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Abstract

Approval-like voting rules, such as Sincere-Strategy Prefe-
rence-Based Approval voting (SP-AV), the Bucklin rule (an
adaptive variant of k-Approval voting), and the Fallback rule
(an adaptive variant of SP-AV) have many desirable proper-
ties: for example, they are easy to understand and encour-
age the candidates to choose electoral platforms that have a
broad appeal. In this paper, we investigate both classic and pa-
rameterized computational complexity of electoral campaign
management under such rules. We focus on two methods that
can be used to promote a given candidate: asking voters to
move this candidate upwards in their preference order or ask-
ing them to change the number of candidates they approve
of. We show that finding an optimal campaign management
strategy of the first type is easy for both Bucklin and Fallback.
In contrast, the second method is computationally hard even
if the degree to which we need to affect the votes is small.
Nevertheless, we identify a large class of scenarios that admit
a fixed-parameter tractable algorithm.

Introduction

Approval voting—a voting rule that asks each voter to report
which candidates she approves of and outputs the candidates
with the largest number of approvals—is one of the very few
election systems that have a real chance of replacing Plural-
ity voting in political elections. Some professional organiza-
tions, such as, e.g., the Mathematical Association of Amer-
ica or IEEE, already employ Approval voting, and recently
New Hampshire state representatives sponsored a bill that
replaces first-past-the-post voting with Approval voting.! Ir-
respective of the success of this initiative, it is a clear in-
dication that Approval voting is attracting the attention of
political decision-makers. One of the reasons for this is that,
in contrast to the more standard Plurality voting, under Ap-
proval voting the candidates can benefit from running their
campaigns in a consensus-building fashion, i.e., by choosing
a platform that appeals to a large number of voters.
Nonetheless, Approval voting has certain disadvantages
as well. Perhaps the most significant of them is its limited ex-
pressivity. Indeed, even a voter that approves of several can-
didates may like some of them more than others; however,
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Approval voting does not allow her to express this. There-
fore, it is desirable to have a voting rule that operates sim-
ilarly to Approval, yet takes voters’ preference orders into
account.

Several such voting rules have been proposed. For in-
stance, the Bucklin rule (also known as the majoritarian
compromise) asks the voters to gradually increase the num-
ber of candidates they approve of, until some candidate is ap-
proved by a majority of the voters. The winners are the can-
didates that receive the largest number of approvals at this
point. In a simplified version of this rule, which is popular
in the computational social choice literature (Xia et al. 2009;
Xia and Conitzer 2008; Elkind, Faliszewski, and Slinko
2010), the winners are all candidates that are approved by
a majority of the voters in the last round. Under both vari-
ants of the Bucklin rule, the common approval threshold is
lowered gradually, thus reflecting the voters’ preferences.
However, this common threshold may move past an indi-
vidual voter’s personal approval threshold, forcing this voter
to grant approval to a candidate that she does not approve
of. To alleviate this problem, Brams and Sanver (2009) have
recently introduced a new election system, which they call
Fallback voting. This system works similarly to the Buck-
lin rule, but allows each voter to only approve of a limited
number of candidates; its simplified version can be defined
similarly to the simplified Bucklin voting.

With variants of Approval voting gaining wider accep-
tance, it becomes important to understand whether various
activities associated with running an approval-based elec-
toral campaign are computationally tractable. Such activ-
ities can be roughly classified into benign, such as win-
ner determination, and malicious, such as manipulation and
control; an ideal voting rule admits polynomial-time algo-
rithms for the benign activities, but not for the malicious
ones. However, there is an election-related activity that de-
fies such classification, namely, bribery, or campaign man-
agement (Faliszewski, Hemaspaandra, and Hemaspaandra
2009; Elkind, Faliszewski, and Slinko 2009; Elkind and Fal-
iszewski 2010). Both of these terms are used for actions that
aim to make a given candidate an election winner by means
of spending money on individual voters so as to change
their preference rankings; these actions can be benign if the
money is spent on legitimate activities, such as advertising,
or malicious, if the voters are paid to vote non-truthfully.



Now, winner determination for all approval-based rules
listed above is clearly easy, and the complexity of manip-
ulation and especially control under such rules is well un-
derstood (Baumeister et al. 2010; Erdélyi and Rothe 2010;
Erdélyi and Fellows 2010; Erdélyi, Piras, and Rothe 2011).
Thus, in this paper we focus on algorithmic aspects of
electoral campaign management. Following (Elkind, Fal-
iszewski, and Slinko 2009; Elkind and Faliszewski 2010)
(see also (Dorn and Schlotter 2010)) who study this prob-
lem for a variety of preference-based voting rules, we model
the campaign management setting using the framework of
shift bribery. Under this framework, each voter v is associ-
ated with a cost function 7, which indicates, for each k > 0,
how much it would cost to convince v to promote the target
candidate p by k positions in his vote. The briber (campaign
manager) wants to make p a winner by spending as little as
possible. This framework can be used to model a wide va-
riety of campaign management activities, ranging from one-
on-one meetings to phon-a-thons to direct mailing, each of
which has a per-voter cost that may vary from one voter to
another.

Note, however, that in the context of approval-based vot-
ing rules, we can campaign in favor of a candidate p even
without changing the preference order of any voter. Specif-
ically, if some voter v ranks p in position k and currently
approves of £k — 1 candidates, we can try to convince v to
lower her approval threshold so that she approves of p as
well. Similarly, we can try to convince a voter to be more
stringent and withdraw her approval from her least preferred
approved candidate; this may be useful if that candidate is
p’s direct competitor. Arguably, a voter may be more will-
ing to change her approval threshold than to alter her rank-
ing of the candidates. Therefore, such campaign manage-
ment tactics may be within the campaign manager’s budget,
even when she cannot afford the more direct approach dis-
cussed in the previous paragraph. We will refer to this cam-
paign management technique as “support bribery”; a variant
of this model has been considered by Elkind, Faliszewski,
and Slinko (2009).

In this paper, we investigate the algorithmic aspects of
both campaign management activities discussed above, i.e.,
shift bribery and support bribery. We consider five approval-
based voting rules, namely, SP-AV (as formalized by Brams
and Sanver (2006)), Bucklin (both classic and simplified),
and Fallback (both classic and simplified). We show that
shift bribery is easy with respect to both variants of the
Bucklin rule, as well as both variants of the Fallback rule.
The argument for the simplified version of both rules relies
on dynamic programming, while for the classic version of
these rules we use a more involved flow-based approach. In
contrast, support bribery tends to be hard; this holds even if
we parameterize this problem by the number of voters to be
bribed or the total change in the approval counts, and use
very simple bribery cost functions. Nevertheless, we iden-
tify a natural class of bribery cost functions for which sup-
port bribery is fixed-parameter tractable with respect to the
latter parameter.

The rest of this paper is organized as follows. In the next
section we formally define our model of elections, the voting

systems we study, and provide the necessary background on
(parameterized) computational complexity. We then present
our algorithms for shift bribery, followed by complexity re-
sults and a fixed-parameter tractable algorithm for support
bribery. We conclude the paper by presenting directions for
future research. We omit most proofs due to page limit.

Preliminaries
An election is a pair E = (C,V), where C' = {c¢1,...,¢mn}
is the set of candidates and V = (v',... v"™) is the list of

voters. Each voter v’ is associated with a preference order
>, which is a total order over C, and an approval count
¢ € [0, |C|]; voter v is said to approve of the top ¢* candi-
dates in her preference order. We denote by rank(c,v) the
position of candidate c in the preference order of voter v:
v’s most preferred candidate has rank 1 and her least pre-
ferred candidate has rank |C|. A voting rule is a mapping
that given an election £ = (C, V') outputs a set W C C of
election winners.

Voting rules Most voting rules commonly considered in
the literature do not make use of the approval counts. For in-
stance, under k-Approval each candidate gets one point from
each voter that ranks her in top k positions. The k-Approval
score si(c) of a candidate ¢ € C is the total number of
points that she gets, and the winners are the candidates with
the highest score. The Bucklin rule, which can be thought of
as an adaptive version of k-Approval, is defined as follows.
Given a candidate ¢ € C, let sp(c) denote the smallest value
of k such that at least | % | + 1 voters rank c in the top & po-
sitions, where n is the number of voters; we say that ¢ wins
in round sp(c). The quantity kg = min.cc sg(c) is called
the Bucklin winning round. Observe that no candidate wins
in any of the rounds ¢ < kp and at least one candidate wins
in round kp. The Bucklin winners are the candidates with
the highest kp-Approval score. Under the simplified Buck-
lin rule, the winners are the candidates whose kp-Approval
score is at least | 5 | + 1; all Bucklin winners are simplified
Bucklin winners, but the converse is not necessarily true.
We observe that k-Approval, despite its name, ignores the
approval counts entirely: a candidate ¢ may fail to get a point
from a voter v* who approves of her (if £* > rank(c, v%) >
k), or obtain a point from a voter v/ who does not approve
of her (if # < rank(c,v’) < k). Similarly, neither version
of the Bucklin rule uses the information provided by the ap-
proval counts. In contrast, the SP-AV rule (Brams and San-
ver 2006) relies heavily on the approval counts: each can-
didate gets one point from each voter that approves of her,
and the winners are the candidates with the highest number
of points. Finally, Fallback voting (Brams and Sanver 2009)
makes use of both the preference orders and the approval
counts. Specifically, under this rule we apply the Bucklin
rule to the election obtained by deleting each voter’s non-
approved candidates from her preference ranking. Since the
preference orders are truncated, it may happen that no candi-
date is ranked by more than half of the voters, in which case
the candidates approved by the largest number of voters are
elected. We can replace the Bucklin rule with the simplified
Bucklin rule in this construction; we will refer to the result-



ing rule as the simplified Fallback rule.

Parameterized complexity The framework of parameter-
ized complexity deals with computationally hard problems.
In a parameterized problem, each input instance / comes to-
gether with an integer k called the parameter, and the aim
is to design algorithms that are efficient if the value of the
parameter is small. Formally, a problem is said to be fixed-
parameter tractable (FPT) with respect to parameter k if it
admits an algorithm whose running time on an input (I, k)
is f(k)|7|°™ for some computable function f; note that the
exponent of |I| does not depend on k. Though f is typically
an exponential function, such an algorithm is usually more
efficient than one running in time O(|I]¥).

To capture problems that are not fixed-parameter
tractable, researchers typically use the W-hierarchy, of
which the first two levels are W[1] and W[2] (P C FPT
C W[1] € W[2] C ...). Intuitively, W[1] is a parameter-
ized analog of NP. W[1]-hardness and W[2]-hardness are
defined in a standard way, on the basis of parameterized re-
ductions.

W[1]-hardness (or, worse yet, W[2]-hardness) yields
strong evidence that we cannot expect an FPT algorithm for
the problem with the given parameterization. For a more ex-
tensive treatment of parameterized complexity, we refer the
reader to e.g., (Downey and Fellows 1999).

Campaign Management The following definition is
adapted from (Elkind and Faliszewski 2010), which itself is
based on the one in (Elkind, Faliszewski, and Slinko 2009).

Definition 1. Let R be a voting rule. An instance of R-
SHIFT BRIBERY problem is a tuple I = (C, V,II, p), where
C={pc1,...,cm_1}, V= (v},...,0")is alist of voters
together with their preference orders over C' (and approval
counts, if R uses them), IT = (7!,...,7™) is a family of
cost functions, where each 7 is a non-decreasing function
from [0,|C|] to ZT U {+oc} that satisfies 7*(0) = 0, and
p € C'is a designated candidate.” The goal is to find a min-
imal value b for which there is a vector t = (t1,...,t,) €
(Z*)™ such that (a) b = >, 7*(¢;), and (b) if for each
i = 1,...,n we shift p upwards in the i-th vote by ¢; po-
sitions, then p becomes an R-winner of /. We denote this
value of b by opt([I).

In words, 7(k) is the cost of shifting the preferred can-
didate p forward by k positions in the preferences of the i-
th voter. We will refer to the vector t = (¢1,...,t,) as a
shift action, and denote by shf (C, V, t) the election obtained
from (C, V') by shifting p forward by ¢; positions in each
vote. Also, we write II(t) = Y1 | @ (t;). If rank(p,v;) =
k, but a shift action prescribes shifting p by k' > k positions
in v;’s ranking, we simply place p on top of the vote.

Shift bribery does not change the voters’ approval counts.
A more general notion of bribery, which is relevant for
SP-AV and (simplified) Fallback voting, was proposed by
Elkind, Faliszewski, and Slinko (2009) in the technical re-
port version of their paper. Specifically, they defined mixed

2E_ach of our cost functions 7' is specified by providing its val-
ues 7 (0), 7*(1),..., 7 (|C)).

bribery for SP-AV, where the briber can both shift the pre-
ferred candidate and change the voters’ approval counts. In
this work, we find it more convenient to separate these two
types of bribery. Thus, we will now define support bribery,
which focuses on changing the number of approved candi-
dates.

First, we need to introduce another family of cost func-
tions, which provide information about the costs of increas-
ing/decreasing the number of candidates approved by each
voter. Specifically, we assume that each voter v’ also has a
support bribery cost function o' : 7. — 7+ U {+o00}, which
satisfies (a) o*(0) = 0 (b) foreach k > 0, 0% (k) < o*(k+1)
and 0'(—k) < o'(—k — 1). For a given k € Z, we interpret
o’(k) as the cost of convincing v* to approve of £* + k can-
didates. Clearly, it suffices to define o on [—¢¢, |C| — ¢7],
where /% is the approval count of v*. We are now ready to
define the support bribery problem.

Definition 2. Let R be a voting rule. An instance of R-
SUPPORT BRIBERY problem is a tuple I = (C,V,X,p),
where C = {p,c1,...,cm—1} is a set of candidates, V =
(vl,...,v"™) is a list of voters, where each voter v* is rep-
resented by her preference order = and her approval count
¢, and ¥ = (o!,...,0™) is a family of support bribery cost
functions (each represented by listing its values for all ap-
propriate arguments). The goal is to find a minimal value
b such that there is a vector t = (¢1,...,t,) € Z" with
the following properties: (a) b= ", o(¢;), and (b) if for
eachi = 1,...,n voter v’ changes her approval count from
0 to £* + t;, then p is an R-winner of the resulting election.

When discussing NP-completeness, we consider a deci-
sion version of this problem, where we ask if there exists a
bribery whose cost does not exceed a given value b.

There are two interesting special cases of support bribery
that can be derived from the general model by setting
the bribery costs so that decreasing/increasing the approval
counts is prohibitively expensive. Specifically, we will say
that a support bribery cost function o is positive if o (k) =
+oo for any k& < 0 and negative if o(k) = +oo for any
k > 0. The support bribery with positive cost functions
corresponds to the setting where the campaign manager can
only increase the voter’s approval counts, and can be viewed
as a fine-grained version of control by adding voters; simi-
larly, the support bribery with negative cost functions can be
viewed as a refinement of control by deleting voters.

Note also that, just as in the case of control problems, we
can consider destructive support bribery, where the goal is
not to ensure that the preferred candidate p wins the elec-
tion, but rather that some despised candidate d does not. In
the context of control, this problem was studied by Hemas-
paandra, Hemaspaandra, and Rothe (2007).

Shift Bribery
In this section, we present our results for SHIFT BRIBERY
under the Bucklin rule and the Fallback rule. We start by
describing our algorithm for the simplified version of the
Bucklin rule; this algorithm can be modified to work for the
simplified version of the Fallback rule.

Theorem 3. Simplified Bucklin-SHIFT BRIBERY is in P.



Proof. Given an instance I = (C,V,II,p) of Simplified
Bucklin-SHIFT BRIBERY, let m = |C|, n = |V, and let k
be the Bucklin winning round for (C, V). Let W C C'\ {p}
be the set of the simplified Bucklin winners in (C, V).

Lett = (¢1,...,t,) be a minimal optimal shift action for
I, ie., TI(t) = opt(I), p is a winner in shf (C,V,t), but p
is not a winner in shf(C,V,s) for any s # t with s; < t;
forallt = 1,...,n (note that an optimal shift action is not
necessarily minimal, as it may include some shifts of cost 0
that are not needed to make p a winner).

Let ¢ be the Bucklin winning round in shf (C,V,t). We
have ¢ € {k,k + 1}. Indeed, any shift action moves any
candidate in W by at most one position downwards. There-
fore, in shf (C, V, t) all candidates in W win in round k + 1,
and hence ¢ < k + 1. Now, suppose that { < k. In (C,V)
the (k — 1)-Approval score of any candidate is at most
| 5 ], so the only candidate that can win in round £ < k in
shf(C,V,t) is p, and for that she has to be moved into po-
sition £ in at least some voters’ preferences. However, mov-
ing p into position £ in those voters’ preferences suffices to
make p a winner in round %k (and thus an election winner),
and we have assumed that t is minimal. This contradiction
shows that ¢ > k. Hence, to find an optimal shift bribery,
it suffices to compute the cheapest shift action that makes
p a winner in round k, as well as the cheapest shift action
that makes p a winner in round k£ + 1 and ensures that no
other candidate wins in round k, and output the cheaper of
the two.

To win in round k, p needs to obtain |5 ] 4+ 1 — si(p)
additional k-Approval points. Thus, to find the cheapest shift
bribery that makes p win in round %k, we consider all votes
in which p is not ranked in the top k positions, order them
by the cost of moving p into the k-th position (from lowest
to highest), and pick the first | 3 | + 1 — si(p) of these votes.
Let s denote the shift action that moves p into position k in
each of those votes.

Computing a shift action that ensures p’s victory in the
(k 4 1)-st round is somewhat more difficult. In this case we
need to ensure that (a) each candidate in W is demoted from
position k to position k+ 1 enough times not to win in round
k and (b) p’s (k + 1)-Approval score is at least | |. Thus,
we need to find an optimal balance between bribing several
groups of voters.

For each ¢ € C'\ {p}, let V. denote the set of all voters
that rank c in the k-th position and rank p below c; note
that ¢ # ¢’ implies V. N V. = (. Let us fix a candidate c in
C\{p}. To ensure that ¢ does not win in round k, we need to
shift p into position & in at least n(c) = max(0, sx(c)—[5])
votes in V.. Note that n(c) > 0 if and only if ¢ € . Thus,
if for some ¢ € W we have |V,| < n(c), there is no way to
ensure that no candidate in C' wins in round &, so in this case
we output s and stop.

Otherwise, we proceed as follows. Let A. be the set of
all voters in V that rank p in position k + 1, and let B, =
V. \ A.. Note that for each vote in A, shifting p into the k-
th position does not change the (k + 1)-Approval score of p,
while doing the same for a vote in B, increases the (k + 1)-
Approval score of p by one. For each i = 0,...,|B./|, let
b(c, ) be the minimum cost of a shift action that (a) shifts p

into position k+ 1 or above in ¢ votes from B,, and (b) shifts
p into position k in at least n(c) votes from A, U B.. We
can compute each b(c, ) in polynomial time using dynamic
programming. To do so, for each i and j, 0 < i < j < |B,,
and each h = 0,...,n(c), we define b(c, 1, j, h) to be the
cost of a minimum-cost shift action that only involves the
voters in A, and the first j voters in B, and that (a) shifts p
into position k+ 1 or above in ¢ votes from B, and (b) shifts
p into position k in at least h votes from A, U B.. If there is
no such shift action, we set b(c, %, j, h) = +oo.

Clearly, b(c, 0, 7, h) can be computed by ordering the vot-
ers in A, according to their cost of moving p into the k-th
position (from lowest to highest), and then bribing the first
h voters among them. We can similarly compute b(c, 4, 7, 0),
focusing on the first j voters in B, and on shifting to position
k + 1. For all the remaining cases, we compute b(c, i, j, h)
using the following formula. Abusing notation, we write v’
to denote the j-th voter in B..

b(c,i — 1,5 —1,h)+ Cy,
b(c,i,j,h)min{ blc,i—1,j—1,h—1)+Cq, (1)
b(eyiyj—1,h)

where C; = I (rank(p,v?) — (k + 1)) and Cy =
7l (rank(p,v?) — k).

The first and the second line of this formula correspond
to the case where p is shifted into position k£ + 1 and into
position k, respectively, in the j-th vote of B.. The third
line deals with the case where p is not shifted in this vote.
It is straightforward to verify that this method indeed com-
putes the desired values. By definition, we have b(c,i) =
b(e, i, |Be|, n(c)). For each candidate ¢ € C'\ {p} and each
i=0,...,|Bc|, we define r(c, i) to be the shift action corre-
sponding to the value b(c, i), read off the dynamic program-
ming computation of b(c, ) using standard techniques.

Observe that a shift action increases the (k + 1)-Approval
score of p by exactly the number of those votes in
UcEC\{p} B, where it moves p to position k£ 4 1 or above.

Thus, implementing each shift action of the form

> r(eie), )

ceC\{p}

where H = {i. | ¢ € C\ {p}} is a set of non-negative
integers whose sum is at least | 3 | +1—sy41(p), ensures that
(a) p wins in round k + 1, and (b) no other candidate wins in
round k. Condition (a) is guaranteed by the requirement on
the sum of H and, for each candidate ¢ € C'\ {p}, condition
(b) is guaranteed by the definition of r(c,i.). In addition,
it is not too hard to see that a minimum-cost shift action
ensuring that conditions (a) and (b) are satisfied must be a
minimum-cost shift action of the form (2).

Now, given shift actions r(c, %) for each ¢ € C'\ {p} and
eachi =0,...,|B.|, we can compute a minimum-cost shift
action r of the form (2), where H = {i. | c € C'\ {p}} is
a set of non-negative integers whose sum is at least | 5] +
1 — 8g+1(p), using standard dynamic programming (e.g., by
considering the candidates in C'\ {p} one by one).

We output the cheaper of s and r. This algorithm clearly
runs in polynomial time, and our argument shows that it pro-
duces an optimal shift action for 1. O



A similar argument works for the simplified Fallback rule.
Theorem 4. Simplified Fallback-SHIFT BRIBERY is in P.

A harder proof resolves the issue for regular Bucklin.
Theorem S. Bucklin-SHIFT BRIBERY is in P.

Briefly, the argument proceeds as follows. We observe
that if k£ is the Bucklin winning round in the original in-
stance, then after the bribery the Bucklin winning round %’
satisfies ¥ € {k — 1,k,k + 1}. We then find the optimal
bribery for each of these values of &'. For ¥’ = k — 1,
a simple greedy algorithm works. For ¥’ = k, for each
i = 1,...,n we find the cheapest shift action r’ that en-
sures that p’s score is ¢, and the score of any other can-
didate is at most 7; we save the best of these actions. For
k" = k+1, we need to ensure that p’s (k+1)-Approval score
is sufficiently high, while both the k-Approval score and the
(k + 1)-Approval score of any other candidate is sufficiently
low; these goals are interrelated. This case is handled by a
network flow argument, where the optimal shift action cor-
responds to a min-cost flow in a certain carefully constructed
network. A similar approach works for the Fallback rule.

Theorem 6. Fallback-SHIFT BRIBERY is in P.

Support Bribery

The technical report version of (Elkind, Faliszewski, and
Slinko 2009) gives an NP-completeness result for mixed
bribery under SP-AV. However, their proof does not rely on
shifting the preferred candidate in the voters’ preferences,
and therefore applies to support bribery as well, showing that
the decision version of SP-AV-SUPPORT BRIBERY is NP-
complete. In this section we extend this result to Fallback
voting, and explore the parameterized complexity of support
bribery under both the simplified and the classic variant of
this rule.

Any instance I of support bribery can be associated with
the following parameters. First, let «(I) denote the maxi-
mum number of voters that are bribed in any bribery that
solves I optimally. Second, let 5(I) and 3'(I) denote, re-
spectively, the maximum and the minimum of >, |¢;| for
any bribery (¢1,...,t,) that solves I optimally; these pa-
rameters describe how much we have to modify the approval
counts in total. Observe that (1) > 3'(I) and (1) > a(I)
for every instance I.

We will now demonstrate that support bribery under Fall-
back is computationally hard, even in very special cases.
These results, while somewhat disappointing from the cam-
paign management perspective, are hardly surprising. In-
deed, we have argued that support bribery can be viewed as
a fine-grained version of control by adding/deleting voters,
and both of these control problems are NP-hard for Fall-
back voting (Erdélyi and Rothe 2010). In fact, since Fall-
back defaults to approval voting if no candidate is approved
by a majority of voters, by introducing sufficiently many
dummy candidates we can easily reduce the problem of con-
trol by adding voters under approval to the problem of sup-
port bribery under Fallback voting.

Our next result shows that both variants of Fallback-
SUPPORT BRIBERY are NP-hard under very strong restric-
tions on the cost function; moreover, these problems remain

intractable even for instances with a small value of «. Thus,
bribing even a few voters can be a hard task.

Theorem 7. Both Fallback-SUPPORT BRIBERY and sim-
plified Fallback-SUPPORT BRIBERY are NP-complete, and
also W[2]-hard with parameter o, even in the special case
where each cost is either +o0o or 0, and either all cost func-
tions are positive or all cost functions are negative.

To prove Theorem 7, we consider positive cost functions
and negative cost functions separately. In each case, we
give a polynomial-time computable parameterized reduction
from the W[2]-hard DOMINATING SET problem. These re-
ductions are inspired by those given by Erdélyi and Fel-
lows (2010) in their proof that control by adding/deleting
voters under Fallback is W[2]-hard.

Since the hardness result for Fallback-SUPPORT BRIBERY
holds even if all bribery costs are either 0 or 400, it follows
that this problem does not admit an approximation algorithm
with a bounded approximation ratio.

Now, Theorem 7 shows that Fallback-SUPPORT BRIBERY
is W[2]-hard with respect to the parameter a.. Given that
we have §(I) > «(I) for any instance I, it is natural to
ask whether Fallback-SUPPORT BRIBERY remains hard if
even [ is small, i.e., every optimal bribery only makes small
changes to the approval counts. It turns out that this problem
is still hard, even under the assumption of unit costs, i.e.,
o'(k) = |k| foreach k and eachi = 1,...,n.

Theorem 8. Both Fallback-SUPPORT BRIBERY and simpli-
fied Fallback-SUPPORT BRIBERY are W[I]-hard with pa-
rameter (3, even if o*(k) = |k| for each k and each i =
1,...,n.

The proof proceeds by a parameterized reduction from the
W/[1]-hard MULTICOLORED CLIQUE problem (Fellows et al.
2009), and is omitted due to space constraints.

The hardness proof in Theorem 8 makes use of unit cost
functions. In contrast, for positive or negative cost functions
(simplified) Fallback-SUPPORT BRIBERY is fixed-parameter
tractable with respect to (3.

Theorem 9. Both Fallback-SUPPORT BRIBERY and simpli-
fied Fallback-SUPPORT BRIBERY are FPT with respect to
B', as long as either all bribery cost functions are positive
or all bribery cost functions are negative.

In both cases, the algorithm starts by guessing the round
where p wins, together with p’s score in that round. The
main idea in the negative case is to identify a small set of
relevant candidates whose score must be decreased in order
to prevent them from beating p, and then partition the votes
into equivalence classes, according to their effect on the rel-
evant candidates. As the number of equivalence classes can
be bounded by a function of /', this approach leads to a
bounded search tree algorithm running in FPT time.

When all cost functions are positive, the number of candi-
dates who might beat p via gaining a few extra points can be
large, hence applying a bounded search tree approach is not
straightforward. To overcome this difficulty, we apply the
technique of color-coding (Alon, Yuster, and Zwick 1995),
where a random coloring of the candidates is used to guide
us in choosing a set of voters that can be bribed safely. This



gives us a randomized FPT algorithm with one-sided error,

producing a correct output with probability at least 2-5"7,
which can be derandomized by standard methods.

We remark that our hardness result applies to the larger
parameter 3, while our algorithm works for the smaller pa-
rameter 3'. This is good news, since, in general, it is easier
to design algorithms for larger parameters (and, conversely,
prove hardness results for smaller parameters).

In contrast to our hardness results for constructive support
bribery, we can show that destructive support bribery is easy
for SP-AV, simplified Fallback voting, and Fallback voting.

Theorem 10. Destructive support bribery is in P for each
of SP-AV, simplified Fallback voting, and Fallback voting.

Conclusions and Future Work

Our results show that shift bribery tends to be computation-
ally easier than support bribery. However, in general, the
power of these campaign management strategies is incompa-
rable: one can construct examples of, e.g., Fallback elections
where it is impossible to make someone a winner within a
finite budget by shift bribery, but it is possible to do so by
support bribery, or vice versa. Thus, both shift bribery and
support bribery deserve to be studied in more detail.

Our algorithmic techniques highlight the difference be-
tween the Bucklin rule and its simplified version, and sug-
gest that one should exercise caution when using the results
for simplified Bucklin to derive conclusions for the clas-
sic Bucklin. Another contribution of this paper is a natu-
ral parameterization that leads to FPT algorithms for sup-
port bribery under two variants of the Fallback rule, for a
large class of bribery cost functions. Finding other tractable
parameterizations is an interesting direction for future re-
search. Another way to circumvent the hardness results is
to study the complexity of support bribery under restricted
preferences. For instance, recent work (Faliszewski et al.
2011; Brandt et al. 2010) shows that many hard problems
in computational social choice become easy if the voters’
preferences can be assumed to be single-peaked; it would be
interesting to determine if this is the case for support bribery.
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