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Abstract

An r-uniform hypergraph is k-edge-hamiltonian iff it still contains a hamil-
tonian chain after deleting any & edges of the hypergraph. What is the mini-
mum number of edges in such a hypergraph? We give lower and upper bounds
for this question for several values of r and k.

1 Introduction

Let H be a r-uniform hypergraph on the vertex set V(H) = {vy, vs,...,v,} where
n > r. For simplicity of notation v,, with x > 0 denotes the same vertex as v,
(unless stated otherwise). The set of the edges, r-element subsets of V', is denoted
by E(H) = {E\, Es, ..., E,}. We will write simply V' for V(#) and & for £(H) if

no confusion can arise.

In [1] the authors defined the notion of a hamiltonian-chain.

Definition 1 A cyclic ordering (vi,vs,...,v,) of the verter set is called a hamil-
tonian chain iff for each 1 < i < n {v;,vi41,..., 04,1} =: Ej is an edge of H.
An ordering (vi,va, ..., v41) of a subset of the vertex set is called an open chain of

length [ between v, and vy iff for each 1 <1i <[ —r+ 2 there exists an edge F; of
H such that {vi,vit1, ..., vier—1 } = E;. An open chain of length n — 1 is an open
hamiltonian chain. A cyclic ordering (vy,vs, ..., v;) of a subset of the vertex set is
called a chain of length [ iff for every 1 <1 < there exists an edge E; of H such
that {vi,vit1, ..., Visr—1} = E;. (Now vy, denotes the same verter as v,).
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Definition 2 A hypergraph is hamiltonian if it contains a hamiltonian-chain and
it 1s k-edge-hamiltonian if by the removal of any k edges a hamiltonian hypergraph
is obtained.

The notion of the degree is also extended, it is defined below in full generality,
however, only some special cases will be used.

Definition 3 The degree of a fixed I-tuple of distinct vertices, {vi,ve,..., v}, in
a r-uniform hypergraph is the number of edges of the hypergraph containing the set
{v1,v9,...,0}. It is denoted by d,(vi,va,...,v;). Furthermore 5 (H) denotes the
minimum of d.(vy, ve, ..., v;) over all [-tuples of vertices in H. The neighborhood
of a vertex v is defined by

Ny(w) ={E—-{v} |ve E,E€&(H)}.

The main aim of the present article is to investigate minimum size k-edge-
hamiltonian hypergraphs. In [2, 3] the authors settle this question for graphs.

Theorem 4 [2, 3] The number of edges in a minimum k-edge-hamiltonian graph on
n >k + 3 vertices is [n(k + 2)/2].

Since the degree of any vertex in a r-uniform hamiltonian chain is r, the minimum
degree in a k-edge-hamiltonian hypergraph is at least r + &, so the number of edges
is at least [n(r + k)/r]. For r = 2 this shows that the constructions in the above
theorem are best possible. However, for r > 2 this lower bound is not best possible.

2 3-uniform hypergraphs

If a hypergraph contains k£ + 1 edge-disjoint hamiltonian chains, then it is clearly k-
edge-hamiltonian. This observation leads to the trivial upper bound on the minimum
number of edges: (k+ 1)n. If k =1 then the following slightly better upper bound
is obtained.

Theorem 5 There exists a 1-edge-hamiltonian 3-uniform hypergraph H on n wver-

tices with 1
IE(H)| = gn + o(n).

PrOOF: Let V(H) := {wy,...,wp,vy,...,v,} where p = [n/6] and ¢ = n—p. There
are two types of edges in 7. The first kind of edges form a chain on {vy,...,v,},

E(H) = {{UianJrl;UiJrZ} ‘ 1< < Q}-



The second kind connects the rest of the vertices to this chain:
E(H) = {{wz’,U5(i71)+j,1)5(171)+j+1} I<i<p1<y< 6} :

This means that the neighborhood of w; is an ordinary graph, a path of length 6
formed by vertices vsi_1)41,...,Vs4-1)+7. The neighborhood of w;, is also a path of
length 6, which begins at v5;_1)16, S0 Us(i—1)16, Vsi-1)4+7 € N(w;) N N(wjy1) (except
maybe for N(w;) and N(w,) where the overlap is larger if 6 { n). Let £(H) :=
Ei1(H) U E(H), then it is clear that |E(H)| = ¢+ 6p =n+5[n/6] =11n/6 + o(n).
(See Fig. 1.)
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Figure 1: 3-uniform 1-edge-hamiltonian hypergraph

This hypergraph contains many hamiltonian-chains which can be obtained in the
following way. Start with the chain formed by {vy,...,v,} and extend this cycle by
inserting the rest of the vertices one by one. It is obvious that we can insert w; be-
tween any two consecutive vertices of Us(i—1)4+25 U5(i—=1)4+35 Us(i—1)+4, Us(i—1)+5, U5(i—1)+6
(but we cannot insert it between vs;_1y41 and vs;_1y42 OF Usi_1)16 and vsi_1)47).
Note that the new chain contains 3 “consecutive edges” of N(w;) but it does not
contain 2 “consecutive edges” from the original chain (those which contain both
neighbors of w; in the new chain (See Fig. 2).

w;
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Figure 2: How to insert w;?

Now we prove that H is 1-edge-hamiltonian, that is, H— F contains a hamiltonian-
chain for any F € E(H).



Suppose that E = {vy, vy11, vi0} € E(H). Then it is easy to check that there
is a w; which we can insert either between v; and v,y or vy and vyy9, so the new
chain does not contain E any more. Further, we can insert all other w vertices
into suitable places, hence we obtain the desired hamiltonian-chain (see Fig. 3), for
example the following one
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Figure 3: Hamiltonian chain in H — F

On the other hand, if w; € E for some i then it is clear that N(w;) — E always
contains 3 “consecutive edges”, therefore w; can be inserted into the chain formed
by {vi,...,v,}. Inserting the rest of the vertices in the same way as in the other
case, we obtain a hamiltonian-chain of H — E. [

Theorem 6 For any I-edge-hamiltonian 3-uniform hypergraph H onn > 5 vertices
EH)| = 5

holds.

Proor: Observe that the neighborhood of a vertex in a hamiltonian-chain is a
path on 4 distinct vertices, a P;. Let us call a graph stable if it contains a P, after
deleting any edge of the graph. Thus, the neighborhood of every vertex of a 1-edge-
hamiltonian graph is stable. We also call a vertex of the hypergraph stable iff its
neighborhood is stable.

It is easy to check that the only stable graph with 4 edges is the C}, the cycle
with 4 edges. All other stable graphs contain at least 5 edges. In fact, there are
only 3 stable graphs with 5 edges (see Fig. 4).

Let H be a 1l-edge-hamiltonian 3-uniform hypergraph and let vy,...,v, be a
hamiltonian chain.



Figure 4: Stable graphs with 5 edges
Claim 1 d(v; 2) + d(v;) + d(viy2) > 14 holds for any i.

PROOF: Note that, the only way to make | N (v;)| = 4 is to add the edge {v;, v;_2, v; 12}
to H, because N (v;) already contains the edges {v; o, v; 1}, {vi 1, vi11} and {v; 11, v 40}
Suppose that d(v;_2) + d(v;) + d(vi2) < 13. Since d(v;) > 4 for any j, there are

only two cases.

If d(vi o) = d(v;)) = 4 < d(viye) (or d(vi9) > 4 = d(v;) = d(viy2)) then
{vi_9,v;,v;12} € E(H) must hold, but this implies d(v; 2) > 5, a contradiction.

The other case is when d(v; 5) = d(vi12) = 4 < d(v;). Since v; 5 and v;45 is
stable, {v; 4, v; 2, v;}, {Vi, Vizo, vita} € E(H) holds. However, this means that N (v;)
contains a path of length 5 with 6 distinct vertices. This is a contradiction, because
non of the stable graphs with 5 edges contains such a subgraph, therefore d(v;) > 6.

]

Using the above claim, we obtain that

9E(H)| =3 Z d(v;) = Z d(vi_a) + d(v;) + d(vips) > 14n,

proving the theorem. []

Theorem 7 There exists a 2-edge-hamiltonian 3-uniform hypergraph H on n wver-

tices with 13
IE(H)| = Zn + o(n).

Proo¥F: The structure of the construction is very similar to that of Theorem 5. Let
V(H) = {wi,...,wp,v1,...,v,} where p = [n/4] and ¢ = n — p. There are two
types of edges in . The first kind of edges form a chain on {vy,...,v,},

E(H) = {{vi,vig1,viga} | 1 <i <gq}.

The second kind connects the rest of the vertices to this chain:
E(H) == {{wi;U4(i—1)+jav4(i—1)+j+1} 1<i<p1<j< 9} :

Y



This means that the neighborhood of w; is an ordinary graph, a path of length 9
formed by vertices v4;—1)41,...,Vs34-1)+10. The neighborhood of w;,, is also a path
of length 9, which begins at v4;_1)45, so the neighborhood of w; and w;,; have
6 common vertices and the neighborhood of w; and w;,» have 2 common vertices
(except maybe at the “end” where the overlap is larger if 4 1 n). Let E(H) =
E1(H) U E(H), then it is clear that |E(H)| = ¢+ 9p =n+9[n/4] = 13n/4+ o(n).
(See Fig. 5.)
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Figure 5: 2-edge-hamiltonian 3-uniform hypergraph

Using the method described in the proof of Theorem 5 it can be easily proven,
that H is 1-edge-hamiltonian. It is also clear that 7 remains hamiltonian if the 2
removed edges are “far” from each other, namely if no w; for which its neighborhood
intersects both removed edges.

If both edges contains w; then we can still insert w; in a similar way as in Fig. 2,
since there are 9 edges containing w;, so after the removal of 2, we still have 3
consecutive.

The other cases can be also proved one by one, the reader may verify this with
the help of a few examples on Fig. 6.

]

In order to obtain a lower bound for general k, one should know the minimum
number of edges in a graph which contains a P, after removing any k edges of the
graph. These graphs are called k-stable and the minimum number of edges in a
k-stable graph is denoted by S(k).

A trivial upper bound is obtained for S(k) in the following way.

Observe that the maximum number of edges on n vertices in a Py-free graph is
n — 1 if n is not divisible by 3 and n if n is divisible by 3. The extremal graphs are
union of et least one star and some (possibly zero) triangles in the first case, and
union of triangles in the second case. Taking the most dense graph on n vertices,



Figure 6: Examples of the more complicated cases

a complete graph or an almost complete graph will give the desired bound. By the
above observation if e(G) > n —1+k if 31/ n and e(G) > n+ k if 3 | n then G is
k-stable. However, for three values of k£ there are constructions which give bounds
smaller by 1.

An other remark is that S(k) is strictly monotone, since by removing an edge
from a k-stable graph results in a (k — 1)-stable graph.

The following lemma shows, that to prove S(k) > m it is enough to prove, that
none of the graphs on exactly m edges are k-stable, so it is not possible that there
is a k-stable graph with m — 2 edges for example.

Lemma 8 If for any graph G with e(G) = m the graph is not k-stable then S(k) >
m.

PROOF: Let G' be a graph with e(G') < m. We will prove that G’ cannot be
k-stable. Construct G' from G’ by adding m — e(G’) independent edges. Suppose
indirectly that G' is k-stable. Since e(G) = m, if we remove k edges from G then we
removed < k edges from G’ so it will contain a Py, thus G is k-stable, a contradiction.

]

The next lemma will help us to handle some easy extremal cases.



Lemma 9 If the mazximum degree in G is 2, then G contains a Py-free subgraph

with at least [@-‘

Proor: It is enough to prove the claim for connected graphs, because otherwise
taking the union of the subgraphs found in each component will prove the claim.

If the graph is an even cycle, than take every other edge for the desired subgraph.
If the graph is an odd cycle, than first take two consecutive edges, then every other
edges. Similarly is the graph is an odd path, than take every other edge starting
with the first edge. If the graph is an even path, then take the first two consecutive
edges and then every other edges. []

Theorem 10 S(1) =4,5(2) = 6.

PrROOF: For k =1 the proof is trivial.

If £ = 2 then suppose that there exists a 2-stable graph G5 with 5 edges. It is
clear that removing any edge of G5 gives a 1-stable graph with 4 edges, so it must
be Cy. One can easily verify that there is no such GG5. Note that there are 3 different
2-stable graphs with 6 edges (see Fig. 7).

Figure 7: 2-stable graphs with 6 edges

On the other hand S(k) < 6 since K, is 2-stable. If we remove 2 edges from it
4 edges remain on 4 vertices, so it must contain a P;.  []

Theorem 11 S(3) =8,5(4) =9,5(5) = 10.

PROOF: Since S(k) is strictly monotone, it is enough to prove that S(3) > 8 and
S(5) < 10.

To prove the second claim we show that K is 5-stable. If 5 edges are removed
from K5 then 5 edges remain on 5 vertices, so it must contain a Pj.

To prove S(3) > 8 suppose indirectly that there exists a 3-stable graph G3 with
|E(Gs)| =T.

a) There exists a vertex of degree > 4 in G3: 4 edges incident to a vertex does

not contain a P, so if we remove the rest of the edges, no P, remains. Thus
we may suppose that the maximum degree in G3 is at most 3.

8



b) There exists a triangle in G3: If there is an edge independent from the
triangle, then these 4 edges do not contain a Py, so by removing the rest of the
edges our claim is proved. Otherwise, all other edges have one end common
with the triangle, moreover by case a) there is at most 1 such edge at each
vertex of the triangle. This implies that |E(G3)| < 6, so we may suppose that
there is no triangle.

c) There exist a vertex v; with degree 3: Let vq, v3, vy be its neighbors. Since
there is no triangle in the graph, there are no edges between vy, v3,v4. Since
there are 4 more edges, there must be 2 of them which are not adjacent to 2
vertices of vy, v3, v4, sy t0 v, v3. So these two edges and (vy,v9) and (vy, v3)
forms a P,-free subgraph. Thus we may suppose that the maximum degree is
2. Applying Lemma 9 we complete the proof.

]

Theorem 12 S(6) =12,5(7) = 13,5(8) = 14.

PROOF: Since S(k) is strictly monotone, it is enough to prove that S(6) > 12 and
S(8) < 14.

To prove the second claim we show that the graph Gg on Figure 8 is 8-stable.
If 8 edges are removed from Gg then 6 edges remain on 7 vertices. There are only
tree ways for these edges to form a P,-free graph. 1) two independent triangles; 2)
a triangle and a star with 3 edges; 3) a star with 6 edges.

1) is not possible, since any triangle contains at least two vertices from the q;
vertices. 2) is also not possible, since all stars with 3 edges in Gy contain at least two
vertices from the a; vertices, and the same holds for any triangle. 3) is not possible
since there is no vertex with degree 6 in Gy.

Figure 8: Gy

To prove S(6) > 12 suppose indirectly that there exists a 6-stable graph G with
|E(Gs)| = 11.

a) There exists a vertex of degree > 5 in Gg: 5 edges incident to a vertex does
not contain a P, so if we remove the rest of the edges, no P, remains. Thus
we may suppose that the maximum degree in Gg is at most 4.



b) There exists a triangle in Gg: If there are 2 independent edges from the
triangle, then these 5 edges form a P,-free subgraph. Otherwise, all other
edges have one end common with the triangle, moreover by case a) there is at
most 2 such edges at each vertex of the triangle. This implies that |E(Gg)| <9,
so we may suppose that there is no triangle.

c) There exist a vertex v; with degree 4: Let vy, v3, vy, v5 be its neighbors. Since
there is no triangle in the graph, there are no edges between vs, v3, v4, v5. Since
there are 7 more edges, there must be 2 of them which are not adjacent to 3
vertices of vq, U3, vy, U5, sAy t0 vy, U3, v4. So these two edges and (vy, vs), (vy, v3)
and (v, v4) forms a Py-free subgraph. Thus we may suppose that the maximum
degree is 3.

d) There exist a vertex v; with degree 3: Let vy, v3,v4 be its neighbors. Since
there is no triangle in the graph, there are no edges between v, v3, v4 and since
the maximum degree is 3 there are at most 2 other edges incident to each of
U9, U3, V4. Thus there must be at least 2 edges which are not incident to any
of vy, ve,v3,v4. So these two edges and (vy,vs), (v1,v3) and (vq,v4) forms a
Py-free subgraph. Thus we may suppose that the maximum degree is 2, so
applying Lemma 9 we can complete the proof.

]

Conjecture 13 The minimum number of edges in a k-stable graph is

S(k) = {k+\/2k+§+gw +O(1).

Following theorem gives an upper bound on the maximum number of edges. We
already know that this bound is better than the trivial one if 2 < k < 8 and if
Conjecture 13 is true, than we obtain a good bound for larger k£ values, too.

Theorem 14 For any k-edge-hamiltonian 3-uniform hypergraph H on n vertices
S(k
) > 2,

holds.

Proor: If H is k-hamiltonian then the neighborhood of any vertex must be k-stable,
which implies that any vertex is contained by at least S(k) edges. Since every edge
contains exactly 3 vertices, the claim is proved.

10



3 1-edge-hamiltonian hypergraphs

Theorem 15 There exists a 1-edge-hamiltonian r-uniform hypergraph H on n ver-

tices with i1
EH)] = =5 —n+o(n).

PROOF: The idea of the construction is similar to the one on Fig. 1. Let V(H) :=
{wi,...,wy,v1,...,v,} where p = [n/2r] and ¢ = n — p. There are two types of
edges in H. The first kind of edges form a chain on {vy,...,v,},

E(H) = {{%Uzurl, R ‘ 1< < Q} .
The second kind connects the rest of the vertices to this chain:
Ey(H) = {{wi,?}(2r71)(i71)+j; e V@r—1)(i-1)+jtr—2} ‘ I1<i<p1<;)< 27“}-

This means that the neighborhood of w; is an (r — 1)-uniform open chain of length
2r formed by vertices U(Qr_l)(i_1)+1, Ce ,U(Qr_l)(i_1)+3r_2. The neighborhood of Wi41
is also an open chain of length 2r, which begins at v, _1)i—1)42r, 5O

Us(i—1)42rs - - - Us(i=1)+3r—2 € N(w;) N N(wigq)

(except maybe for N(w;) and N(w,) where the overlap is larger if (2r) { n). Let
E(H) = E(H)UE(H), then it is clear that |E(H)| = ¢+2rp=n+(2r—1)[n/2r] =

-1n + o(n).

One can prove that this hypergraph is 1-hamiltonian in the same way as in
Theorem 5. [

Theorem 16 For any 1-edge-hamiltonian 4-uniform hypergraph H on n > 6 ver-
tices

n

E(H)| >

NN V]

holds.

ProOOF: Following the idea of the proof of Theorem 6 we need to know what is the
minimum number of edges in a 1-stable 3-uniform hypergraph. Now 1-stable means
that the hypergraph contains an open chain with 4 edges on 6 vertices Pé?’), since
the edges of a hamiltonian-chain containing a fixed vertex form such an open chain.

It is easy to see that it is impossible to create a 1-stable hypergraph by adding
only one edge to ’Pé3), therefore the minimum number of edges in a 1-stable hyper-

graph is 6, since the 3-uniform hyperchain on 6 vertices, Cé3) is a 1-stable with 6
edges.

This gives that the minimum degree is 6, completing the proof. [

11



Note, that the above bound is already better than the trivial one. On the other
hand, by case analysis, we can also prove that Cég) is the only 1-stable hypergraph
with 6 vertices, which leads to a better lower bound:

11
E(H)] > o

However, the proof is too long compared with the improvement, so it is omitted.

4 An application

Theorem 17 If an r-uniform hypergraph H on n vertices has no hamiltonian chain

then
o< (M) (1- ) )

holds.

PROOF: Let m denote the number of missing edges (the r-element subsets which
are not edges of 7). By (1) we obtain

"< ()

Observe, that if a hypergraph contains a 1-edge-hamiltonian subgraph then one
must delete at least 2 edges from it to destroy all hamiltonian chains. Therefore we
count the number of occurrences of the 1-edge-hamiltonian hypergraph constructed
in Theorem 15. Let G denote this r-uniform hypergraph on n vertices.

It is a simple matter to prove that there are m different G sub-hypergraphs

in ¥, where Aut(G) denotes the automorphism group of G. Since every edges

of K is contained by the same number of G sub-hypergraphs, the number of ¢
sub-hypergraphs which contains a specified edge is

£@| o
() TAu(@)]

Thus the number of hamiltonian chains in H is

- nl _m|8(g)|. n!
Z2 T Rw©)] ") TAw©)]

>0,

our claim is proved, because by Theorem 15 |£(G)| = %=tn. [
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