolással biztosan lefut polinom idốben.

5.1. Nyelvtan kiértékeléssel

:- table expr/3, term/3.
expr (Val)-->expr (Eval), [+], term(Tval), \{Val is Eval+Tval\}.
expr (Val)-->term(Val).
term(Val)-->term(Tval), [*],factor(Fval), \{Val is Tval*Fval\}.
term(Val)-->factor(Val).
factor (Val)-->primary (Num), [^], factor (Exp), $\{V a l$ is floor $(\exp (\log (N u m) * \operatorname{Exp})+0.5)\}$.
factor(Val)-->primary(Val).
primary (Val)-->['('], expr (Val), [')'].
primary (Int)-->[Int],\{integer (Int) \}.
Itt a jobbrekurzív rész négyzetes lenne eredménytároltan.

5.2. Elemzôk max. koplexitása

- $O\left(n^{k+1}\right)$
n : a bemenet hossza
k : a jobboldalak legnagyobb hossza
(terminális és nemterminális együtt)
- Chomsky normálformában: $O\left(n^{3}\right)$
- Automatikusan:
:- suppl_table(2).
:- edb word/2.
- A prologban lévő elemző egy „rekurzív mélységi felimerơ".
- Az XSB-ben lévő elemző az Early-algoritmus egy változata.

6. HiLog programozás

closure (R) (X,Y) :- R(X,Y).
closure (R) (X,Y) :- R(X,Z), closure (R) (Z,Y).
:- hilog parent.
parent(andy,bob).
parent(bob,cecil).
6.1. Map megvalósítása

```
map(F)([],[]).
map(F)([X|Xs],[Y|Ys]):-F(X,Y),map(F)(Xs,Ys).
    :- hilog successor,double,square.
successor(X,Y):- Y is X+1.
double(X,Y):- Y is X+X.
square(X,Y):- Y is X*X.
```


7. Egyéb alkalmazások

- automataelmélet
- dinamikus programozás
- aggregátumok számítása
- metaértelmezők készítése

Hivatkozások

[1] The XSB manual, 2003.06.17,
[2] Programming in Tabled Prolog (draft), David S. Warren, 1999.07.21,
ftp://ftp.cs.sunysb.edu/pub/XSB/doc/XSB/prog_XSB_book_dr.ps.gz

Köszönöm a figyelmet!

