Elementary graphs with respect to $(1, f)$-odd factors

Mikio Kano, Gyula Y. Katona, Jácint Szabó ${ }^{\dagger}$

August 18, 2008

Abstract

This note concerns the $(1, f)$-odd subgraph problem, i.e. we are given an undirected graph G and an odd value function $f: V(G) \rightarrow \mathbb{N}$, and our goal is to find a spanning subgraph F of G with $\operatorname{deg}_{F} \leq f$ minimizing the number of even degree vertices. First we prove a Gallai-Edmonds type structure theorem and some other known results on the $(1, f)$-odd subgraph problem, using an easy reduction to the matching problem. Then we use this reduction to investigate barriers and elementary graphs with respect to $(1, f)$ odd factors, i.e. graphs where the union of $(1, f)$-odd factors form a connected spanning subgraph.

1 Introduction

In this paper we deal with a special case of the degree prescribed subgraph problem, introduced by Lovász [10]. This is as follows. Let G be an undirected graph and let $\emptyset \neq H_{v} \subseteq \mathbb{N}$ be a degree prescription for each $v \in V(G)$. For a spanning subgraph F of G define $\delta_{H}^{\bar{F}}(v)=$ $\min \left\{\left|\operatorname{deg}_{F}(v)-i\right|: i \in H_{v}\right\}$, and let $\delta_{H}^{F}=\sum\left\{\delta_{H}^{F}(v): v \in V(G)\right\}$. The minimum δ_{H}^{F} among the spanning subgraphs F is denoted by $\delta_{H}(G)$. A spanning subgraph F is called H-optimal if $\delta_{H}^{F}=\delta_{H}(G)$, and it is an H-factor if $\delta_{H}^{F}=0$, i.e. if $\operatorname{deg}_{F}(v) \in H_{v}$ for all $v \in V(G)$. The degree prescribed subgraph problem is to determine the value of $\delta_{H}(G)$.

An integer h is called a gap of $H \subseteq \mathbb{N}$ if $h \notin H$ but H contains an element less than h and an element greater than h. Lovász [12] gave a structural description on the degree prescribed subgraph problem in case H_{v} has no two consecutive gaps for all $v \in V(G)$. He showed that the problem is NP-complete without this restriction. The first polynomial algorithm was given by Cornuéjols [2]. It is implicit in Cornuéjols [2] that this algorithm implies a Gallai-Edmonds type structure theorem for the degree prescribed subgraph problem (first stated in [14]), which is similar to - but in some respects much more compact than - that of Lovász'.

The case when an odd value function $f: V(G) \rightarrow \mathbb{N}$ is given and $H_{v}=\{1,3,5, \ldots, f(v)\}$ for all $v \in V(G)$, is called the $(1, f)$-odd subgraph problem. We denote $\delta_{H}(G)=\delta_{f}(G)$. This problem is much simpler than the general case due to the fact that only parity requirements are posed. The $(1, f)$-odd subgraph problem was first investigated by Amahashi [1] who gave a Tutte type characterization of graphs having a $(1,2 k+1)$-odd factor. A Tutte type theorem for general odd value functions f was proved by Cui and Kano [3], and then a Berge type minimax formula on $\delta_{H}(G)$ by Kano and Katona [7]. A Gallai-Edmonds type theorem on the $(1, f)$-odd subgraph problem was given in [8] and [14].

In this note we show a new approach to the $(1, f)$-odd subgraph problem. Actually, it is worth allowing f to have also even values and defining H_{v} equal to $\{1,3, \ldots, f(v)\}$ or $\{0,2, \ldots, f(v)\}$, according to the parity of $f(v)$. We call this the f-parity subgraph problem. We show an easy reduction of the f-parity subgraph problem to the matching problem

[^0](the existence of such a reduction was already indicated in Lovász [12]), and we show that this reduction easily yields the above mentioned Gallai-Edmonds and Berge type theorems on the f-parity subgraph problem. Then we investigate barriers w.r.t. the f-parity subgraph problem. As another application, we explore the graphs for which the edges belonging to some f-parity factor form a connected spanning subgraph. We call such a graph an f-elementary graph. We generalize some results on matching elementary graphs (proved by Lovász [11]) to f-elementary graphs. An attempt putting the f-parity subgraph problem into the general context of graph packing problems can be found in [15].

The f-parity subgraph problem can be reduced to the $(1, f)$-odd subgraph problem by the following construction: for every vertex $v \in V(G)$ with $f(v)$ even, connect a new vertex w_{v} to v in G, define $f\left(w_{v}\right)=1$ and increase $f(v)$ by 1 . Now $\delta_{f}(G)$ remains the same.

To avoid minor technical difficulties we assume that $f>0$. Almost all results of the paper would hold without this restriction, too. Note that if G is a nontrivial f-elementary graph then $f>0$ always holds.

The constant function $f \equiv 1$ is simply denoted by 1. For $X \subseteq V(G)$ let $\Gamma(X)=\{y \in$ $V(G)-X: \exists x \in X, x y \in E(G)\}$, let $f(X)=\sum\{f(x): x \in X\}$ and let χ_{X} denote the function with $\chi_{X}(x)=1$ if $x \in X$ and $\chi_{X}(x)=0$ otherwise. $c(G)$ denotes the number of connected components of the graph $G .|\cdot|$ denotes the cardinality of a set, and \mathbb{N} is the set of nonnegative integers. The graphs are undirected throughout.

2 Reduction to matchings

In this section we show a reduction of the f-parity subgraph problem to matchings, which will then be used to prove the Gallai-Edmonds type structure theorem on the f-parity subgraph problem. The auxiliary graph we use is defined below.

Definition 2.1. For the graph G and the function $f: V(G) \rightarrow \mathbb{N} \backslash\{0\}$ define G^{f} to be the following undirected graph. Replace every vertex $v \in V(G)$ by a new complete graph on $f(v)$ vertices, denoted by K_{v}, and for each pair of vertices $u, v \in V(G)$ adjacent in G, add all possible $f(u) f(v)$ edges between K_{u} and K_{v}. Let $V_{v}=V\left(K_{v}\right)$.

Observe that $G^{\mathbf{1}}=G$ and that $\left|V\left(G^{f}\right)\right|=f(V(G)) . f>0$ implies that $V_{v} \neq \emptyset$ for $v \in V(G)$. There is a strong connection between the maximum matchings of G^{f} and the f-parity optimal subgraphs of G. Note that the size of a maximum matching of G is just $|V(G)|-\delta_{\mathbf{1}}(G)$.

Lemma 2.2. For every f-parity optimal subgraph F of G there exists a matching M of G^{f} such that $|V(M)|=f(V(G))-\delta_{f}^{F}$. Moreover, if $\operatorname{deg}_{F}(w) \in\{\ldots, f(w)-3, f(w)-1\}$ for a vertex $w \in V(G)$ then M can be chosen to miss a prescribed vertex $x \in V_{w}$.

On the other hand, for every maximum matching M of G^{f} there exists a spanning subgraph F of G such that $\delta_{f}^{F}=f(V(G))-|V(M)|$. Moreover, if M misses a vertex in V_{w} for some $w \in V(G)$ then F can be chosen such that $\operatorname{deg}_{F}(w) \in\{\ldots, f(w)-3, f(w)-1\}$.

Hence $\delta_{f}(G)=\delta_{\mathbf{1}}\left(G^{f}\right)$.
Proof. Let F be an f-parity optimal subgraph of G. If $\operatorname{deg}_{F}(v)>f(v)$ for some $v \in V(G)$ then clearly $\delta_{f}^{F^{\prime}} \leq \delta_{f}^{F}$ holds for the graph F^{\prime} obtained from F by deleting an edge e incident to v. As F is f-parity optimal, e is not adjacent to w, so $\operatorname{deg}_{F^{\prime}}(w)=\operatorname{deg}_{F}(w)$. Hence we assume that $\operatorname{deg}_{F} \leq f$, which implies that $\delta^{F}(v)$ is 1 or 0 for all v. Now it is easy to construct from F a matching of G^{f} missing exactly δ_{f}^{F} vertices, one in each V_{v} for the vertices v with $\operatorname{deg}_{F}(v) \not \equiv f(v) \bmod 2$. If w is such a vertex then M can be chosen to miss $x \in V_{w}$.

For the second part, let M be a maximum matching of G^{f}. If M contains two edges between K_{u} and K_{v} for some $u, v \in V(G)$, then replace them by two edges, one inside K_{u} and the other one inside K_{v}. Thus we may assume that M contains at most one edge between K_{u} and K_{v} for all distinct $u, v \in V(G)$. By contracting each K_{u} to one vertex u we get a spanning subgraph F of G with $\delta_{f}^{F}=f(V(G))-|V(M)|$. Moreover, $\operatorname{deg}_{F}(w) \in\{\ldots, f(w)-3, f(w)-1\}$ in case M misses a vertex in K_{w}.

We define critical graphs w.r.t. the f-parity subgraph problem as in the matching case. If $f=\mathbf{1}$ the graphs defined below are called factor-critical.
Definition 2.3. Given a graph G and a function $f: V(G) \rightarrow \mathbb{N}$. G is called f-critical if for every $w \in V(G)$ there exists an f-parity optimal subgraph F of G such that $\operatorname{deg}_{F}(w) \in$ $\{\ldots, f(w)-3, f(w)-1\}$ and $\operatorname{deg}_{F}(v) \in\{\ldots, f(v)-2, f(v)\}$ for all $v \neq w$.

By Lemma $2.2 G$ is f-critical if and only if G^{f} is factor-critical. The Gallai-Edmonds structure theorem for the f-parity subgraph problem follows from the classical Gallai-Edmonds theorem easily. We cite this latter result below.

Theorem 2.4. (Gallai, Edmonds) $[4,5,6]$ Let D consist of those vertices of the graph G which are missed by some maximum matching of G, let $A=\Gamma(D)$ and $C=V(G)-(D \cup A)$. Then

1. every component of $G[D]$ is factor-critical,
2. $\mid\left\{K: K\right.$ is a component of $G[D]$ adjacent to $\left.A^{\prime}\right\}\left|\geq\left|A^{\prime}\right|+1\right.$ for all $\emptyset \neq A^{\prime} \subseteq A$,
3. $\delta_{1}(G)=c(G[D])-|A|$,
4. $G[C]$ has a perfect matching.

A direct generalization of the above result is the version for the f-parity subgraph problem.
Theorem 2.5. [8, 14] Let G be a graph and $f: V(G) \rightarrow \mathbb{N} \backslash\{0\}$ be a function. Let $D_{f} \subseteq V(G)$ consist of those vertices v for which there exists an f-parity optimal subgraph F of G with $\operatorname{deg}_{F}(v) \in\{\ldots, f(v)-3, f(v)-1\}$. Let $A_{f}=\Gamma\left(D_{f}\right)$ and $C_{f}=V(G)-\left(D_{f} \cup A_{f}\right)$. Then

1. every component of $G\left[D_{f}\right]$ is f-critical,
2. $\mid\left\{K: K\right.$ is a component of $G\left[D_{f}\right]$ adjacent to $\left.A^{\prime}\right\} \mid \geq f\left(A^{\prime}\right)+1$ for all $\emptyset \neq A^{\prime} \subseteq A_{f}$,
3. $\delta_{f}(G)=c\left(G\left[D_{f}\right]\right)-f\left(A_{f}\right)$,
4. $G\left[C_{f}\right]$ has an f-parity factor.

Proof. Take the classical Gallai-Edmonds decomposition $V\left(G^{f}\right)=D \cup A \cup C$ of G^{f}. By symmetry, if V_{v} meets D then $V_{v} \subseteq D$. These vertices $v \in V(G)$ form D_{f} by Lemma 2.2. The other results follow from the construction and from Lemma 2.2.

This proof implies:
Lemma 2.6. For $X=D, A, C$ it holds that $X_{f}(G)=\left\{v \in V(G): V_{v} \subseteq X\left(G^{f}\right)\right\}$, provided $f>0$.

From Theorem 2.5 the Berge type minimax formula on the f-parity subgraph problem follows in a few lines.

Definition 2.7. A connected component K of G is f-odd (f-even) if $f(V(K))$ is odd (even). Let f-odd (G) denote the number of f-odd components of G. For $Y \subseteq V(G)$ let $\operatorname{def}_{f}(Y)=f$ odd $(G-Y)-f(Y)$.

Theorem 2.8. [7] If G is a graph and $f: V(G) \rightarrow \mathbb{N} \backslash\{0\}$ is a function then $\delta_{f}(G)=$ $\max \left\{\operatorname{def}_{f}(Y): Y \subseteq V(G)\right\}$.

Proof. By virtue of Theorem 2.5, one only has to observe that if a graph K is f-critical then $f(V(K))$ is odd, and that if $f(V(K))$ is odd then K has no f-parity factor.

We point out that up to this point $f=0$ was excluded only for sake of convenience. Theorems 2.5 and 2.8 still hold in the general case. (If $f(v)=0$ then join a pendant vertex u to v and define $f(u)=f(v)=1$. Then construct G^{f}.) So we can define the canonical decomposition $D_{f}(G), A_{f}(G), C_{f}(G)$ for all f. However, Lemma 2.6 would fail.

Now we show how to use this approach to analyze barriers.

Definition 2.9. $Y \subseteq V(G)$ is called an f-barrier if $\operatorname{def}_{f}(Y)=\delta_{f}(G)$.
As f-critical graphs are f-odd, the canonical Gallai-Edmonds set A_{f} is an f-barrier. A 1-barrier is just an ordinary barrier in matching theory. One can observe that if $Y \subseteq V\left(G^{f}\right)$ and $V_{v} \cap Y, \quad V_{v} \backslash Y \neq \emptyset$ then $V_{v} \cap Y$ is adjacent to only one component of $G^{f}-Y$. Moreover, if Y is a barrier in G^{f} then each $X \subseteq Y$ is adjacent to at least $|X|$ odd components of $G^{f}-Y$ since otherwise $\operatorname{def}_{1}(Y-X)>\operatorname{def}_{\mathbf{1}}(Y)$, which is impossible. Hence if Y is a barrier in G^{f} then $\left|Y \cap V_{v}\right| \in\{0,1, f(v)\}$ for all $v \in V(G)$. It also follows that if $\left|Y \cap V_{v}\right|=1$ and $V_{v} \backslash Y \neq \emptyset$ then $Y \backslash V_{v}$ is a barrier of G^{f}. Thus if Y is a barrier of G^{f} then $Y^{\prime}=\left\{v \in V(G): V_{v} \subseteq Y\right\}$ is an f-barrier of G. On the other hand, if Y^{\prime} is an f-barrier of G then $\bigcup\left\{V_{v}: v \in Y^{\prime}\right\}$ is clearly a barrier of G^{f}. Also the canonical Gallai-Edmonds barrier $A\left(G^{f}\right)$ of G^{f} has this form.

Definition 2.10. An f-barrier Y of G is called strong if the f-odd components of $G-Y$ are f-critical.

Also A_{f} is a strong f-barrier. Since a graph K is f-critical if and only if K^{f} is factor-critical, we have

Observation 2.11. $Y \subseteq V(G)$ is a strong f-barrier in G if and only if $\bigcup\left\{V_{v}: v \in Y\right\}$ is a strong 1-barrier in G^{f}.

Király proved that the intersection of strong 1-barriers is also a strong 1-barrier [9]. This result holds for the f-parity subgraph problem as well.

Theorem 2.12. The intersection of strong f-barriers is a strong f-barrier.
Proof. Let Y_{1}, Y_{2} be strong f-barriers of G. Then $Y_{i}^{\prime}=\bigcup\left\{V_{v}: v \in Y_{i}\right\}$ are strong 1-barriers of G^{f}, hence their intersection, which is just $\bigcup\left\{V_{v}: v \in Y_{1} \cap Y_{2}\right\}$, is also a strong 1-barrier by [9]. Thus $Y_{1} \cap Y_{2}$ is a strong f-barrier of G.

By Tutte's theorem, maximal matching barriers are strong. This remains true for f-barriers, too. Indeed, let Y be a maximal f-barrier of G and K be an f-odd component of $G-Y$. K has no f-parity factor so $C_{f}(K) \neq V(K)$ in its canonical Gallai-Edmonds decomposition. Hence either $D_{f}(K)=V(K)$ or $A_{f}(K) \neq \emptyset$. In the first case K is f-critical by Theorem 2.5, 1 ., and in the second case $Y \cup A_{f}(K)$ would be a larger f-barrier then Y, which is impossible. Thus all f-odd components of $G-Y$ are also f-critical, implying that Y is strong.

In the matching case it holds that the canonical Gallai-Edmonds barrier A is the intersection of all maximal barriers. This fails for the general case: take a triangle together with a pendant vertex of degree 1 , and define $f \equiv \operatorname{deg}$. Here $A_{f}=\emptyset$ and there exists exactly one nonempty barrier.

However, the fact that in the matching case the canonical Gallai-Edmonds barrier A is the intersection of all strong barriers remains true by Observation 2.11 and the fact that A_{f} itself is strong.

3 -elementary graphs

In this section we generalize some results on elementary graphs (presented in Lovász [11]) to the f-parity case.

Definition 3.1. Let G be a graph and $f: V(G) \rightarrow \mathbb{N}$. An edge $e \in E(G)$ is said to be allowed (or f-allowed if confusion may arise) if G has an f-parity factor containing e. Otherwise e is forbidden. G is said to be f-elementary if the allowed edges induce a connected spanning subgraph of $G . G$ is weakly f-elementary if G_{2} is f-elementary, where G_{2} is the graph we get by replacing every edge $e \in E(G)$ by two parallel edges.

1-elementary graphs are simply called elementary. f-elementary graphs are weakly f elementary, but not vice versa: $G=K_{2}$ with $f \equiv 2$ is weakly f-elementary but not f-elementary.

These classes coincide if $f=\mathbf{1}$. Note that the assumption $f>0$ excludes only the singleton with $f=0$ from the class of (weakly) f-elementary graph. Lemma 3.2 justifies why we introduced the weak version of f-elementary graphs.

Lemma 3.2. G^{f} is elementary if and only if G is weakly f-elementary.
Proof. Let M be a perfect matching of G^{f}. If M contains at least three edges between K_{u} and K_{v} for some $u, v \in V(G)$ then replace two of them by another two edges, one inside K_{u} and the other one inside K_{v}. So the number of edges of M between K_{u} and K_{v} decreased by 2 . Repeted application of this process leads to a graph where the number of edge between any K_{u} and K_{v} is at most 2. This construction shows that if G^{f} is elementary then G is weakly f-elementary.

On the other hand, if G is weakly f-elementary then G^{f} is clearly elementary.
The $f=1$ special cases of the following two theorems can be found e.g. in Lovász and Plummer [13] (Theorems 5.1.3 and 5.1.6). Using our reduction these special cases together with Lemmas 2.6 and 3.2 imply both Theorem 3.3 and 3.4.

Theorem 3.3. G is weakly f-elementary if and only if $\delta_{f}(G)=0$ and $C_{f-\chi_{w}}(G)=\emptyset$ for all $w \in V(G)$.

Proof. G is weakly f-elementary if and only if G^{f} is elementary by Lemma 3.2 , and G^{f} is elementary if and only if $\delta_{1}\left(G^{f}\right)=0$ and $C\left(G^{f}-x\right)=\emptyset$ for all $x \in V\left(G^{f}\right)$ ([13], Theorem 5.1.3). Since $\delta_{f}(G)=\delta_{\mathbf{1}}\left(G^{f}\right)$, it is enough to prove that

$$
\begin{equation*}
\text { if } \delta_{f}(G)=0, w \in V(G) \text { and } x \in V_{w} \text { then } C\left(G^{f}-x\right)=\emptyset \Longleftrightarrow C_{f-\chi_{w}}(G)=\emptyset . \tag{1}
\end{equation*}
$$

As $G^{f}-x \simeq G^{f-\chi_{w}}$, if $f(w) \geq 2$ then (1) follows from Lemma 2.6. So assume that $f(w)=1$. As $G^{f}-x \simeq(G-w)^{f-\chi_{w}}$, Lemma 2.6 implies that $C\left(G^{f}-x\right)=\emptyset \Longleftrightarrow C_{f-\chi_{w}}(G-w)=\emptyset$. $\delta_{f}(G)=0$ and $f(w)=1$, so it is easy to see that the $f-\chi_{w}$-parity optimal subgraphs of G are the f-parity factors of G and the $f-\chi_{w}$-parity optimal subgraphs of $G-w$ enlarged by w as an isolated vertex. Thus $D_{f-\chi_{w}}(G)=D_{f-\chi_{w}}(G-w)$ and hence $A_{f-\chi_{w}}(G) \backslash\{w\}=$ $A_{f-\chi_{w}}(G-w)$. Now if $w \in X:=A_{f-\chi_{w}}(G)$ then (1) clearly holds, while if $w \in C_{f-\chi_{w}}(G)$ then $\operatorname{def}_{f}^{G}(X)=\operatorname{def}_{f}^{G-w}(X)+1>0$, which is impossible.
Theorem 3.4. G is weakly f-elementary if and only if f-odd $(G-Y) \leq f(Y)$ for all $Y \subseteq V(G)$, and if equality holds for some $Y \neq \emptyset$ then $G-Y$ has no f-even components.

Proof. Call $Y \subseteq V(G) f$-bad if either f-odd $(G-Y)>f(Y)$ or equality holds here and $G-Y$ has an f-even component. G is weakly f-elementary if and only if G^{f} is elementary (Lemma 3.2) if and only if G^{f} has no 1 -bad set ([13], Theorem 5.1.6). So we only have to prove that G has an f-bad set Y if and only if G^{f} has a 1 -bad set Y^{\prime}. If $Y \subseteq V(G)$ is f-bad then $Y^{\prime}=\bigcup\left\{V_{v}: v \in Y\right\}$ is 1-bad in G^{f}. On the other hand, let $Y^{\prime} \subseteq V\left(G^{f}\right)$ be 1-bad in G^{f}. If $V_{v} \cap Y^{\prime}, V_{v} \backslash Y^{\prime} \neq \emptyset$ for some $v \in V(G)$ then let $x \in V_{v} \cap Y^{\prime}$. Now x is adjacent to only one component of $G^{f}-Y^{\prime}$ hence $Y^{\prime}-x$ is also 1-bad. So we can assume that Y^{\prime} is a union of some V_{v}. Now $Y=\left\{v \in V(G): V_{v} \subseteq Y^{\prime}\right\}$ is f-bad in G.

In the case of matchings the existence of a certain canonical partition of the vertex set was revealed by Lovász [11] (Lovász, Plummer [13], Theorem 5.2.2). We cite this result.

Definition 3.5. $X \subseteq V(G)$ is called nearly f-extreme if $\delta_{f-\chi_{X}}(G)=\delta_{f}(G)+|X|$. Besides, X is f-extreme if $\delta_{f}(G-X)=\delta_{f}(G)+f(X)$.

It is clear that $\delta_{f-\chi_{X}}(G) \leq \delta_{f}(G)+|X|$ and $\delta_{f}(G-X) \leq \delta_{f}(G)+f(X)$ for every $X \subseteq V(G)$. Nearly 1-extreme and 1-extreme sets coincide.

Theorem 3.6. (Lovász)[11] If G is elementary then the maximal barriers of G form a partition \mathcal{S} of $V(G)$. Moreover, it holds that

1. for $u, v \in V(G)$, the graph $G-u-v$ has a perfect matching if and only if u and v are contained in different classes of \mathcal{S}, (hence if $u v \in E(G)$ then $u v$ is 1 -allowed in G),
2. $S \in \mathcal{S}$ for some $S \subseteq V(G)$ if and only if $G-S$ has $|S|$ components, each factor-critical,
3. $X \subseteq V(G)$ is $\mathbf{1}$-extreme if and only if $X \subseteq S$ for some $S \in \mathcal{S}$.

Lemma 3.2 implies the analogue of this result.
Theorem 3.7. If G is weakly f-elementary then its maximal f-barriers form a subpartition \mathcal{S}^{\prime} of $V(G)$. Call the classes of \mathcal{S}^{\prime} proper and add all elements $v \in V(G)$ not in a class of \mathcal{S}^{\prime} as a singleton class yielding the partition \mathcal{S} of $V(G)$. Now it holds that

1. for $u, v \in V(G)$, the graph G has an $f-\chi_{\{u, v\}-p a r i t y ~ f a c t o r ~ i f ~ a n d ~ o n l y ~ i f ~} u$ and v are contained in different classes of \mathcal{S} (hence if $u v \in E(G)$ then uv is f-allowed in G_{2}),
2. $S \in \mathcal{S}^{\prime}$ for some $S \subseteq V(G)$ if and only if $G-S$ has $f(S)$ components, each f-critical,
3. $X \subseteq V(G)$ is nearly f-extreme (f-extreme, resp.) if and only if $X \subseteq S$ for some $S \in \mathcal{S}$ ($S \in \mathcal{S}^{\prime}$, resp.).

Proof. As we already observed, for every barrier Y of G^{f} it holds that $\left|Y \cap V_{v}\right| \in\{0,1, f(v)\}$ for all $v \in V(G) . G^{f}$ is elementary, hence its maximal barriers form a partition of $V\left(G^{f}\right)$ by Theorem 3.6. Thus, by symmetry, a maximal barrier of G^{f} is either the union of some V_{v}, or a singleton. If Y^{\prime} is an f-barrier of G then $\bigcup\left\{V_{v}: v \in Y^{\prime}\right\}$ is a barrier of G^{f}. On the other hand, if Y is a maximal barrier of G^{f} of the form $\bigcup V_{v}$ then $Y^{\prime}=\left\{v \in V(G): V_{v} \subseteq Y\right\}$ is clearly a maximal f-barrier of G. So these barriers Y^{\prime} form the proper classes of \mathcal{S}, and for a singleton class $\{v\} \in \mathcal{S}-\mathcal{S}^{\prime}$ it holds that each vertex $x \in V_{v}$ is a maximal barrier of G^{f}. Now the statement follows from Theorem 3.6, using $\delta_{f}(G)=\delta_{1}\left(G^{f}\right)$ for 1. and 3., and using the fact that a graph K is f-critical if and only if K^{f} is factor-critical for 2.

Remark 3.8. It follows from Theorem 3.7, 3., that \mathcal{S} could be introduced as the partition $\{X \subseteq V(G): X$ is a maximal nearly f-extreme set of $G\}$. Besides, if $X \subseteq V(G),|X| \geq 2$ is maximal nearly f-extreme, then X is an f-barrier of G.

Corollary 3.9. If G is f-elementary then $e \in E(G)$ is f-allowed if and only if e joins two classes of \mathcal{S}.

Proof. Suppose that e joins u to v and let $g=f-\chi_{\{u, v\} \text {. By Theorem 3.7, 1., we only have to }}$ prove that G has a g-parity factor if and only if e is f-allowed. Assume that G has a g-parity factor but e is not f-allowed. (The other direction is trivial.) If $G-e$ had a g-parity factor F then $F+e$ would be an f-parity factor of G, which is impossible. Thus by Theorem 2.8 there exists a set $Y \subseteq V(G)$ such that g-odd $(G-e-Y)>g(Y)$. G has a g-parity factor so by parity reasons g-odd $(G-e-Y)=g(Y)+2$, and e runs between two g-odd components K_{1} and K_{2} of $G-e-Y$. But then clearly no edge entering $V\left(K_{1}\right) \cup V\left(K_{2}\right)$ is f-allowed in G. G is f-elementary thus $V\left(K_{1}\right) \cup V\left(K_{2}\right)=V(G)$, but then e is an f-forbidden cut edge.

What happens if we increase $f(v)$ by 2 ? Let $f^{\prime}=f+2 \chi_{v}$. First, G is still weakly f^{\prime} elementary. Note that all barriers of G^{f} disjoint from V_{v} remain a barrier also in $G^{f^{\prime}}$. If v is a singleton in \mathcal{S} w.r.t. f, then it is also a singleton w.r.t. f^{\prime}. If v belongs to a proper class $S \in \mathcal{S}$ then S will not be an f-barrier of G any more, hence S is split to smaller, singleton and proper, classes of the new canonical partition.

Our last subject is generalizing bicritical graphs.
Definition 3.10. Let G be a graph and $f: V(G) \rightarrow \mathbb{N} \backslash\{0\}$ be a function. G is said to be f-bicritical if G has an $f-\chi_{\{u, v\}}$-parity factor for all pairs $u, v \in V(G)$.

Theorem 3.11. If G is weakly f-elementary then the following statements are equivalent.

1. G is f-bicritical.
2. All classes of \mathcal{S} are singletons.
3. If $Y \subseteq V(G)$ and $|Y| \geq 2$ then $f-o d d(G-Y) \leq f(Y)-2$.

Proof. 1 \Rightarrow 2: Each edge in G_{2} is allowed thus Theorem 3.7, 1., implies the equivalence.
2 \Rightarrow 3: Assume the contrary. By parity reasons, we have a set $Y \subseteq V(G)$ with $|Y| \geq 2$ such that f-odd $(G-Y)=f(Y)$. So Y is an f-barrier, which is contained in a set $S \in \mathcal{S}$ with $|S| \geq 2$.
$3 \Rightarrow 1$: Suppose G has no $g=f-\chi_{\{u, v\}}$-parity factor for some $u, v \in V(G)$. Thus there exists a set $Y \subseteq V(G)$ such that g-odd $(G-Y)>g(Y)$. Recall that G has an f-parity factor. If u or v belongs to a g-odd component K of $G-Y$ then Y is an f-barrier of G and K is an f-even component of $G-Y$, contradicting to Theorem 3.4. Hence both u and v belong to Y, thus $|Y| \geq 2$ and $f-o d d(G-Y)=f(Y)$, a contradiction.

Lovász [11] and Lovász, Plummer [13] developed a decomposition procedure for elementary graphs, showing that they build up from bipartite elementary graphs and from bicritical graphs. We mention that this procedure is possible to extend to weakly f-elementary graphs. Going one step further, the bipartite elementary graphs have a bipartite ear decomposition starting from an edge. Also this ear decomposition can be adapted to bipartite f-elementary graphs, hence further refining the decomposition procedure of weakly f-elementary graphs. (An f-elementary graph G is bipartite f-elementary if G is bipartite with color classes U and V and $\left.f\right|_{U}=1$.) We do not go into details.

References

[1] A. Amahashi, On factors with all degrees odd. Graphs and Combin. (1985) 1 111-114.
[2] G. Cornuéjols, General factors of graphs. J. Combin. Theory Ser. B (1988) 45 185-198.
[3] Y. Cui, M. Kano, Some results on odd factors of graphs. J. of Graph Theory (1988) 12 327-333.
[4] J. Edmonds, Paths, trees, and flowers. Canadian J. of Math. (1965) 17 449-467
[5] T. Gallai, Kritische Graphen II. A Magyar Tud. Akad. - Mat. Kut. Int. Közl. (1963) 8 135-139.
[6] T. Gallai, Maximale Systeme unabhängiger Kanten. A Magyar Tud. Akad. - Mat. Kut. Int. Közl. (1964) 9 401-413.
[7] M. Kano, G. Y. Katona, Odd subgraphs and matchings. Discrete Math. (2002) 250 265-272.
[8] M. Kano, G. Y. Katona, Structure theorem and algorithm on $(1, f)$-odd subgraphs. manuscript
[9] Z. Király, The calculus of barriers. manuscript
[10] L. Lovász, The factorization of graphs. Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969) (1970) 243-246.
[11] L. Lovász, On the structure of factorizable graphs. Acta Math. Acad. Sci. Hungar. (1972) 23 179-195.
[12] L. Lovász, The factorization of graphs. II. Acta Math. Acad. Sci. Hungar. (1972) 23 223-246.
[13] L. Lovász, M. D. Plummer, Matching Theory. North-Holland Mathematics Studies, North-Holland Publishing Co., Amsterdam, 1986.
[14] J. Szabó, A note on the degree prescribed factor problem. EGRES Technical Reports 2004-19. www.cs.elte.hu/egres
[15] J. Szabó, Graph packings and the degree prescribed subgraph problem. PhD thesis, Eötvös University, Budapest, 2006.

[^0]: *Research supported by OTKA grants T046234 and T043520
 ${ }^{\dagger}$ MTA-ELTE Egerváry Research Group (EGRES), Department of Operations Research, Eötvös University, Budapest, Pázmány P. s. 1/C, Hungary H-1117. Research is supported by OTKA grants T037547, K60802, TS 049788 and by European MCRTN Adonet, Contract Grant No. 504438. e-mail: jacint@elte.hu.

