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Abstract

We say that a hypergraph H is hamiltonian path (cycle) saturated if H does not contain

an open (closed) hamiltonian chain but by adding any new edge we create an open (closed)

hamiltonian chain in H. In this paper we ask about the smallest size of an r-uniform hamil-

tonian path (cycle) saturated hypergraph, mainly for r = 3. We present a construction of a

family of 3-uniform path (cycle) saturated hamiltonian hypergraphs with Ω(n5/2) edges. On

the other hand we prove that the number of edges in an r-uniform hamiltonian path (cycle)

saturated hypergraph is at least Ω(nr−1).
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1 Introduction

Let H be an r-uniform hypergraph on the vertex set V (H) ={v1, v2, . . . , vn} where n ≥ r. The set

of the edges — r-element subsets of V (H) — is denoted by E(H)= {E1, E2, . . . , Em}. We will write

simply V for V (H) and E for E(H) if no confusion can arise. Denote by H(U) the subhypergraph

of H induced by U , where U ⊆ V (H).

Definition 1 Let H be an r-uniform hypergraph on n vertices. An ordering (v1v2 . . . vl+r−1) of

a subset of the vertex set is called an open chain of length l between v1 and vl+r−1 iff for every

i = 1, . . . , l there exists an edge Ej ∈ E(H) such that {vi, vi+1, . . . , vi+r−1} = Ej . An open chain

of length n − r + 1 is an open hamiltonian chain.

This definition was first given in [11] and several questions on hamiltonian chains where

investigated in [7, 11]. Other types of generalised cycles in hypergraphs can be found in [1, 10].

In the present paper we consider only open chains so for simplicity we will write chain instead of

open chain. By removing a vertex we mean to remove also every edge containing this vertex.

Definition 2 We say that a hypergraph H is hamiltonian path saturated if H does not contain an

open hamiltonian chain but by adding any new edge we create an open hamiltonian chain in H.

Originally, the problem of estimating the number of edges in a hamiltonian cycle saturated

graph appeared in O. Ore [12] where it is prowed that a nonhamiltonian graph (and, so, a hamilto-

nian cycle saturated graph) of order n has at most
(
n−1

2

)
+1 edges. Bollobás [2] posed the problem

of finding the minimum number, sat(n; Cn), of edges in a hamiltonian cycle saturated graph on

n vertices. In 1972 Bondy [3] proved that sat(n; Cn) ≥ ⌈ 3n
2
⌉ for n ≥ 7. Combined results of

Clark, Entrigner and Shapiro [5, 4] and Xiaohui, Wenzhou, Chengxue and Yuansheng [13] show

that this bound is sharp apart from a few smaller values of n. The constructions are mostly tricky

graphs based on Isaacs’ snarks (see [9]) and generalized Petersen graphs. It was natural to ask

the same question for hamiltonian path saturated graphs. Dudek et al. [6] obtained using some

modification’s of Isaacs’ snarks that
⌊

3n−1

2

⌋
− 2 ≤ sat(n; Pn) ≤

⌊
3n−1

2

⌋
for n ≥ 54. The exact

value sat(n; Pn) =
⌊

3n−1

2

⌋
for n ≥ 54 was determined by Frick and Singleton [8]. In the present

paper we study a related problem for r-uniform hypergraphs, mainly for r = 3.

Definition 3 Let gr(n) (r ≥ 2) denote the minimum number of edges in a hamiltonian path

saturated r-uniform hypergraph on n vertices.

Hence g2(n) =
⌊

3n−1

2

⌋
for n ≥ 54. On the other hand, in [11] a construction is given of an

n-vertex hamiltonian path saturated r-uniform hypergraph with

∼
(

1

r!
− 1

2r⌈r/2⌉!⌊r/2⌋!

)
nr

edges which, so far, is best known upper bound for gr(n). For r = 3, this yields g3(n) ≤ 5

48
n3 +

o(n3). In the present paper we improve the construction from [11] for r = 3. As a result, for any

n ≥ 12 we obtain a 3-uniform hypergraph with O(n5/2) edges. It is interesting that the existence

of a hamiltonian chain depends on the order of some sets in our construction. On the other hand,

we obtain a general lower bound gr(n) ≥
(
n
r

)
/(r(n − r) + 1) which is of order Ω(nr−1).
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It would be desirable to generalize the result of [6] and [8] for 3-uniform hypergraphs but we

have not been able to do this. The main difficulty in carrying out this construction is the fact that

we do not know how to generalize Isaacs’ graphs. On the other hand our construction can be seen

as a generalization of Zelinka’s construction [14] which is a union of p + 2 disjoint cliques plus p

vertices connected to all vertices.

2 Lower bound

Theorem 1 If H an r-uniform hypergraph is hamiltonian path saturated, then |E(H)| ≥
(
n
r

)
/(r(n−

r) + 1).

Proof. We prove that every r-tuple E0 = {v1, . . . , vr} contains an (r − 1)-element subset, which is

contained by an edge of H.

If E0 ∈ E(H) then any (r − 1)-element subset is contained by E0 which is an edge, so the

claim holds.

Now suppose that E0 /∈ E(H). Since H is hamiltonian path saturated, it does not contain a

hamiltonian chain, but adding E0 creates one. Therefore E0 must be an edge of this hamiltonian

chain, so it has a neighboring edge in the chain (even if it is at the end of the chain). This edge

satisfies the conditions of the claim.

Using the claim we obtain that for all possible r-tuples we can find an edge that intersects

the r-tuple in at least (r−1) elements. However, in this way every such edge is counted r(n−r)+1

times. 2

3 Hamiltonian path saturated 3-uniform hypergraphs

In this section we present a construction of a family of 3-uniform hamiltonian path saturated

hypergraphs. We start with two definitions.

Definition 4 Let p and k be non-negative integers and U0, U1, . . . , Uk be pairwise disjoint sets

of vertices such that |U0| = p and |Ui| ≥ 2 for i = 1, 2, . . . , k. Define the vertex set of the

hypergraph H = H(U0, U1, . . . , Uk) to be V (H) =
⋃k

i=0
Ui. The edge set is defined such that the

induced subhypergraph H(U0 ∪ Ui) is complete hypergraph for all i = 1, 2, . . . , k. The family of all

hypergraphs obtained by this construction is denoted by I(p, k).

Definition 5 Let H ∈ I(p, k). An edge E0 = {x, y, z} where x ∈ Ui and y, z ∈ Uj or x ∈ Ui,

y ∈ U0 and z ∈ Uj is called a jumping edge from Ui to Uj. The set of all jumping edges from Ui

to Uj is denoted by Ji,j.

If E1 ∈ Ji1,j1 and E2 ∈ Ji2,j2 then we say that jumping edges E1, E2 are from different sets

when j1 6= j2.

Let Kn be a complete graph on n vertices, n ≥ 2, with vertices labeled by natural numbers

{1, ..., n}. By
−→
Kn we denote the following orientation of Kn. Namely the oriented edges in

−→
Kn are

of the form (i, i+1), ..., (i, i+ ⌈n/2⌉−1) for i = 1, ..., n, where the numbers are understood cyclicly

so n + r = r, if r > 0. The remaining edges of
−→
Kn, for even n, are oriented in an arbitrary way.

We write i ≺ j if there is an oriented edge from i to j in
−→
Kn.
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Definition 6 Let H(U0, U1, . . . , Uk) ∈ I(p, k). Define the hypergraph

G = G(U0, U1, . . . , Uk) as a hypergraph with vertex set V (G) = V (H) and edge set

E(G) = E(H) ∪ {Ji,j : i ≺ j}.

The family of hypergraphs obtained by this construction is denoted by J (p, k).

◦ ◦
U0

U1

U2

U3U4

U5

Fig. 1. A hypergraph from the family J (2, 5).

Lemma 2 Let G ∈ J (p, k). A chain in G − U0 cannot contain jumping edges from two different

sets.

Proof. Suppose indirectly that a chain contains edges from two different set of jumping edges

E1 ∈ Ji1,j1 and E2 ∈ Ji2,j2 , j1 6= j2. Without a loss of generality we can assume that there are no

other jumping edges in the chain between these two edges.

By this assumption only non-jumping edges can be found between these edges on the chain.

E1 is adjacent on the chain to edges contained in Uj1 . These edges are adjacent to edges of the

same kind and jumping edges which cannot be used now. So the chain can be continued only by

such edges. However, E2 is not adjacent to such an edge, since their intersection contain only one

vertex. Therefore the chain cannot reach E2, a contradiction. 2

Theorem 3 Let G ∈ J (p, k) where p, k are non-negative integers such that ⌈2k/3⌉ ≥ p + 2. Let

|Ui| ∈ {α−1, α} for i = 1, ..., k and |Uj | = α for some j ∈ {1, ..., k}, where α is an integer satisfying

α ≥ 5(p + 1) + 1. Then G has no hamiltonian chain.

Proof. Suppose indirectly that v1v2...vn is a hamiltonian chain in G. By removing all vertices of

U0 the sequence v1v2...vn falls to m parts, where m ≤ p + 1. Each part induce a chain in G − U0

or consists of one or two vertices. If a part contains an edge E ∈ E(G) such that |E ∩ Ui| ≥ 2 for

some i ∈ {1, ..., k} then by Lemma 2 every edge in this part have at least two vertices from Ui. We

say that the set Ui is a dominating set for this part. Let xi denote the number of vertices of the

i-th part which belong to its dominating set. Consequently, let yi denote the number of remaining

vertices in the i-th part. Recall that among every three consecutive vertices of some part at least
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two belong to its dominating set. Hence xi ≥ 2(yi − 1) if xi > 0, and xi + yi ≤ 2 otherwise. Thus

xi + yi ≤ 3

2
α + 1. Therefore

k(α − 1) < |U1| + ... + |Uk| =

m∑

i=1

(xi + yi) ≤
m∑

i=1

(
3

2
α + 1

)
≤ (p + 1)

(
3

2
α + 1

)
, hence

2

3
k < (p + 1)

α + 2/3

α − 1
= (p + 1) + (p + 1)

5

3(α − 1)
.

Thus

p + 2 ≤
⌈

2

3
k

⌉
≤ 2

3
k +

2

3
< (p + 1) + (p + 1)

5

3(α − 1)
+

2

3
, hence

1 < (p + 1)
5

α − 1
, a contradiction.

2

Theorem 4 Let t be a nonnegative integer and let G ∈ J (2t, 3t + 2). Let |Ui| ∈ {α − 1, α} for

i = 1, ..., 3t + 2 and |Uj| = α for some j ∈ {1, ..., k}, where α is an integer satisfying α ≥ 10t + 6.

Then G is hamiltonian path saturated.

Proof. Since
⌈

2

3
(3t + 2)

⌉
= 2t + 2, by Theorem 3, G has no hamiltonian chain. We will show

that adding any new edge E to G creates a hamiltonian chain. Let E = {u, v, w}. There are two

different types of E:

Case 1. u ∈ Ui, v ∈ Uj, w ∈ Uk with i 6= j, i 6= k, j 6= k; in this case we may assume that

i ≺ j and j ≺ k,

Case 2. u ∈ Uj , v ∈ Uj, w ∈ Uk with j ≺ k.

We deal with both of the cases simultaneously.

Note that for t ≥ 2 the set V (
−→
K3t+2) \ {j, k} can be decomposed into triples (an, bn, cn),

n = 1, ..., t, such that an ≺ bn and an ≺ cn for every n. Indeed, for the triples we can take

consecutive vertices in the sequence k + 1, k + 2, k + 3, ..., ĵ, ..., k̂ where the symbol x̂ means that

x is omitted in the sequence. Let

C ∼ j, j, ..., j, u, v, w, k, k, ..., k

denote the sequence containing vertices u, v, w and all vertices from the sets Uj – in the positions

denoted by j – and Uk – in the positions denoted by k. Note that C is a chain in G + E.

Consequently let

Cn ∼ a, b, b, a, b, b, a, ..., a, b, b, a, (b), 0, a, c, c, a, c, c, a, ..., a, c, c, a, (c),

n = 1, ..., t, denote the sequence containing one vertex from U0 (denoted by 0) and vertices from

the set Uan
∪Ubn

∪Ucn
\{u} in the positions denoted by a, b, c, respectively. The symbol (x) means

that x may or may not occur in the sequence depending on the parity of |Uxn
\ {u}|.
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◦ 5

◦ 7
◦ 8

◦ 2
◦ 3

◦ 1
◦ 4
◦ 6
◦ 9

U0

Ucn

Uan

Ubn

Fig. 2. The sequence 1,2,3,4,5,6,7,8,9 realises the fragment ‘...a, b, b, a, 0, a, c, c, a...′ of Cn.

Note that we are always able to place all the vertices from Uan
∪ Ubn

∪ Ucn
\ {u} in such

sequence. Indeed, let A, B, C denote the number of a’s, b’s, and c’s in Cn, respectively. Then

A =
⌊

1

2
B

⌋
+ 1 +

⌊
1

2
C

⌋
+ 1. Since |Ubn

|, |Ucn
| ≥ α− 1, A ≥

⌊
α−1

2

⌋
+ 1 +

⌊
α−2

2

⌋
+ 1 = α because the

vertex u may belong to Ubn
or to Ucn

. If 2α− 3 < B + C (= |Ubn
∪Ucn

\ {u}|) or |Uan
\ {u}| < α

then we can delete from Cn an appropriate number of a’s without ruining the chain. In any case

we can modify Cn in such a way that the resulting sequence contains exactly one vertex from U0

and all vertices from Uan
∪ Ubn

∪ Ucn
\ {u}. We denote such modified Cn by C′

n. Clearly each C′
n

is a chain in G + E. The following sequence is also a chain in G + E

C, 0, C′
1, 0, C′

2, 0, ..., 0, C′
t,

(here symbols 0 denote different vertices from the set U0). Since C does not contain a vertex from

U0 and each C′
n contains exactly one vertex from U0, the above sequence contains all vertices of G,

hence is a hamiltonian chain.

If t = 1 then, due to symmetry, we can assume that j = 1 and k = 2 or j = 1 and k = 3. In

the former case we can repeat previous argument since in V (
−→
K5)\{1, 2}, 3 ≺ 4 and 3 ≺ 5. Assume

that j = 1 and k = 3. Then i = 4, 5 or 1 because i ≺ j or i = j. If i = 4 then the following

sequence, or its modification resulting by deleting an appropriate number of 3’s, is a hamiltonian

chain in G + E

1, 1, ..., 1, v, u, w, 4, 4, 3, 4, 4, 3, ..., 3, 4, 4, 3, (4), 0, 3, 5, 5, 3, 5, 5, 3, ..., 3, 5, 5, 3, (5), 0, 2, 2, ..., 2

(as previously, symbols x different from u, v, w denote distinct vertices from the set Ux while

symbol (x) denote that x may or may not appear in the sequence depending on the parity of

|Ux|). Indeed, let A, B, C denote the number of 3’s, 4’s and 5’s in the sequence, respectively. Then

A =
⌈

B
2

⌉
+

⌊
C
|2|

⌋
+1 ≥

⌈
α−1

2

⌉
+

⌊
α−1

2

⌋
+1 = α. If 2α− 2 < B +C (= |U4|+ |U5|) or |U3| < α then

we can delete from the sequence an appropriate number of 3’s without spoiling the chain. Similar

argument holds when i = 5 or i = 1.

Finally, it is clear that G + E contains a hamiltonian chain if t = 0. 2
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Theorem 5 For every n ≥ 12 there exists a 3-uniform hamiltonian path saturated hypergraph with

at most 3
√

30

25
n5/2 + o(n5/2) edges.

Proof. Let t0 :=
⌊√

10

30

√
3n + 4 − 2

3

⌋
. Hence t0 ≥ 0. Let G ∈ J (2t0, 3t0 + 2) with the property

that the sets Ui have equal or nearly equal size. Hence |Ui| ∈ {α − 1, α}, i = 1, ..., 3t0 + 2, where

α =
⌈

n−2t0
3t0+2

⌉
. Moreover, at least one Uj satisfies |Uj | = α. By simple computations

n − 2t

3t + 2
≥ 10t + 6 ⇔ t ≤

√
10

30

√
3n + 4 − 2

3
.

Hence α satisfies conditions from Theorem 4. Thus G is hamiltonian path saturated. Note that

the number of edges of any hypergraph G′ ∈ J (2t, 3t + 2) with |Ui| ∈ {α − 1, α}, i = 1, ..., 3t + 2,

satisfies

|E(G′)| ≤
(

α + 2t

3

)
(3t + 2) +

(
3t + 2

2

)(
α + 2t

2

)
α ≤ (α + 2t)3

6
(3t + 2) +

(3t + 2)2(α + 2t)2α

4

≃ (n + 6t2 + 2t)2
(

n + 6t2 + 2t

6(3t + 2)2
+

n − 2t

4(3t + 2)

)
. (1)

Hence for t = t0

|E(G)| ≤
(

n + 6
3n + 4

90

)2
n

12
√

10

30

√
3n + 4

+ o(n5/2) =
3
√

30

25
n5/2 + o(n5/2).

2

4 Concluding remarks

We have constructed a family of 3-uniform hamiltonian chain saturated hypergraphs. The main

result is Theorem 5, which gives the hypergraphs with the smallest number of edges. Since the

lower bound we gave is smaller than the number of edges in the construction by a factor n1/2 the

question is still open. We conjecture that there exists an r-uniform hamiltonian path saturated

hypergraph with O(nr−1) edges.

Note that our construction cannot be improved by taking another t. Indeed, if we take t of

order different from n1/2 then, by (1), |E(G)| is asymptotically greater than the value obtained in

Theorem 5. Hence t of the form a
√

n is best. Then

|E(G)| ∼ (n + 6a2n)2
n

12a
√

n
+ o(n5/2) =

(
1 + 6a2

)2

12a
n5/2 + o(n5/2).

Recall that t <
√

10

30

√
3n + 4− 2

3
∼ 1√

30
n1/2. On the other hand it is easy to check that the function

f(a) =
(1+6a2)

2

12a is decreasing for a ∈ (0, 1/
√

18). Thus taking the largest possible value of t gives

best result.

We observe that the same bounds can be obtained in case we consider closed hamiltonian

chain v1, v2, ...vnv1v2 (hamiltonian cycle) instead of an open one v1, v2, ...vn. The proof of the

lower bound is very similar to the proof of Theorem 1. On the other hand the upper bound can

be realized by a hypergraph G ∈ J (2t + 1, 3t + 2) with α ≥ 10t + 6.
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