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tAn r-uniform hypergraph is k-edge-hamiltonian i� it still 
ontains a hamil-tonian 
hain after deleting any k edges of the hypergraph. What is the mini-mum number of edges in su
h a hypergraph? We give lower and upper boundsfor this question for several values of r and k.1 Introdu
tionLet H be a r-uniform hypergraph on the vertex set V (H) = fv1; v2; : : : ; vng wheren > r. For simpli
ity of notation vn+x with x � 0 denotes the same vertex as vx(unless stated otherwise). The set of the edges, r-element subsets of V , is denotedby E(H) = fE1; E2; : : : ; Emg. We will write simply V for V (H) and E for E(H) ifno 
onfusion 
an arise.In [1℄ the authors de�ned the notion of a hamiltonian-
hain.De�nition 1 A 
y
li
 ordering (v1; v2; : : : ; vn) of the vertex set is 
alled a hamil-tonian 
hain i� for ea
h 1 � i � n fvi; vi+1; : : : ; vi+r�1g =: Ej is an edge of H.An ordering (v1; v2; : : : ; vl+1) of a subset of the vertex set is 
alled an open 
hain oflength l between v1 and vl+1 i� for ea
h 1 � i � l� r+ 2 there exists an edge Ej ofH su
h that fvi; vi+1; : : : ; vi+r�1g = Ej. An open 
hain of length n � 1 is an openhamiltonian 
hain. A 
y
li
 ordering (v1; v2; : : : ; vl) of a subset of the vertex set is
alled a 
hain of length l i� for every 1 � i � l there exists an edge Ej of H su
hthat fvi; vi+1; : : : ; vi+r�1g = Ej. (Now vl+x denotes the same vertex as vx).�Resear
h supported by OTKA grants OTKA T 029772 and T 030059, and The Japan So
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De�nition 2 A hypergraph is hamiltonian if it 
ontains a hamiltonian-
hain andit is k-edge-hamiltonian if by the removal of any k edges a hamiltonian hypergraphis obtained.The notion of the degree is also extended, it is de�ned below in full generality,however, only some spe
ial 
ases will be used.De�nition 3 The degree of a �xed l-tuple of distin
t verti
es, fv1; v2; : : : ; vlg, ina r-uniform hypergraph is the number of edges of the hypergraph 
ontaining the setfv1; v2; : : : ; vlg. It is denoted by dr(v1; v2; : : : ; vl). Furthermore Æ(l)r (H) denotes theminimum of dr(v1; v2; : : : ; vl) over all l-tuples of verti
es in H. The neighborhoodof a vertex v is de�ned byNH(v) := fE � fvg j v 2 E;E 2 E(H)g :The main aim of the present arti
le is to investigate minimum size k-edge-hamiltonian hypergraphs. In [2, 3℄ the authors settle this question for graphs.Theorem 4 [2, 3℄ The number of edges in a minimum k-edge-hamiltonian graph onn � k + 3 verti
es is dn(k + 2)=2e.Sin
e the degree of any vertex in a r-uniform hamiltonian 
hain is r, the minimumdegree in a k-edge-hamiltonian hypergraph is at least r+ k, so the number of edgesis at least dn(r + k)=re. For r = 2 this shows that the 
onstru
tions in the abovetheorem are best possible. However, for r > 2 this lower bound is not best possible.2 3-uniform hypergraphsIf a hypergraph 
ontains k+1 edge-disjoint hamiltonian 
hains, then it is 
learly k-edge-hamiltonian. This observation leads to the trivial upper bound on the minimumnumber of edges: (k + 1)n. If k = 1 then the following slightly better upper boundis obtained.Theorem 5 There exists a 1-edge-hamiltonian 3-uniform hypergraph H on n ver-ti
es with jE(H)j = 116 n+ o(n):Proof: Let V(H) := fw1; : : : ; wp; v1; : : : ; vqg where p = dn=6e and q = n�p. Thereare two types of edges in H. The �rst kind of edges form a 
hain on fv1; : : : ; vqg,E1(H) := �fvi; vi+1; vi+2g ���� 1 � i � q� :2



The se
ond kind 
onne
ts the rest of the verti
es to this 
hain:E2(H) := nfwi; v5(i�1)+j ; v5(i�1)+j+1g ��� 1 � i � p; 1 � j � 6o :This means that the neighborhood of wi is an ordinary graph, a path of length 6formed by verti
es v5(i�1)+1; : : : ; v5(i�1)+7. The neighborhood of wi+1 is also a path oflength 6, whi
h begins at v5(i�1)+6, so v5(i�1)+6; v5(i�1)+7 2 N(wi)\N(wi+1) (ex
eptmaybe for N(w1) and N(wp) where the overlap is larger if 6 - n). Let E(H) :=E1(H) [ E2(H), then it is 
lear that jE(H)j = q + 6p = n + 5dn=6e = 11n=6 + o(n).(See Fig. 1.) wi
wi+1

v5(i�1)+1
v5(i�1)+2 v5(i�1)+6

v5(i�1)+7
wi+1Figure 1: 3-uniform 1-edge-hamiltonian hypergraphThis hypergraph 
ontains many hamiltonian-
hains whi
h 
an be obtained in thefollowing way. Start with the 
hain formed by fv1; : : : ; vqg and extend this 
y
le byinserting the rest of the verti
es one by one. It is obvious that we 
an insert wi be-tween any two 
onse
utive verti
es of v5(i�1)+2; v5(i�1)+3; v5(i�1)+4; v5(i�1)+5; v5(i�1)+6(but we 
annot insert it between v5(i�1)+1 and v5(i�1)+2 or v5(i�1)+6 and v5(i�1)+7).Note that the new 
hain 
ontains 3 \
onse
utive edges" of N(wi) but it does not
ontain 2 \
onse
utive edges" from the original 
hain (those whi
h 
ontain bothneighbors of wi in the new 
hain (See Fig. 2).wiv5(i�1)+1

v5(i�1)+2 v5(i�1)+6
v5(i�1)+7

Figure 2: How to insert wi?Now we prove thatH is 1-edge-hamiltonian, that is,H�E 
ontains a hamiltonian-
hain for any E 2 E(H). 3



Suppose that E = fvt; vt+1; vt+2g 2 E1(H). Then it is easy to 
he
k that thereis a wi whi
h we 
an insert either between vt and vt+1 or vt+1 and vt+2, so the new
hain does not 
ontain E any more. Further, we 
an insert all other w verti
esinto suitable pla
es, hen
e we obtain the desired hamiltonian-
hain (see Fig. 3), forexample the following onevt; vt+1; wi; vt+2; vt+3; : : : ; vt+5; vt+6; wi+1; vt+7; vt+8; : : : ; vt+5j; vt+5j+1; wi+j; vt+5j+2; : : :wi
wi+1 wi+1vt+1 vt+5 vt+6vt
Figure 3: Hamiltonian 
hain in H� EOn the other hand, if wi 2 E for some i then it is 
lear that N(wi)� E always
ontains 3 \
onse
utive edges", therefore wi 
an be inserted into the 
hain formedby fv1; : : : ; vqg. Inserting the rest of the verti
es in the same way as in the other
ase, we obtain a hamiltonian-
hain of H� E.Theorem 6 For any 1-edge-hamiltonian 3-uniform hypergraph H on n � 5 verti
esjE(H)j � 149 nholds.Proof: Observe that the neighborhood of a vertex in a hamiltonian-
hain is apath on 4 distin
t verti
es, a P4. Let us 
all a graph stable if it 
ontains a P4 afterdeleting any edge of the graph. Thus, the neighborhood of every vertex of a 1-edge-hamiltonian graph is stable. We also 
all a vertex of the hypergraph stable i� itsneighborhood is stable.It is easy to 
he
k that the only stable graph with 4 edges is the C4, the 
y
lewith 4 edges. All other stable graphs 
ontain at least 5 edges. In fa
t, there areonly 3 stable graphs with 5 edges (see Fig. 4).Let H be a 1-edge-hamiltonian 3-uniform hypergraph and let v1; : : : ; vn be ahamiltonian 
hain. 4



Figure 4: Stable graphs with 5 edgesClaim 1 d(vi�2) + d(vi) + d(vi+2) � 14 holds for any i.Proof: Note that, the only way to make jN(vi)j = 4 is to add the edge fvi; vi�2; vi+2gtoH, be
auseN(vi) already 
ontains the edges fvi�2; vi�1g, fvi�1; vi+1g and fvi+1; vi+2g.Suppose that d(vi�2) + d(vi) + d(vi+2) � 13. Sin
e d(vj) � 4 for any j, there areonly two 
ases.If d(vi�2) = d(vi) = 4 � d(vi+2) (or d(vi�2) � 4 = d(vi) = d(vi+2)) thenfvi�2; vi; vi+2g 2 E(H) must hold, but this implies d(vi�2) � 5, a 
ontradi
tion.The other 
ase is when d(vi�2) = d(vi+2) = 4 � d(vi). Sin
e vi�2 and vi+2 isstable, fvi�4; vi�2; vig; fvi; vi+2; vi+4g 2 E(H) holds. However, this means that N(vi)
ontains a path of length 5 with 6 distin
t verti
es. This is a 
ontradi
tion, be
ausenon of the stable graphs with 5 edges 
ontains su
h a subgraph, therefore d(vi) � 6.Using the above 
laim, we obtain that9jE(H)j = 3 nXi=1 d(vi) = n+2Xi=3 d(vi�2) + d(vi) + d(vi+2) � 14n;proving the theorem.Theorem 7 There exists a 2-edge-hamiltonian 3-uniform hypergraph H on n ver-ti
es with jE(H)j = 134 n+ o(n):Proof: The stru
ture of the 
onstru
tion is very similar to that of Theorem 5. LetV(H) := fw1; : : : ; wp; v1; : : : ; vqg where p = dn=4e and q = n � p. There are twotypes of edges in H. The �rst kind of edges form a 
hain on fv1; : : : ; vqg,E1(H) := ffvi; vi+1; vi+2g j 1 � i � qg :The se
ond kind 
onne
ts the rest of the verti
es to this 
hain:E2(H) := nfwi; v4(i�1)+j ; v4(i�1)+j+1g ��� 1 � i � p; 1 � j � 9o :5



This means that the neighborhood of wi is an ordinary graph, a path of length 9formed by verti
es v4(i�1)+1; : : : ; v5(i�1)+10. The neighborhood of wi+1 is also a pathof length 9, whi
h begins at v4(i�1)+5, so the neighborhood of wi and wi+1 have6 
ommon verti
es and the neighborhood of wi and wi+2 have 2 
ommon verti
es(ex
ept maybe at the \end" where the overlap is larger if 4 - n). Let E(H) :=E1(H) [ E2(H), then it is 
lear that jE(H)j = q + 9p = n + 9dn=4e = 13n=4 + o(n).(See Fig. 5.)

$w_i$wi�2 wi+2

wi�1 wi+1
v4(i�1)+10

v4(i�1)+5
v4(i�1)+1

Figure 5: 2-edge-hamiltonian 3-uniform hypergraphUsing the method des
ribed in the proof of Theorem 5 it 
an be easily proven,that H is 1-edge-hamiltonian. It is also 
lear that H remains hamiltonian if the 2removed edges are \far" from ea
h other, namely if no wi for whi
h its neighborhoodinterse
ts both removed edges.If both edges 
ontains wi then we 
an still insert wi in a similar way as in Fig. 2,sin
e there are 9 edges 
ontaining wi, so after the removal of 2, we still have 3
onse
utive.The other 
ases 
an be also proved one by one, the reader may verify this withthe help of a few examples on Fig. 6.In order to obtain a lower bound for general k, one should know the minimumnumber of edges in a graph whi
h 
ontains a P4 after removing any k edges of thegraph. These graphs are 
alled k-stable and the minimum number of edges in ak-stable graph is denoted by S(k).A trivial upper bound is obtained for S(k) in the following way.Observe that the maximum number of edges on n verti
es in a P4-free graph isn� 1 if n is not divisible by 3 and n if n is divisible by 3. The extremal graphs areunion of et least one star and some (possibly zero) triangles in the �rst 
ase, andunion of triangles in the se
ond 
ase. Taking the most dense graph on n verti
es,6



Figure 6: Examples of the more 
ompli
ated 
asesa 
omplete graph or an almost 
omplete graph will give the desired bound. By theabove observation if e(G) > n � 1 + k if 3 - n and e(G) > n + k if 3 j n then G isk-stable. However, for three values of k there are 
onstru
tions whi
h give boundssmaller by 1.An other remark is that S(k) is stri
tly monotone, sin
e by removing an edgefrom a k-stable graph results in a (k � 1)-stable graph.The following lemma shows, that to prove S(k) > m it is enough to prove, thatnone of the graphs on exa
tly m edges are k-stable, so it is not possible that thereis a k-stable graph with m� 2 edges for example.Lemma 8 If for any graph G with e(G) = m the graph is not k-stable then S(k) >m.Proof: Let G0 be a graph with e(G0) < m. We will prove that G0 
annot bek-stable. Constru
t G from G0 by adding m � e(G0) independent edges. Supposeindire
tly that G0 is k-stable. Sin
e e(G) = m, if we remove k edges from G then weremoved � k edges fromG0 so it will 
ontain a P4, thus G is k-stable, a 
ontradi
tion.The next lemma will help us to handle some easy extremal 
ases.7



Lemma 9 If the maximum degree in G is 2, then G 
ontains a P4-free subgraphwith at least le(G)2 m.Proof: It is enough to prove the 
laim for 
onne
ted graphs, be
ause otherwisetaking the union of the subgraphs found in ea
h 
omponent will prove the 
laim.If the graph is an even 
y
le, than take every other edge for the desired subgraph.If the graph is an odd 
y
le, than �rst take two 
onse
utive edges, then every otheredges. Similarly is the graph is an odd path, than take every other edge startingwith the �rst edge. If the graph is an even path, then take the �rst two 
onse
utiveedges and then every other edges.Theorem 10 S(1) = 4; S(2) = 6.Proof: For k = 1 the proof is trivial.If k = 2 then suppose that there exists a 2-stable graph G2 with 5 edges. It is
lear that removing any edge of G2 gives a 1-stable graph with 4 edges, so it mustbe C4. One 
an easily verify that there is no su
h G2. Note that there are 3 di�erent2-stable graphs with 6 edges (see Fig. 7).
Figure 7: 2-stable graphs with 6 edgesOn the other hand S(k) � 6 sin
e K4 is 2-stable. If we remove 2 edges from it4 edges remain on 4 verti
es, so it must 
ontain a P4.Theorem 11 S(3) = 8; S(4) = 9; S(5) = 10.Proof: Sin
e S(k) is stri
tly monotone, it is enough to prove that S(3) � 8 andS(5) � 10.To prove the se
ond 
laim we show that K5 is 5-stable. If 5 edges are removedfrom K5 then 5 edges remain on 5 verti
es, so it must 
ontain a P4.To prove S(3) � 8 suppose indire
tly that there exists a 3-stable graph G3 withjE(G3)j = 7.a) There exists a vertex of degree � 4 in G3: 4 edges in
ident to a vertex doesnot 
ontain a P4 so if we remove the rest of the edges, no P4 remains. Thuswe may suppose that the maximum degree in G3 is at most 3.8



b) There exists a triangle in G3: If there is an edge independent from thetriangle, then these 4 edges do not 
ontain a P4, so by removing the rest of theedges our 
laim is proved. Otherwise, all other edges have one end 
ommonwith the triangle, moreover by 
ase a) there is at most 1 su
h edge at ea
hvertex of the triangle. This implies that jE(G3)j � 6, so we may suppose thatthere is no triangle.
) There exist a vertex v1 with degree 3: Let v2; v3; v4 be its neighbors. Sin
ethere is no triangle in the graph, there are no edges between v2; v3; v4. Sin
ethere are 4 more edges, there must be 2 of them whi
h are not adja
ent to 2verti
es of v2; v3; v4, say to v2; v3. So these two edges and (v1; v2) and (v1; v3)forms a P4-free subgraph. Thus we may suppose that the maximum degree is2. Applying Lemma 9 we 
omplete the proof.
Theorem 12 S(6) = 12; S(7) = 13; S(8) = 14.Proof: Sin
e S(k) is stri
tly monotone, it is enough to prove that S(6) � 12 andS(8) � 14.To prove the se
ond 
laim we show that the graph G8 on Figure 8 is 8-stable.If 8 edges are removed from G8 then 6 edges remain on 7 verti
es. There are onlytree ways for these edges to form a P4-free graph. 1) two independent triangles; 2)a triangle and a star with 3 edges; 3) a star with 6 edges.1) is not possible, sin
e any triangle 
ontains at least two verti
es from the aiverti
es. 2) is also not possible, sin
e all stars with 3 edges in G8 
ontain at least twoverti
es from the ai verti
es, and the same holds for any triangle. 3) is not possiblesin
e there is no vertex with degree 6 in G8.

a1 b3b2b1 
1
a2 a3Figure 8: G8To prove S(6) � 12 suppose indire
tly that there exists a 6-stable graph G6 withjE(G6)j = 11.a) There exists a vertex of degree � 5 in G6: 5 edges in
ident to a vertex doesnot 
ontain a P4 so if we remove the rest of the edges, no P4 remains. Thuswe may suppose that the maximum degree in G6 is at most 4.9



b) There exists a triangle in G6: If there are 2 independent edges from thetriangle, then these 5 edges form a P4-free subgraph. Otherwise, all otheredges have one end 
ommon with the triangle, moreover by 
ase a) there is atmost 2 su
h edges at ea
h vertex of the triangle. This implies that jE(G6)j � 9,so we may suppose that there is no triangle.
) There exist a vertex v1 with degree 4: Let v2; v3; v4; v5 be its neighbors. Sin
ethere is no triangle in the graph, there are no edges between v2; v3; v4; v5. Sin
ethere are 7 more edges, there must be 2 of them whi
h are not adja
ent to 3verti
es of v2; v3; v4; v5, say to v2; v3; v4. So these two edges and (v1; v2); (v1; v3)and (v1; v4) forms a P4-free subgraph. Thus we may suppose that the maximumdegree is 3.d) There exist a vertex v1 with degree 3: Let v2; v3; v4 be its neighbors. Sin
ethere is no triangle in the graph, there are no edges between v2; v3; v4 and sin
ethe maximum degree is 3 there are at most 2 other edges in
ident to ea
h ofv2; v3; v4. Thus there must be at least 2 edges whi
h are not in
ident to anyof v1; v2; v3; v4. So these two edges and (v1; v2); (v1; v3) and (v1; v4) forms aP4-free subgraph. Thus we may suppose that the maximum degree is 2, soapplying Lemma 9 we 
an 
omplete the proof.
Conje
ture 13 The minimum number of edges in a k-stable graph isS(k) = &k +r2k + 94 + 32'+O(1):Following theorem gives an upper bound on the maximum number of edges. Wealready know that this bound is better than the trivial one if 2 � k � 8 and ifConje
ture 13 is true, than we obtain a good bound for larger k values, too.Theorem 14 For any k-edge-hamiltonian 3-uniform hypergraph H on n verti
esjE(H)j � S(k)3 n:holds.Proof: IfH is k-hamiltonian then the neighborhood of any vertex must be k-stable,whi
h implies that any vertex is 
ontained by at least S(k) edges. Sin
e every edge
ontains exa
tly 3 verti
es, the 
laim is proved.
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3 1-edge-hamiltonian hypergraphsTheorem 15 There exists a 1-edge-hamiltonian r-uniform hypergraph H on n ver-ti
es with jE(H)j = 4r � 12r n+ o(n):Proof: The idea of the 
onstru
tion is similar to the one on Fig. 1. Let V(H) :=fw1; : : : ; wp; v1; : : : ; vqg where p = dn=2re and q = n � p. There are two types ofedges in H. The �rst kind of edges form a 
hain on fv1; : : : ; vqg,E1(H) := �fvi; vi+1; : : : vi+r�1g ���� 1 � i � q� :The se
ond kind 
onne
ts the rest of the verti
es to this 
hain:E2(H) := nfwi; v(2r�1)(i�1)+j ; : : : ; v(2r�1)(i�1)+j+r�2g ��� 1 � i � p; 1 � j � 2ro :This means that the neighborhood of wi is an (r � 1)-uniform open 
hain of length2r formed by verti
es v(2r�1)(i�1)+1; : : : ; v(2r�1)(i�1)+3r�2. The neighborhood of wi+1is also an open 
hain of length 2r, whi
h begins at v(2r�1)(i�1)+2r, sov5(i�1)+2r; : : : ; v5(i�1)+3r�2 2 N(wi) \N(wi+1)(ex
ept maybe for N(w1) and N(wp) where the overlap is larger if (2r) - n). LetE(H) := E1(H)[E2(H), then it is 
lear that jE(H)j = q+2rp = n+(2r�1)dn=2re =4r�12r n + o(n).One 
an prove that this hypergraph is 1-hamiltonian in the same way as inTheorem 5.Theorem 16 For any 1-edge-hamiltonian 4-uniform hypergraph H on n � 6 ver-ti
es jE(H)j � 32nholds.Proof: Following the idea of the proof of Theorem 6 we need to know what is theminimum number of edges in a 1-stable 3-uniform hypergraph. Now 1-stable meansthat the hypergraph 
ontains an open 
hain with 4 edges on 6 verti
es P(3)6 , sin
ethe edges of a hamiltonian-
hain 
ontaining a �xed vertex form su
h an open 
hain.It is easy to see that it is impossible to 
reate a 1-stable hypergraph by addingonly one edge to P(3)6 , therefore the minimum number of edges in a 1-stable hyper-graph is 6, sin
e the 3-uniform hyper
hain on 6 verti
es, C(3)6 is a 1-stable with 6edges.This gives that the minimum degree is 6, 
ompleting the proof.11



Note, that the above bound is already better than the trivial one. On the otherhand, by 
ase analysis, we 
an also prove that C(3)6 is the only 1-stable hypergraphwith 6 verti
es, whi
h leads to a better lower bound:jE(H)j � 116 nHowever, the proof is too long 
ompared with the improvement, so it is omitted.4 An appli
ationTheorem 17 If an r-uniform hypergraph H on n verti
es has no hamiltonian 
hainthen jE(H)j � �nr��1� 4r(4r � 1)n� (1)holds.Proof: Let m denote the number of missing edges (the r-element subsets whi
hare not edges of H). By (1) we obtainm < 4r(4r � 1)n�nr�:Observe, that if a hypergraph 
ontains a 1-edge-hamiltonian subgraph then onemust delete at least 2 edges from it to destroy all hamiltonian 
hains. Therefore we
ount the number of o

urren
es of the 1-edge-hamiltonian hypergraph 
onstru
tedin Theorem 15. Let G denote this r-uniform hypergraph on n verti
es.It is a simple matter to prove that there are n!jAut(G)j di�erent G sub-hypergraphsin K(k)n , where Aut(G) denotes the automorphism group of G. Sin
e every edgesof K(k)n is 
ontained by the same number of G sub-hypergraphs, the number of Gsub-hypergraphs whi
h 
ontains a spe
i�ed edge isjE(G)j�nr� � n!jAut(G)j :Thus the number of hamiltonian 
hains in H is� 2 � n!jAut(G)j �m jE(G)j�nr� � n!jAut(G)j > 0;our 
laim is proved, be
ause by Theorem 15 jE(G)j = 4r�12r n.
12
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