
Extremal k-edge-hamiltonian HypergraphsP�eter Frankl,CNRS, ParisGyula Y. Katona�Department of Computer Siene and Information Theory,Budapest University of Tehnology and Eonomis,1521, P. O. B.: 91, Hungarykiskat�s.bme.huKeywords: k-edge-hamiltonian, hamiltonian yle, hypergraphAbstratAn r-uniform hypergraph is k-edge-hamiltonian i� it still ontains a hamil-tonian hain after deleting any k edges of the hypergraph. What is the mini-mum number of edges in suh a hypergraph? We give lower and upper boundsfor this question for several values of r and k.1 IntrodutionLet H be a r-uniform hypergraph on the vertex set V (H) = fv1; v2; : : : ; vng wheren > r. For simpliity of notation vn+x with x � 0 denotes the same vertex as vx(unless stated otherwise). The set of the edges, r-element subsets of V , is denotedby E(H) = fE1; E2; : : : ; Emg. We will write simply V for V (H) and E for E(H) ifno onfusion an arise.In [1℄ the authors de�ned the notion of a hamiltonian-hain.De�nition 1 A yli ordering (v1; v2; : : : ; vn) of the vertex set is alled a hamil-tonian hain i� for eah 1 � i � n fvi; vi+1; : : : ; vi+r�1g =: Ej is an edge of H.An ordering (v1; v2; : : : ; vl+1) of a subset of the vertex set is alled an open hain oflength l between v1 and vl+1 i� for eah 1 � i � l� r+ 2 there exists an edge Ej ofH suh that fvi; vi+1; : : : ; vi+r�1g = Ej. An open hain of length n � 1 is an openhamiltonian hain. A yli ordering (v1; v2; : : : ; vl) of a subset of the vertex set isalled a hain of length l i� for every 1 � i � l there exists an edge Ej of H suhthat fvi; vi+1; : : : ; vi+r�1g = Ej. (Now vl+x denotes the same vertex as vx).�Researh supported by OTKA grants OTKA T 029772 and T 030059, and The Japan Soietyfor the Promotion of Siene 1



De�nition 2 A hypergraph is hamiltonian if it ontains a hamiltonian-hain andit is k-edge-hamiltonian if by the removal of any k edges a hamiltonian hypergraphis obtained.The notion of the degree is also extended, it is de�ned below in full generality,however, only some speial ases will be used.De�nition 3 The degree of a �xed l-tuple of distint verties, fv1; v2; : : : ; vlg, ina r-uniform hypergraph is the number of edges of the hypergraph ontaining the setfv1; v2; : : : ; vlg. It is denoted by dr(v1; v2; : : : ; vl). Furthermore Æ(l)r (H) denotes theminimum of dr(v1; v2; : : : ; vl) over all l-tuples of verties in H. The neighborhoodof a vertex v is de�ned byNH(v) := fE � fvg j v 2 E;E 2 E(H)g :The main aim of the present artile is to investigate minimum size k-edge-hamiltonian hypergraphs. In [2, 3℄ the authors settle this question for graphs.Theorem 4 [2, 3℄ The number of edges in a minimum k-edge-hamiltonian graph onn � k + 3 verties is dn(k + 2)=2e.Sine the degree of any vertex in a r-uniform hamiltonian hain is r, the minimumdegree in a k-edge-hamiltonian hypergraph is at least r+ k, so the number of edgesis at least dn(r + k)=re. For r = 2 this shows that the onstrutions in the abovetheorem are best possible. However, for r > 2 this lower bound is not best possible.2 3-uniform hypergraphsIf a hypergraph ontains k+1 edge-disjoint hamiltonian hains, then it is learly k-edge-hamiltonian. This observation leads to the trivial upper bound on the minimumnumber of edges: (k + 1)n. If k = 1 then the following slightly better upper boundis obtained.Theorem 5 There exists a 1-edge-hamiltonian 3-uniform hypergraph H on n ver-ties with jE(H)j = 116 n+ o(n):Proof: Let V(H) := fw1; : : : ; wp; v1; : : : ; vqg where p = dn=6e and q = n�p. Thereare two types of edges in H. The �rst kind of edges form a hain on fv1; : : : ; vqg,E1(H) := �fvi; vi+1; vi+2g ���� 1 � i � q� :2



The seond kind onnets the rest of the verties to this hain:E2(H) := nfwi; v5(i�1)+j ; v5(i�1)+j+1g ��� 1 � i � p; 1 � j � 6o :This means that the neighborhood of wi is an ordinary graph, a path of length 6formed by verties v5(i�1)+1; : : : ; v5(i�1)+7. The neighborhood of wi+1 is also a path oflength 6, whih begins at v5(i�1)+6, so v5(i�1)+6; v5(i�1)+7 2 N(wi)\N(wi+1) (exeptmaybe for N(w1) and N(wp) where the overlap is larger if 6 - n). Let E(H) :=E1(H) [ E2(H), then it is lear that jE(H)j = q + 6p = n + 5dn=6e = 11n=6 + o(n).(See Fig. 1.) wi
wi+1
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v5(i�1)+2 v5(i�1)+6

v5(i�1)+7
wi+1Figure 1: 3-uniform 1-edge-hamiltonian hypergraphThis hypergraph ontains many hamiltonian-hains whih an be obtained in thefollowing way. Start with the hain formed by fv1; : : : ; vqg and extend this yle byinserting the rest of the verties one by one. It is obvious that we an insert wi be-tween any two onseutive verties of v5(i�1)+2; v5(i�1)+3; v5(i�1)+4; v5(i�1)+5; v5(i�1)+6(but we annot insert it between v5(i�1)+1 and v5(i�1)+2 or v5(i�1)+6 and v5(i�1)+7).Note that the new hain ontains 3 \onseutive edges" of N(wi) but it does notontain 2 \onseutive edges" from the original hain (those whih ontain bothneighbors of wi in the new hain (See Fig. 2).wiv5(i�1)+1
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Figure 2: How to insert wi?Now we prove thatH is 1-edge-hamiltonian, that is,H�E ontains a hamiltonian-hain for any E 2 E(H). 3



Suppose that E = fvt; vt+1; vt+2g 2 E1(H). Then it is easy to hek that thereis a wi whih we an insert either between vt and vt+1 or vt+1 and vt+2, so the newhain does not ontain E any more. Further, we an insert all other w vertiesinto suitable plaes, hene we obtain the desired hamiltonian-hain (see Fig. 3), forexample the following onevt; vt+1; wi; vt+2; vt+3; : : : ; vt+5; vt+6; wi+1; vt+7; vt+8; : : : ; vt+5j; vt+5j+1; wi+j; vt+5j+2; : : :wi
wi+1 wi+1vt+1 vt+5 vt+6vt
Figure 3: Hamiltonian hain in H� EOn the other hand, if wi 2 E for some i then it is lear that N(wi)� E alwaysontains 3 \onseutive edges", therefore wi an be inserted into the hain formedby fv1; : : : ; vqg. Inserting the rest of the verties in the same way as in the otherase, we obtain a hamiltonian-hain of H� E.Theorem 6 For any 1-edge-hamiltonian 3-uniform hypergraph H on n � 5 vertiesjE(H)j � 149 nholds.Proof: Observe that the neighborhood of a vertex in a hamiltonian-hain is apath on 4 distint verties, a P4. Let us all a graph stable if it ontains a P4 afterdeleting any edge of the graph. Thus, the neighborhood of every vertex of a 1-edge-hamiltonian graph is stable. We also all a vertex of the hypergraph stable i� itsneighborhood is stable.It is easy to hek that the only stable graph with 4 edges is the C4, the ylewith 4 edges. All other stable graphs ontain at least 5 edges. In fat, there areonly 3 stable graphs with 5 edges (see Fig. 4).Let H be a 1-edge-hamiltonian 3-uniform hypergraph and let v1; : : : ; vn be ahamiltonian hain. 4



Figure 4: Stable graphs with 5 edgesClaim 1 d(vi�2) + d(vi) + d(vi+2) � 14 holds for any i.Proof: Note that, the only way to make jN(vi)j = 4 is to add the edge fvi; vi�2; vi+2gtoH, beauseN(vi) already ontains the edges fvi�2; vi�1g, fvi�1; vi+1g and fvi+1; vi+2g.Suppose that d(vi�2) + d(vi) + d(vi+2) � 13. Sine d(vj) � 4 for any j, there areonly two ases.If d(vi�2) = d(vi) = 4 � d(vi+2) (or d(vi�2) � 4 = d(vi) = d(vi+2)) thenfvi�2; vi; vi+2g 2 E(H) must hold, but this implies d(vi�2) � 5, a ontradition.The other ase is when d(vi�2) = d(vi+2) = 4 � d(vi). Sine vi�2 and vi+2 isstable, fvi�4; vi�2; vig; fvi; vi+2; vi+4g 2 E(H) holds. However, this means that N(vi)ontains a path of length 5 with 6 distint verties. This is a ontradition, beausenon of the stable graphs with 5 edges ontains suh a subgraph, therefore d(vi) � 6.Using the above laim, we obtain that9jE(H)j = 3 nXi=1 d(vi) = n+2Xi=3 d(vi�2) + d(vi) + d(vi+2) � 14n;proving the theorem.Theorem 7 There exists a 2-edge-hamiltonian 3-uniform hypergraph H on n ver-ties with jE(H)j = 134 n+ o(n):Proof: The struture of the onstrution is very similar to that of Theorem 5. LetV(H) := fw1; : : : ; wp; v1; : : : ; vqg where p = dn=4e and q = n � p. There are twotypes of edges in H. The �rst kind of edges form a hain on fv1; : : : ; vqg,E1(H) := ffvi; vi+1; vi+2g j 1 � i � qg :The seond kind onnets the rest of the verties to this hain:E2(H) := nfwi; v4(i�1)+j ; v4(i�1)+j+1g ��� 1 � i � p; 1 � j � 9o :5



This means that the neighborhood of wi is an ordinary graph, a path of length 9formed by verties v4(i�1)+1; : : : ; v5(i�1)+10. The neighborhood of wi+1 is also a pathof length 9, whih begins at v4(i�1)+5, so the neighborhood of wi and wi+1 have6 ommon verties and the neighborhood of wi and wi+2 have 2 ommon verties(exept maybe at the \end" where the overlap is larger if 4 - n). Let E(H) :=E1(H) [ E2(H), then it is lear that jE(H)j = q + 9p = n + 9dn=4e = 13n=4 + o(n).(See Fig. 5.)
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Figure 5: 2-edge-hamiltonian 3-uniform hypergraphUsing the method desribed in the proof of Theorem 5 it an be easily proven,that H is 1-edge-hamiltonian. It is also lear that H remains hamiltonian if the 2removed edges are \far" from eah other, namely if no wi for whih its neighborhoodintersets both removed edges.If both edges ontains wi then we an still insert wi in a similar way as in Fig. 2,sine there are 9 edges ontaining wi, so after the removal of 2, we still have 3onseutive.The other ases an be also proved one by one, the reader may verify this withthe help of a few examples on Fig. 6.In order to obtain a lower bound for general k, one should know the minimumnumber of edges in a graph whih ontains a P4 after removing any k edges of thegraph. These graphs are alled k-stable and the minimum number of edges in ak-stable graph is denoted by S(k).A trivial upper bound is obtained for S(k) in the following way.Observe that the maximum number of edges on n verties in a P4-free graph isn� 1 if n is not divisible by 3 and n if n is divisible by 3. The extremal graphs areunion of et least one star and some (possibly zero) triangles in the �rst ase, andunion of triangles in the seond ase. Taking the most dense graph on n verties,6



Figure 6: Examples of the more ompliated asesa omplete graph or an almost omplete graph will give the desired bound. By theabove observation if e(G) > n � 1 + k if 3 - n and e(G) > n + k if 3 j n then G isk-stable. However, for three values of k there are onstrutions whih give boundssmaller by 1.An other remark is that S(k) is stritly monotone, sine by removing an edgefrom a k-stable graph results in a (k � 1)-stable graph.The following lemma shows, that to prove S(k) > m it is enough to prove, thatnone of the graphs on exatly m edges are k-stable, so it is not possible that thereis a k-stable graph with m� 2 edges for example.Lemma 8 If for any graph G with e(G) = m the graph is not k-stable then S(k) >m.Proof: Let G0 be a graph with e(G0) < m. We will prove that G0 annot bek-stable. Construt G from G0 by adding m � e(G0) independent edges. Supposeindiretly that G0 is k-stable. Sine e(G) = m, if we remove k edges from G then weremoved � k edges fromG0 so it will ontain a P4, thus G is k-stable, a ontradition.The next lemma will help us to handle some easy extremal ases.7



Lemma 9 If the maximum degree in G is 2, then G ontains a P4-free subgraphwith at least le(G)2 m.Proof: It is enough to prove the laim for onneted graphs, beause otherwisetaking the union of the subgraphs found in eah omponent will prove the laim.If the graph is an even yle, than take every other edge for the desired subgraph.If the graph is an odd yle, than �rst take two onseutive edges, then every otheredges. Similarly is the graph is an odd path, than take every other edge startingwith the �rst edge. If the graph is an even path, then take the �rst two onseutiveedges and then every other edges.Theorem 10 S(1) = 4; S(2) = 6.Proof: For k = 1 the proof is trivial.If k = 2 then suppose that there exists a 2-stable graph G2 with 5 edges. It islear that removing any edge of G2 gives a 1-stable graph with 4 edges, so it mustbe C4. One an easily verify that there is no suh G2. Note that there are 3 di�erent2-stable graphs with 6 edges (see Fig. 7).
Figure 7: 2-stable graphs with 6 edgesOn the other hand S(k) � 6 sine K4 is 2-stable. If we remove 2 edges from it4 edges remain on 4 verties, so it must ontain a P4.Theorem 11 S(3) = 8; S(4) = 9; S(5) = 10.Proof: Sine S(k) is stritly monotone, it is enough to prove that S(3) � 8 andS(5) � 10.To prove the seond laim we show that K5 is 5-stable. If 5 edges are removedfrom K5 then 5 edges remain on 5 verties, so it must ontain a P4.To prove S(3) � 8 suppose indiretly that there exists a 3-stable graph G3 withjE(G3)j = 7.a) There exists a vertex of degree � 4 in G3: 4 edges inident to a vertex doesnot ontain a P4 so if we remove the rest of the edges, no P4 remains. Thuswe may suppose that the maximum degree in G3 is at most 3.8



b) There exists a triangle in G3: If there is an edge independent from thetriangle, then these 4 edges do not ontain a P4, so by removing the rest of theedges our laim is proved. Otherwise, all other edges have one end ommonwith the triangle, moreover by ase a) there is at most 1 suh edge at eahvertex of the triangle. This implies that jE(G3)j � 6, so we may suppose thatthere is no triangle.) There exist a vertex v1 with degree 3: Let v2; v3; v4 be its neighbors. Sinethere is no triangle in the graph, there are no edges between v2; v3; v4. Sinethere are 4 more edges, there must be 2 of them whih are not adjaent to 2verties of v2; v3; v4, say to v2; v3. So these two edges and (v1; v2) and (v1; v3)forms a P4-free subgraph. Thus we may suppose that the maximum degree is2. Applying Lemma 9 we omplete the proof.
Theorem 12 S(6) = 12; S(7) = 13; S(8) = 14.Proof: Sine S(k) is stritly monotone, it is enough to prove that S(6) � 12 andS(8) � 14.To prove the seond laim we show that the graph G8 on Figure 8 is 8-stable.If 8 edges are removed from G8 then 6 edges remain on 7 verties. There are onlytree ways for these edges to form a P4-free graph. 1) two independent triangles; 2)a triangle and a star with 3 edges; 3) a star with 6 edges.1) is not possible, sine any triangle ontains at least two verties from the aiverties. 2) is also not possible, sine all stars with 3 edges in G8 ontain at least twoverties from the ai verties, and the same holds for any triangle. 3) is not possiblesine there is no vertex with degree 6 in G8.

a1 b3b2b1 1
a2 a3Figure 8: G8To prove S(6) � 12 suppose indiretly that there exists a 6-stable graph G6 withjE(G6)j = 11.a) There exists a vertex of degree � 5 in G6: 5 edges inident to a vertex doesnot ontain a P4 so if we remove the rest of the edges, no P4 remains. Thuswe may suppose that the maximum degree in G6 is at most 4.9



b) There exists a triangle in G6: If there are 2 independent edges from thetriangle, then these 5 edges form a P4-free subgraph. Otherwise, all otheredges have one end ommon with the triangle, moreover by ase a) there is atmost 2 suh edges at eah vertex of the triangle. This implies that jE(G6)j � 9,so we may suppose that there is no triangle.) There exist a vertex v1 with degree 4: Let v2; v3; v4; v5 be its neighbors. Sinethere is no triangle in the graph, there are no edges between v2; v3; v4; v5. Sinethere are 7 more edges, there must be 2 of them whih are not adjaent to 3verties of v2; v3; v4; v5, say to v2; v3; v4. So these two edges and (v1; v2); (v1; v3)and (v1; v4) forms a P4-free subgraph. Thus we may suppose that the maximumdegree is 3.d) There exist a vertex v1 with degree 3: Let v2; v3; v4 be its neighbors. Sinethere is no triangle in the graph, there are no edges between v2; v3; v4 and sinethe maximum degree is 3 there are at most 2 other edges inident to eah ofv2; v3; v4. Thus there must be at least 2 edges whih are not inident to anyof v1; v2; v3; v4. So these two edges and (v1; v2); (v1; v3) and (v1; v4) forms aP4-free subgraph. Thus we may suppose that the maximum degree is 2, soapplying Lemma 9 we an omplete the proof.
Conjeture 13 The minimum number of edges in a k-stable graph isS(k) = &k +r2k + 94 + 32'+O(1):Following theorem gives an upper bound on the maximum number of edges. Wealready know that this bound is better than the trivial one if 2 � k � 8 and ifConjeture 13 is true, than we obtain a good bound for larger k values, too.Theorem 14 For any k-edge-hamiltonian 3-uniform hypergraph H on n vertiesjE(H)j � S(k)3 n:holds.Proof: IfH is k-hamiltonian then the neighborhood of any vertex must be k-stable,whih implies that any vertex is ontained by at least S(k) edges. Sine every edgeontains exatly 3 verties, the laim is proved.
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3 1-edge-hamiltonian hypergraphsTheorem 15 There exists a 1-edge-hamiltonian r-uniform hypergraph H on n ver-ties with jE(H)j = 4r � 12r n+ o(n):Proof: The idea of the onstrution is similar to the one on Fig. 1. Let V(H) :=fw1; : : : ; wp; v1; : : : ; vqg where p = dn=2re and q = n � p. There are two types ofedges in H. The �rst kind of edges form a hain on fv1; : : : ; vqg,E1(H) := �fvi; vi+1; : : : vi+r�1g ���� 1 � i � q� :The seond kind onnets the rest of the verties to this hain:E2(H) := nfwi; v(2r�1)(i�1)+j ; : : : ; v(2r�1)(i�1)+j+r�2g ��� 1 � i � p; 1 � j � 2ro :This means that the neighborhood of wi is an (r � 1)-uniform open hain of length2r formed by verties v(2r�1)(i�1)+1; : : : ; v(2r�1)(i�1)+3r�2. The neighborhood of wi+1is also an open hain of length 2r, whih begins at v(2r�1)(i�1)+2r, sov5(i�1)+2r; : : : ; v5(i�1)+3r�2 2 N(wi) \N(wi+1)(exept maybe for N(w1) and N(wp) where the overlap is larger if (2r) - n). LetE(H) := E1(H)[E2(H), then it is lear that jE(H)j = q+2rp = n+(2r�1)dn=2re =4r�12r n + o(n).One an prove that this hypergraph is 1-hamiltonian in the same way as inTheorem 5.Theorem 16 For any 1-edge-hamiltonian 4-uniform hypergraph H on n � 6 ver-ties jE(H)j � 32nholds.Proof: Following the idea of the proof of Theorem 6 we need to know what is theminimum number of edges in a 1-stable 3-uniform hypergraph. Now 1-stable meansthat the hypergraph ontains an open hain with 4 edges on 6 verties P(3)6 , sinethe edges of a hamiltonian-hain ontaining a �xed vertex form suh an open hain.It is easy to see that it is impossible to reate a 1-stable hypergraph by addingonly one edge to P(3)6 , therefore the minimum number of edges in a 1-stable hyper-graph is 6, sine the 3-uniform hyperhain on 6 verties, C(3)6 is a 1-stable with 6edges.This gives that the minimum degree is 6, ompleting the proof.11



Note, that the above bound is already better than the trivial one. On the otherhand, by ase analysis, we an also prove that C(3)6 is the only 1-stable hypergraphwith 6 verties, whih leads to a better lower bound:jE(H)j � 116 nHowever, the proof is too long ompared with the improvement, so it is omitted.4 An appliationTheorem 17 If an r-uniform hypergraph H on n verties has no hamiltonian hainthen jE(H)j � �nr��1� 4r(4r � 1)n� (1)holds.Proof: Let m denote the number of missing edges (the r-element subsets whihare not edges of H). By (1) we obtainm < 4r(4r � 1)n�nr�:Observe, that if a hypergraph ontains a 1-edge-hamiltonian subgraph then onemust delete at least 2 edges from it to destroy all hamiltonian hains. Therefore weount the number of ourrenes of the 1-edge-hamiltonian hypergraph onstrutedin Theorem 15. Let G denote this r-uniform hypergraph on n verties.It is a simple matter to prove that there are n!jAut(G)j di�erent G sub-hypergraphsin K(k)n , where Aut(G) denotes the automorphism group of G. Sine every edgesof K(k)n is ontained by the same number of G sub-hypergraphs, the number of Gsub-hypergraphs whih ontains a spei�ed edge isjE(G)j�nr� � n!jAut(G)j :Thus the number of hamiltonian hains in H is� 2 � n!jAut(G)j �m jE(G)j�nr� � n!jAut(G)j > 0;our laim is proved, beause by Theorem 15 jE(G)j = 4r�12r n.
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