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Abstract—We consider the rate of convergence of the expected distortion
redundancy of empirically optimal vector quantizers. Earlier results show
that the mean-squared distortion of an empirically optimal quantizer de-
signed from independent and identically distributed (i.i.d.) source sam-
ples converges uniformly to the optimum at a rate of (1 ), and that
this rate is sharp in the minimax sense. We prove that for any fixed dis-
tribution supported on a given finite set the convergence rate is (1 )
(faster than the minimax lower bound), where the corresponding constant
depends on the source distribution. For more general source distributions
we provide conditions implying a little bit worse (log ) rate of con-
vergence. Although these conditions, in general, are hard to verify, we show
that sources with continuous densities satisfying certain regularity proper-
ties (similar to the ones of Pollard that were used to prove a central limit
theorem for the code points of the empirically optimal quantizers) are in-
cluded in the scope of this result. In particular, scalar distributions with
strictly log-concave densities with bounded support (such as the truncated
Gaussian distribution) satisfy these conditions.

Index Terms—Convergence rates, fixed-rate quantization, empirical de-
sign, individual convergence rate, log-concave densities.

Manuscript received October 2, 2003; revised July 28, 2005. This work was
supported in part by the NATO Science Fellowship, a research grant from the
Research Group for Informatics and Electronics of the Hungarian Academy of
Sciences, and NKFP-2/0017/2002 project Data Riddle. The material in this cor-
respondence was presented in part at the IEEE International Symposium on In-
formation Theory, Chicago, IL, June/July 2004. Part of this work was performed
while A. Antos and A. György were also with the Department of Mathematics
and Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada.

A. Antos and A. György are with the Informatics Laboratory, Computer and
Automation Research Institute of the Hungarian Academy of Sciences, 1111
Budapest, Hungary (e-mail: antos@szit.bme.hu; gya@szit.bme.hu).

L. Györfi is with the Department of Computer Science and Information
Theory, Budapest University of Technology and Economics, 1117 Budapest,
Hungary (e-mail: gyorfi@szit.bme.hu).

Communicated by S. A. Savari, Associate Editor for Source Coding.
Digital Object Identifier 10.1109/TIT.2005.856976

0018-9448/$20.00 © 2005 IEEE



4014 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 11, NOVEMBER 2005

I. INTRODUCTION

The problem of empirical vector quantizer design is an important
issue in data compression, since in many practical situations good
source models are not available, but it is possible to collect source
samples, called the training data, to gain information about the source
statistics. Then the goal is to design a quantizer of a given rate, based
on this data, whose average distortion on the source is as close to
the distortion of the optimal quantizer (that is, one with minimum
distortion) of the same rate as possible.

The usual, quite intuitive approach to this problem is empirical error
minimization, which is based on the concept that if the training data de-
scribes the source statistics accurately, then a quantizer that performs
well on the training samples should also have a good performance on
the real source. Most existing design algorithms employ this principle,
and search for an empirically optimal quantizer, i.e., a quantizer min-
imizing the empirical error on the training data, expecting that it will
have near-optimal performance when applied to the real source. (The
reader is referred to Gersho and Gray [8] for a good summary of such
algorithms.) Indeed, under general conditions on the source distribu-
tion, Pollard [20], [21] showed that this method is consistent when the
training data consists of n consecutive elements of a stationary and er-
godic sequence drawn according to the source distribution: he proved
that the mean-squared error (MSE) distortion D(Q�

n) of the empiri-
cally optimal quantizerQ�

n (when applied to the real source) converges
with probability one to the minimumMSED� achieved by an optimal
quantizer.

Obviously, the above consistency result does not provide any infor-
mation on how many training samples are needed to ensure that the
distortion of the empirically optimal quantizer is close to the optimum.
This question can be answered by analyzing the rate of convergence in
D(Q�

n) ! D�, that is, by giving finite sample upper bounds for the
distortion redundancyD(Q�

n)�D�. Linder et al. [16] showed that the
expected distortion redundancy (with respect to the training data) can
be bounded asEEED(Q�

n)�D� � c=
p
n for some appropriate constant

c for all source distributions over a given bounded region. More pre-
cisely, in [16], only O( logn=n) rate was shown, supported with a
discussion on how to improve the convergence rate to O(1=

p
n), but

in the latter case the resulting constant was impractically large. A prac-
tically applicable constant can be obtained by combining the results of
[16] with recent results of Linder [14]. (See also [15] for a summary.)
This result has been extended in many ways. An extension to vector
quantizers designed for noisy channels or for “noisy” sources was given
by Linder et al. [17], an extension to unbounded sources was provided
by Merhav and Ziv [19], while the case of dependent (mixing) training
data was examined by Zeevi [24].

Bartlett et al. [3] showed that the O(1=
p
n) bound on the expected

distortion redundancy is tight in the minimax sense. They proved that
(for at least three quantization levels) for any empirical quantizer de-
sign method, that is, when the resulting quantizer Qn is an arbitrary
function of the training data, and for any n large enough, there is a
distribution in the class of distributions over a bounded region such
that EEED(Qn) � D� > c=

p
n. These “bad” distributions are quite

simple, e.g., the distributions used in the proof are concentrated on
finitely many atoms. However, the minimax lower bound gives infor-
mation about themaximumdistortion within the class, but not about the
behavior of the distortion for a single fixed source distribution, as the
sample size n increases. Moreover, the chosen “bad” distributions in
the proof of the above result are different for all n, allowing the possi-
bility that the upper boundmay be improved in an individual sense, that
is, a faster rate of convergence may be achievable, where the constant
in the bound also depends on the (fixed) source distribution. Finding
the best such individual rate (or weak rate) for the class of sources over

a bounded region was labeled in [3] as an interesting and challenging
problem.
There are some results suggesting that the convergence rate can be

improved to O(1=n): In the special case of a one-level quantizer, the
code point of the empirically (MSE) optimal quantizer is simply the
average of the training samples, and it is easy to see that in this case
EEED(Q�

n) � D� = c=n, where c is the variance of the source. Also,
based on another result of Pollard [22] showing that for sources with
continuous densities satisfying certain regularity properties the suitably
scaled difference of the code points of the optimal and the empirically
optimal quantizers has asymptotically multidimensional normal distri-
bution, Chou [4] pointed out that for such sources the distortion redun-
dancy decreases as O(1=n) in probability.
In this correspondence, we provide improved upper bounds for the

convergence rate of the expected distortion redundancy individually for
source distributions within the class of distributions over a bounded re-
gion. In Theorem 1, we show that EEED(Q�

n) � D� � c(�;N)=n for
all source distributions � concentrated on a finite set, where the con-
stant c(�;N) depends on the actual source distribution and the number
of quantization levels N . The convergence rate for general source dis-
tributions is considered in Theorem 2. It is shown that for source dis-
tributions over a bounded region satisfying a certain regularity con-
dition, the expected distortion redundancy can be upper-bounded by
c(�;N) logn=n, where the actual value of the constant again depends
on the actual source distribution. In Corollary 1, we prove that source
distributions with bounded support satisfying essentially the same con-
ditions as in [22] satisfy the requirements of Theorem 2, and in Corol-
lary 2 we show that the conditions of Corollary 1 hold for scalar sources
having strictly log-concave densities with bounded support (such as the
truncated Gaussian distribution), and for the uniform distribution, im-
plying O(logn=n) expected distortion redundancy. To give more in-
sight to the problem we also illustrate that similar conditions of Har-
tigan [10] (that are valid only in one dimension) also imply the condi-
tion in Theorem 2.
Comparing our results with [3], it follows that the problem of em-

pirical quantizer design is an interesting example of the unusual event
when the orders of the minimax lower bound and the individual upper
bound are different.

II. EMPIRICAL VECTOR QUANTIZER DESIGN

A d-dimensionalN -level vector quantizer is a measurable mapping
Q : d ! C, where the codebook C = fy1; . . . ; yNg � d is a
collection ofN distinct d-vectors, called the code points. The quantizer
is completely characterized by its codebook and the sets

Si = fx 2 d : Q(x) = yig; i = 1; . . . ; N

called the cells or partition cells (as they form a partition of d) via the
rule

Q(x) = yi; if x 2 Si:

The set fS1; . . . ; SNg is called the partition of Q. Throughout this
correspondence, unless explicitly stated otherwise, all quantizers are
assumed to be d-dimensional with N code points.
The source to be quantized is a random vectorX 2 d with distribu-

tion �. We assumeEEEfkXk2g <1, where k � k denotes the Euclidean
norm. The performance of the quantizerQ in quantizingX is measured
by the average (mean-squared) distortion

D(Q) = EEEfkX �Q(X)k2g:



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 11, NOVEMBER 2005 4015

A quantizerQ� achieving theminimumdistortionD� is called optimal.
Thus, in this case

D� = D(Q�) � D(Q); for all Q 2 QN

where QN denotes the set of all N -level quantizers. It is well known
(see, e.g., [13], [8]) that any optimal quantizer satisfies the centroid and
nearest neighbor conditions, also known as the Lloyd–Max conditions.
The quantizer Q satisfies the centroid condition if each code point is
chosen to minimize the distortion over its associated cell, that is,

EEEfkX � yik2 jX 2 Sig = min
y
EEEfkX � yk jX 2 Sig (1)

and so

yi = EEEfXjX 2 Sig

for all i = 1; . . . ; N . A partition fS1; . . . ; SNg is optimal if the quan-
tizer Q with cells S1; . . . ; SN satisfying the centroid condition is op-
timal. Q is called a nearest neighbor quantizer, if it satisfies

kx�Q(x)k = min
i
kx� yik; for all x 2 d: (2)

Note that

i) a nearest neighbor quantizer is determined by its codebook
fy1; . . . ; yNg with ties arbitrarily broken;

ii) for any nonnearest neighbor quantizer Q0, a nearest neighbor
quantizer Q with the same codebook has at most the same dis-
tortion as Q0, that is, D(Q) � D(Q0), regardless of the distri-
bution of X .

Thus, any optimal quantizer can be assumed to be nearest neighbor,
and so finding an optimal quantizer is equivalent to finding its code-
book. Using this observation, Pollard [21] proved that ifEEEfkXk2g <
1, then there exists an optimal quantizer (which may not be unique).

In many situations, the distribution � is unknown, and the only avail-
able information about it is given in the form of training data, that is,
a sequence Xn

1 = X1; . . . ; Xn of n independent and identically dis-
tributed (i.i.d.) copies of X . The sequence Xn

1 is also assumed to be
independent of X . Xn

1 is used to construct an empirically designed
quantizer Qn( � ) = Qn(�;X1; . . . ; Xn), which is a random function
depending on the training data. The goal is to produce such quantizers
with performance nearD�. The performance ofQn in quantizingX is
measured by the test distortion

D(Qn) = EEEfkX �Qn(X)k2jXn
1 g = kx�Qn(x)k2 �(dx):

Note that D(Qn) is a random variable.
The empirical distortion (or training distortion) of anyQ is given by

its MSE in quantizing the training data

Dn(Q) =
1

n

n

i=1

kXi �Q(Xi)k2:

Note that although Q is a deterministic mapping, the empirical dis-
tortion Dn(Q) is also a random variable depending on the training
data Xn

1 .
Assume that Q�n minimizes the empirical distortion, that is,

Dn(Q
�
n) = min

Q2Q
Dn(Q):

ThenQ�n (which is a specific empirically designed quantizer) is called
an empirically optimal vector quantizer.Q�n is an optimal quantizer for
the empirical distribution �n of the training data given as

�n(A) =
1

n

n

i=1

IfX 2Ag

for every Borel set A � d, where IE denotes the indicator function
of the event E. Note that Q�n always exists (although it is not neces-
sarily unique), andwe can assume that it is a nearest neighbor quantizer.
Using Q�n as an approximation of the optimal Q� is consistent in the
sense that its test distortion converges to the optimal distortion, that is,

lim
n!1

D(Q�n) = D�

almost surely for any N � 1 if EfkXk2g <1, see [20], [21].

III. RATE OF CONVERGENCE

To determine the number of training samples necessary to achieve
a preassigned level of distortion, the finite sample behavior of the ex-
pected distortion redundancy

EEED(Q�n)�D�

has to be analyzed. To do this we assume the peak power constraint

PPPfkXk � Bg = 1 (3)

and this assumption will be in effect throughout the correspondence. In
other words, the distribution � of the sourceX is an element of P(B),
the family of distributions supported on the sphere

S(B) = fx 2 d : kxk � Bg:

An important consequence of (3) is that it is sufficient for our purpose
to consider only quantizers with code points in the sphere S(B), since
otherwise projecting a code point that is not in S(B) to the surface of
S(B) clearly reduces the distortion.
It is of interest how fast EEED(Q�n) converges to D

�. To our knowl-
edge, the best accessible upper bound can be obtained by combining
results of [16] with recent developments of [14], implying

0 � sup
�2P(B)

(EEED(Q�n)�D�) � cuB
2 Nd

n
(4)

for all n � 1, where cu = 192. A natural question is whether there
exists a method, perhaps different from empirical distortion minimiza-
tion, which provides an empirically designed quantizer with substan-
tially smaller test distortion. In case of N = 1, it is easy to see that

EEED(Q�n)�D� =
Var(X)

n
:

Thus, the convergence rate is O(1=n), substantially faster than the
O(1=

p
n) rate above. However, for N � 3, the lower bound in [3]

shows that the O(1=
p
n) convergence rate above cannot be improved

in the minimax sense: There it is proved that if N � 3, then for any
empirically designed quantizer Qn trained on n � n0 � 104N sam-
ples, we have

sup
�2P(B)

(EEED(Qn)�D�) � clB
2 N1�4=d

n
(5)
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where cl � 2:67 �10�11. This result has recently been improved in [1],
extending the results to the caseN = 2, and improving the constant cl
to approximately 1:68 � 10�4 and the constant n0 to 8N .

The results (4) and (5) imply that there exist positive constants
cl(N;B; d) and cu(N;B; d) depending on N;B; and d such that

cl(N;B; d)p
n

� inf
Q

sup
�2P(B)

(EEED(Qn)�D�) � cu(N;B; d)p
n

where the infimum is taken over all empirically designed quantizers
Qn (recall that Qn = Qn(�;X1; . . . ; Xn) is a function Qn : d �
dn ! d). That is, theminimax bounds on the rate of convergence are

�(1=
p
n). The minimax lower bound expresses the minimum achiev-

able worst case error which is achievable for a given sample size n for
the distribution class P(B), by describing the behavior of any quan-
tizer design method for a source distribution which is the least suitable
for the given n and the given design method.

The “bad” distributions achieving the supremum of the expected dis-
tortion redundancy in (5) may be different for each n. Indeed, in the
construction of [3] (or [1]), although the bad distributions are concen-
trated on the same finitely many atoms for each n, the exact probability
mass function of the bad distribution depends on n. Thus, the bound
does not tell the behavior of the distortion redundancy for a single fixed
source distribution �. For example, it does not exclude the possibility
that for some sequence of empirical quantizers fQng,EEED(Qn)�D�

converges to 0 at O(1=n) rate for every fixed �, that is, it may be pos-
sible to get faster individual upper bounds of the form

EEED(Qn)�D� � c(�;N)

n
(6)

for each � 2 P(B) and n � 1, where the constant c(�;N) depends on
the source distribution. This type of upper bounds is the main purpose
of this correspondence. Next we show (6) for discrete distributions, and
with an additional factor logn for general distributions satisfying some
regularity condition. The proofs are deferred to the next section.

Our first result shows that the expected distortion redundancy con-
verges to 0 at a rate O(1=n) for any fixed source distribution concen-
trated on a finite set of points in d.

Theorem 1: Assume that the source distribution � is concentrated
on finitely many atoms. Then

EEED(Q�n)�D� � c(�;N)

n

where the constant c(�;N) depends on � and N .

The main idea in the proof is that with high probability, the empirical
and the real source distributions are so close that the corresponding op-
timal quantizer partitions coincide, and in this case we only need to find
the centroid of these partitions. Proving similar rate of convergence re-
sults for more general source distributions is significantly harder, since
the partitions of optimal quantizers for “close” distributions are dif-
ferent in general.

Next we give conditions on the source distribution � which en-
sure that the expected distortion redundancy converges to 0 at rate
O(logn=n). For a nearest neighbor quantizer Q let

�Q(x) = kx�Q(x)k2 � kx�Q�Q(x)k2

for all x 2 S(B), where Q�Q is the “closest” optimal nearest neighbor
quantizer to Q in the sense that it achieves the minimum

min
Q̂:D(Q̂)=D

VarfkX �Q(X)k2 � kX � Q̂(X)k2g: (7)

If the minimizing Q̂ is not unique, Q�Q can be chosen arbitrarily from
among the optimal nearest neighbor quantizers realizing the abovemin-
imum. Note that the minimum can always be achieved as can be seen
by a continuity-compactness type argument. This minimization is in-
troduced to avoid problems that occur if the optimal quantizer Q� is
not unique.

Theorem 2: Assume that PPPfkXk � Bg = 1, and let Q�n be an
empirically optimal quantizer. Assume furthermore that

A = inf
Q:D(Q)>D

EEEf�Q(X)g
Varf�Q(X)g > 0 (8)

where the infimum is taken over all nonoptimal nearest neighbor quan-
tizers having all their code points in the sphere S(B). Then

EEED(Q�n)�D� � c1 logn

n
+
c2
n

(9)

with constants

c1 = 4dN max
e� 2

A
; 4B2

and

c2 = 4N max
e� 2

A
; 4B2 log V

3eB

N
p
dmax e�2

A
; 4B2

d

where log denotes the natural logarithm and V denotes the volume of
the sphere S(B).

The proof of the theorem is based on a proof of [17] combined with
a technique developed by Barron [2] and Lee et al. [12] (see also, e.g.,
[9, Ch. 16]). The essence of the latter, which is an interesting result
itself, is formulated in Lemma 1 in the next section.

Remark 1: It is expected that at the expense of a more complicated
analysis, the logn term can be removed from the upper bound (9),
giving the desired O(1=n) rate.

Remark 2: The constants in the preceding theorem can slightly be
improved to

c1 =
16dNB2

G�1(4AB2)

and

c2 =
16NB2

G�1(4AB2)
log V

3eG�1(4AB2)

4BN
p
d

d

where G�1 is the inverse of the function G given as

G(c) =
ec � c� 1

c
; for c > 0: (10)

This is shown at the end of the proof of the theorem.
Condition (8) is hard to check for general source distributions, there-

fore, the scope of Theorem 2 is not clear. The next corollary shows that
the theorem is valid for sources with continuous densities satisfying
certain regularity properties.
Let fy�1 ; . . . ; y�Ng be the code points of an optimal quantizer for

� and let fS�1 ; . . . ; S�Ng denote the corresponding nearest neighbor
cells. It is known (see [22, Lemma C and Theorem]) that if � has
a continuous density f with bounded support, then the distortion
D(y1; . . . ; yN ) = D(Q) of the nearest neighbor quantizer Q with
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code points fy1; . . . ; yNg is a continuous function of the vector
(y1; . . . ; yN ) which has a second derivative block matrix

�(y�1 ; . . . ; y
�

N) = [�ij(y
�

1 ; . . . ; y
�

N)]

at (y�1 ; . . . ; y
�

N)made up of d�d blocks (see the equation at the bottom
of the page) where Fij is the (possibly empty) common face of S�i and
S�j (it is a convex set in a (d � 1)-dimensional hyperplane), Id is the
d� d identity matrix, and �d�1 is the (d� 1)-dimensional Lebesgue
measure.1 It is clear that since fy�1 ; . . . ; y

�
Ng is an optimal codebook,

the matrix �(y�1 ; . . . ; y
�
N) is positive semidefinite. The next corollary

shows that if �(y�1 ; . . . ; y
�
N) is also positive definite, then the desired

O(logn=n) convergence rate can be established.

Corollary 1: Assume that the random variable X has a continuous
density supported in S(B), and the matrix �(y�1 ; . . . ; y

�
N) is positive

definite for all optimal codebooks. Then

EEED(Q�n)�D� = O
logn

n
:

The conditions of Corollary 1 on the distribution are essentially the
same as those of Pollard [22] (and of Chou [4]). The conditions in [22]
are weaker in the sense that there the usual assumption of X having a
bounded support is replaced by a tail condition. This extensionmight be
possible for Corollary 1 and Theorem 2 at the expense of some com-
plication in the proof. On the other hand, while Pollard assumes the
uniqueness of an optimal quantizer, we allow multiple optima. How-
ever, if the set of optimal quantizers (each represented by theN -vector
of its codebook) has an accumulation point, then usually � is not pos-
itive definite for all optimal codebooks. Thus, Corollary 1 is not ap-
plicable, for example, for a multidimensional truncated Gaussian dis-
tribution (although we suspect that the results can be sharpened to in-
clude such cases, as well). Nevertheless, there are cases when the op-
timal quantizer is not unique and the set of optimal codebooks does
not have an accumulation point. For example, for scalar sources with
symmetric, not log-concave densities with a large spike in the middle
usually two asymmetric optimal two-level quantizers exist (if the den-
sity is log-concave, then the optimal quantizer is unique [7], [23]).

Note that Corollary 1 implies Chou’s result for bounded distributions
with the additional logn factor. However, the other direction would
require some kind of uniform integrability of the random variables
fn(D(Q�n)�D�)gn�1, which can be arbitrary large as n goes to in-
finity, even for bounded source distributions.

Although it is not easy to determine in general whether or not the
matrix �(y�1 ; . . . ; y

�
N) is positive definite, sufficient conditions can be

obtained easily in the scalar case. For example, it is easy to show that
�(y�1 ; . . . ; y

�
N) is positive definite for the uniform distribution, where

the unique optimal quantizer is the N -level uniform quantizer. More
general, sufficient conditions can be given based on a result of Fleis-
cher [7], who, while proving the uniqueness of an optimal quantizer,
also showed that if the source has a density f for which the deriva-
tive d2 log f(x)=dx2 is negative over its total support, then the matrix
�(y�1 ; . . . ; y

�
N) is positive definite for all optimal codebooks, and hence

1Note that Pollard [22] made a slight error in the derivation of �ij for i 6= j,
and arrived to a formula with an incorrect sign.

for the unique optimal codebook. A slight modification of Fleischer’s
original proof allows us to replace the condition on the second deriva-
tive by the assumption that log f(x) is a strictly concave function (then
f is called a strictly log-concave function). Thus, we obtain the fol-
lowing result.

Corollary 2: Assume that the scalar random variable X has a
strictly log-concave density f supported in the interval [�B;B] (that
is, log f(x) is strictly concave over its support), or X is uniformly
distributed in [�B;B]. Then

EEED(Q�n)�D� = O
logn

n
:

We note here that the result of Fleischer proving that the matrix
�(y�1 ; . . . ; y

�
N) is positive definite proves that scalar sources with

strictly log-concave densities and sufficiently light tails (such as one
with Gaussian distribution) satisfy the conditions of Pollard’s central
limit theorem [22] (this fact escaped Pollard’s attention), which also
implies that for such sources the distortion redundancy is O(1=n) in
probability by [4].
While Corollary 1 uses the nearest neighbor condition to capture op-

timality of quantizers, another approach is to use the centroid condition
instead. This approach was used by Hartigan [10], a precursor of [22]
for one dimension, who applied differentiationwith respect to the quan-
tization thresholds instead of differentiation with respect to the code
points. This method is illustrated in the next example for the scalar
case when N = 2.

Example 1: For d = 1 and N = 2, define the split function

D(t) = VarfX jX < tgPPPfX < tg+VarfX jX � tgPPPfX � tg

that is, the minimal distortion corresponding to the partition
f(�1; t); [t;1)g, and let t� = (y�1 +y�2)=2 denote the cell boundary
(or threshold) of an optimal quantizer with codebook fy�1 ; y

�
2g. Then

if the scalar random variableX has a continuous density in the interval
[�B;B], and d D

dt
(t�) is positive for any optimal threshold t�, then

EEED(Q�n)�D� = O
logn

n
:

To see this, rewrite D(t) as

D(t) = EEEfX2g �EEE2fX jX < tgPPPfX < tg

�EEE2fX jX > tgPPPfX � tg:

Then

d2D

dt2
(t�) = f(t�)(y�2 � y�1) 2�

f(t�)(y�2 � y�1)

2PPPfX < t�gPPPfX � t�g

and the assumption d D

dt
(t�) > 0 implies that

2�1;1(y
�
1 ; y

�
2) = 4PPPfX < t�g � f(t�)(y�2 � y�1)

� 4PPPfX < t�gPPPfX � t�g � f(t�)(y�2 � y�1)

= det �(y�1 ; y
�
2)

> 0

and thus �(y�1 ; y
�
2) is positive definite for any optimal codebook, thus

the result follows by Corollary 1.

�ij(y
�
1 ; . . . ; y

�
N) =

2�(S�i )Id � 2
l 6=i

f(x)(x�y )(x�y ) d� (x)

ky �y k
; for j = i

2
f(x)(x�y )(x�y ) d� (x)

ky �y k
; for j 6= i

(1 � i; j � N)
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Finally, a comparison of the results in this section with [3] shows that
the problem of empirical quantizer design is an interesting example of
the unusual event when the orders of the minimax lower bound and the
individual upper bound are different (the latter being smaller).

IV. PROOFS

Proof of Theorem 1: Let S = fx1; . . . ; xmg �
d denote the

support of �with corresponding probability mass pi = PPPfX = xig >
0; i = 1; . . . ;m. Assumem � N + 1, since otherwise

EEED(Q�

n) � 4B2
m

i=1

(1� pi)
n

by the power constraint (3).
Let �� be the set of optimal partitions for �. Let P �

n =
fS�

n;1; . . . ; S
�

n;Ng denote the partition of an empirically optimal
quantizer Q�

n. Clearly, P
�

n 2 �� . By the centroid rule (1) the code
point y�n;i associated with the cell S

�

n;i is the average of samples falling
into this cell. This can be computed whenever �n(S�

n;i), the ratio of
samples falling into the cell is positive. Without loss of generality, we
can assume that otherwise S�

n;i = ; in which case the definition of
y�n;i is immaterial, since keeping only the code points corresponding
to the nonempty cells can only increase the test distortion of Q�

n, and
hence increase the expected distortion redundancy.

Decompose the expected distortion redundancy of Q�

n in the fol-
lowing way:

EEED(Q�

n)�D� = EEE IfP 2� g(D(Q�
n)�D�)

+EEE IfP =2� g(D(Q�
n)�D�) : (11)

Let �y�n;i = EEEfX jX 2 S�n;ig for all i; now if P �
n 2 �� then the

quantizer with partition P �
n and codebook f�y�n;1; . . . ; �y

�
n;Ng is optimal

for �, and so for the first term of (11) we have

EEE IfP 2� g(D(Q�
n)�D

�)

=EEE IfP 2� g

N

i=1

(y�n;i � �y�n;i)
2�(S�n;i)

=EEE IfP 2� g

N

i=1

If� (S )>0g(y
�
n;i��y�n;i)

2�(S�n;i) : (12)

For any partition P = fS1; . . . ; SNg 2 ��, let yn;i be the average
of samples falling into Si (it can be defined arbitrarily if �n(Si) = 0)
and let �yi = EEEfX jX 2 Sig. Then (12) can be continued as

EEE IfP 2� g

N

i=1

If� (S )>0g(y
�
n;i � �y�n;i)

2�(S�n;i)

� EEE
P :P2�

N

i=1

If� (S )>0g(yn;i � �yi)
2�(Si)

=
P :P2�

N

i=1

EEE If� (S )>0g

�EEE f(yn;i � �yi)
2 IfX 2S g; . . . ; IfX 2S g �(Si)

=
P :P2�

N

i=1

EEE If� (S )>0g
VarfXjX 2 Sig

n�n(Si)
�(Si)

=
P :P2�

N

i=1

EEE
IfB >0g

Bi
VarfXjX 2 Sig�(Si)

�
P :P2�

N

i=1

2VarfXjX 2 Sig

n+ 1
(13)

�
2B2 j��jN

n+ 1
(14)

where Bi has a binomial distribution with parameters n and �(Si),
(13) holds by Devroye et al. ([6, Lemma A.2]), and j��j denotes the
cardinality of the set ��.
We also need to give a bound on the second term of (11). Pollard

[21] proved that the set of optimal partitions is continuous with re-
spect to the L2 Wasserstein distance of the distributions (defined by
�W (�; �0) = inf(X;Y )(EEEkX � Y k2)1=2, where the infimum is taken
over all joint distributions of (X;Y ) such thatX and Y have distribu-
tions � and �0, respectively), where a sequence of sets�k of partitions
converges to � if the corresponding characteristic functions converge,
that is, IfP2� g ! IfP2�g as k ! 1 for each partition P of S.
Moreover, it follows from [18] that the L2 metric

�(�; �0) =

m

i=1

(�(xi)� �0(xi))
2

1=2

for the family of distributions concentrated on S is as strong as
the Wasserstein distance, that is, �(�n; �) ! 0 if and only if
�W (�n; �) ! 0. Therefore, if �(�n; �) ! 0 for the sequence f�ng
of the empirical distributions, then �� ! ��. Since the number of
possible partitions of S is finite, this implies that there is a �� > 0
such that

�� = ��; for �(�n; �) < ��:

Since P �
n 2 �� , this and the power constraint (3) imply

EEEfIfP =2� g(D(Q�
n)�D�)g � 4B2PPPfP �

n =2 ��g

� 4B2PPPf�(�n; �) � ��g:

Applying Markov’s inequality we obtain

PPPf�(�n; �) � ��g = PPP
m

i=1

(�n(xi)� pi)
2 � �2�

�
EEEf m

i=1(�n(xi)� pi)
2g

�2�

=
m
i=1 pi(1� pi)

n�2�

�
1

n�2�
:

Thus, from (11), (12), and (14) we obtain

EEED(Q�
n)�D� � 2B2 j��jN

n+ 1
+

2

n�2�
�

c(�;N)

n

where

c(�;N) = 2B2(j��jN + 2=�2�):

(Note that j��j is bounded above by some function of N andm.)

The proof of Theorem 2 is based on the following lemma.

Lemma 1: Let Xij ; i = 1; . . . ; n; j = 1; . . .N be random vari-
ables such that for each fixed j;X1j ; . . . ; Xnj are i.i.d. such that for
each s0 � s > 0

EEEfesX g � es � :

For �j > 0, put

� = min
j�N

�j
�2j

:

Then

EEE max
j�N

1

n

n

i=1

Xij � �j �
logN

minf�; s0gn
: (15)

If

EEEfXijg = 0
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and

jXij j � K

then, for any L > 0

EEE max
j�N

1

n

n

i=1

Xij � �j � K logN

min K�� L

e �1�L
; L n

(16)

where

�� = min
j�N

�j
Var(Xij)

:

Proof: For the notation

Yj =
1

n

n

i=1

Xij � �j

we have that for any s0 � s > 0

EEEfesnY g = EEE e
sn( X �� )

= e�sn� (EEEfesX g)n

� e�sn� ens �

� e�sn�� +s n� :

Thus,

esnEE
Efmax Y g � EEE esnmax Y

= EEE max
j�N

esnY

�
j�N

EEEfesnY g

�
j�N

e�sn� (��s):

For s = minf�; s0g it implies that

EEE max
j�N

Yj � 1

sn
log

j�N

e�sn� (��s) � logN

minf�; s0gn:

In order to prove the second half of the lemma, notice that, for any
L > 0 and jxj � L we have the inequality

ex = 1 + x+ x2
1

i=2

xi�2

i!

� 1 + x+ x2
1

i=2

Li�2

i!

= 1 + x+ x2
eL � 1� L

L2

therefore, 0 < s � s0 = L=K implies that sjXij j � L, so

esX � 1 + sXij + (sXij)
2 e

L � 1� L

L2
:

Thus,

EEEfesX g � 1 + s2Var (Xij)
eL � 1� L

L2
� e

s Var(X )

so (16) follows from (15).

Remark 3: Equation (16) implies different bounds for different
choice of L. If L = 1 then

K logN

minfK�� L

e �1�L
; Lgn =

K

minfK��=(e� 2); 1g
logN

n

= max
e� 2

��
; K

logN

n
:

Hamers and Kohler [11] derived a similar bound

1

2��
+

2K

3

logN

n
:

There is a better choice of L. Introduce the function

G(L) =
eL � L� 1

L
; for L > 0

and choose L such that

K��
L2

eL � 1� L
= L

i.e.,

K�� = G(L)

i.e.,

L = G�1(K��)

then (16) implies the bound

K logN

G�1(K��)n
: (17)

Remark 4: In its spirit, Lemma 1 is similar to the inequality of De-
vroye and Lugosi [5] with the essential difference that they considered
the maximum of zero mean random variables

EEE max
j�N

1

n

n

i=1

Xij � 2max
j�N

�j
logN

n
:

Proof of Theorem 2: Following the proof of [17] consider a cubic
grid of width � in S(B) with the minimum number of grid points. It
can be seen that if the origin of the grid is uniformly distributed in
the d-dimensional cube with edge length � centered at the origin of
the sphere, then the expected number of grid points inside the ball is
V=�d. Thus, the grid in S(B) with minimum number of points has at
most V=�d points. Let Q0

N denote the set of N -level nearest neighbor
quantizers which have all their code points on this grid. Since for any
y 2 S(B) there is an y0 on the grid such that ky�y0k � �

p
d, for any

quantizer Q with code points inside S(B) there is a Q0 2 Q0
N such

that

sup
x2S(B)

jkx�Q(x)k2 � kx�Q0(x)k2j � 4�B
p
d:

Letting � = 4�B
p
d, specifically there is a quantizer Q0

n 2 Q0
N satis-

fying

sup
x2S(B)

jkx�Q�
n(x)k2 � kx�Q0

n(x)k2j � �
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with probability 1, since the code points of an empirically optimal
quantizer are almost surely concentrated in S(B). Concerning the car-
dinality of Q0N we have

jQ0N j � V

�d

N

= V N (4B
p
d)dN��dN : (18)

For Q = Q0n, let Qn denote the optimal quantizer achieving the min-
imum in (7). Using the empirical optimality ofQ�n we proceed with the
following decomposition:

EEEfkX �Q�n(X)k2jXn
1 g �D�

� EEEfkX �Q�n(X)k2jXn
1 g �EEEfkX �Qn(X)k2jXn

1 g

� 2

n

n

i=1

(kXi �Q�n(Xi)k2 � kXi �Qn(Xi)k2)

� 3�+EEEfkX �Q0n(X)k2jXn
1 g �EEEfkX �Qn(X)k2jXn

1 g

� 2

n

n

i=1

(kXi �Q0n(Xi)k2 � kXi �Qn(Xi)k2) (19)

with probability 1. Then

EEEfkX �Q�n(X)k2g�D�

� EEEfEEEfkX �Q0n(X)k2jXn
1 g �EEEfkX �Qn(X)k2jXn

1 g

� 2

n

n

i=1

(kXi �Q0n(Xi)k2 � kXi �Qn(Xi)k2)g+ 3�

= EEE EEEf�Q (X)jXn
1 g � 2

n

n

i=1

�Q (Xi) + 3�

� EEE max
Q2Q

EEEf�Q(X)g� 2

n

n

i=1

�Q(Xi) + 3�

= EEE max
Q2Q

1

n

n

i=1

2(EEEf�Q(X)g��Q(Xi))

� EEEf�Q(X)g + 3�

� 4max
e� 2

A
; 4B2 log jQ0N j

n
+ 3� (20)

� 4max
e� 2

A
; 4B2 log(V N (4B

p
d)dN��dN)

n
+ 3� (21)

where (20) follows from Lemma 1 with L = 1 and

Xi;Q = 2(EEEf�Q(X)g��Q(Xi))

and �Q = EEEf�Q(X)g; and (21) follows form (18). Choosing

� = 4max
e� 2

A
; 4B2 dN

3n

completes the proof of the theorem.
The improved constants of Remark 2 can be obtained if one uses the

improved version of Lemma 1 with bound (17) instead of with L = 1
in (20).

Proof of Corollary 1: We only need to show that condition (8) is
satisfied under the assumptions of the corollary; then the result follows
by Theorem 2. It is easy to see that if (8) does not hold, then there is
a sequence of strictly suboptimal quantizers Qn 2 QN converging to
an optimal quantizer Q� in the sense that yn;i ! y�i for all i, where

fyn;1; . . . ; yn;Ng denotes the codebook of Qn and fy�1 ; . . . ; y�Ng de-
notes the codebook of Q�, such that

lim
n!1

EEEf�Q (X)g
Varf�Q (X)g = 0: (22)

In what follows, we will show that

lim inf
n!1

EEEfkX �Qn(X)k2� kX �Q�(X)k2g
VarfkX �Qn(X)k2� kX �Q�(X)k2g > 0 (23)

which readily implies that (22) cannot hold, proving the corollary.
Since

D(y1; . . . ; yN ) = EEEfkX �Q(X)k2g

is twice differentiable according to the vector yyy=(y1; . . . ; yN )2 dN

in a neighborhood of yyy� = (y�1 ; . . . ; y
�
N), where Q is a nearest

neighbor quantizer with codebook fy1; . . . ; yNg [22],D(y1; . . . ; yN )
has the following Taylor expansion:

D(y1; . . . ; yN ) = D(y�1 ; . . . ; y
�
N) +

dD(yyy�)

dyyy
(yyy � yyy�)

+
1

2
(yyy � yyy�)T�(yyy�)(yyy � yyy�) + o(kyyy � yyy�k2)

where dD(yyy�)=dyyy denotes the vector formed by the partial derivatives
of D according to its variables at yyy�. It is also shown in [22] that the
derivative dD(yyy)=dyyy is made up of the d-vectors

@D(y1; . . . ; yN )=@yi = �2EEEfIfX2S g(X � yi)g:
However, since yyy� minimizesD(yyy); dD(yyy�)=dyyy = 0 (here 0 denotes
the zero vector), and so

EEEfkX �Q(X)k2 � kX �Q�(X)k2g
= D(y1; . . . ; yN )�D(y�1 ; . . . ; y

�
N )

=
1

2
(yyy � yyy�)T�(yyy�)(yyy � yyy�) + o(kyyy � yyy�k2):

Furthermore, since �(yyy�) is positive definite by assumption, its
smallest eigenvalue � is positive, and for any aaa 2 dN we have

aaaT�(yyy�)aaa � �kaaak2

which in turn implies that

EEEfkX �Q(X)k2 � kX �Q�(X)k2g
� �

2
kyyy � yyy�k2 + o(kyyy � yyy�k2): (24)

Next we bound the varianceVarfkX�Q(X)k2�kX�Q�(X)k2g.
Notice that kx �Q(x)k2 can be decomposed as

kx�Q(x)k2 =
N

i=1

kx� yik2Ifx2S g

+

N

i=1 1�j�N;j 6=i

(kx� yjk2 � kx� yik2)Ifx2S \S g

where, as usual, Si denotes the cell of Q corresponding to the code
point yi. Therefore,

kx�Q(x)k2 � kx�Q�(x)k2

=

N

i=1

(kx� yik2 � kx� y�i k2)Ifx2S g

+

N

i=1 1�j�N;j 6=i

(kx� yjk2 � kx� yik2)Ifx2S \S g

=

N

i=1

Ji(x) +

N

i=1 1�j�N;j 6=i

Ki;j(x)
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and so by the Cauchy–Schwarz inequality

VarfkX �Q(X)k2 � kX �Q�(X)k2g

= Var

N

i=1

Ji(X) +

N

i=1 1�j�N;j 6=i

Ki;j(X)

� N2

N

i=1

VarfJi(X)g+

N

i=1 1�j�N;j 6=i

VarfKi;j(X)g :

(25)

First we bound VarfJi(X)g as

VarfJi(X)g � EEEfJ2i (X)g

� EEEf((X�yi)
T (X�yi)�(X � y�i )

T (X�y�i ))
2g

= EEEf((2X � yi � y�i )
T (y�i � yi))

2g

� EEEfk2X � yi � y�i k
2ky�i � yik

2g (26)

� 16B2ky�i � yik
2 (27)

where (26) follows from the Cauchy–Schwarz inequality, and (27) by
the fact that k2X � yi � y�i k � 4B by the triangle inequality if
kXk � B.

Bounding the termsVarfKi;j(X)g is somewhat more complicated.
LetXi;j denote the orthogonal projection ofX to the line connecting yi
and yj . Then, for k = i; j; kX�ykk

2 = kXi;j�ykk
2+kX�Xi;jk

2,
and so

VarfKi;j(X)g � EEEfK2

i;j(X)g

= EEEf(kX � yjk
2 � kX � yik

2)2IfX2S \S gg

= EEEf(kXi;j�yjk
2�kXi;j�yik

2)2IfX2S \S gg

= EEEfk2Xi;j � yi � yjk
2kyi � yjk

2IfX2S \S gg

� 4B2EEEfk2Xi;j � yi � yjk
2IfX2S \S gg (28)

where the last equality holds because yi; yj and Xi;j lie in the same
line (otherwise, it would be an inequality as in (26)).

Next we prove that the expectation in (28) is

O(kyi � y�i k
2 + kyj � y�j k

2):

Let

Hj;i = fx 2 d : kx� yjk � kx� yikg

and

H�
i;j = fx 2 d : kx� y�i k � kx� y�j kg:

First we show that ifX 2 Hj;i \H
�
i;j ; kXk � B, and kyi � y�i k and

kyj � y�j k are sufficiently small (relative to ky�i � y�j k), then

Xi;j �
yi + yj

2
�

2B

ky�i � y�j k
+

1

2
(kyi � y�i k+ kyj � y�j k):

(29)

To see this, let hj;i and h�i;j denote the hyperplanes corresponding to
Hj;i and H�

i;j , respectively, let h
0
j;i denote the hyperplane containing

the point (y�i + y�j )=2 parallel to hj;i, and let H 0
j;i denote the corre-

sponding shifted version of the halfspaceHj;i. Furthermore, let �(x; h)
denote the Eucledian distance of the point x 2 d from the hyperplane
h � d. Then, since (yi+ yj)=2 2 hj;i, for any x between the hyper-
planes hj;i and h0j;i, we have

�(x; hj;i) �
y�i + y�j

2
�
yi + yj

2
(30)

and for any (other) x 2 d, we have

�(x; hj;i) �
y�i + y�j

2
�
yi + yj

2
+ �(x; h0j;i): (31)

Let � denote the angle of the vectors (yi�yj) and (y�i �y
�
j ). It is easy

to see that if kyi � y�i k and kyj � y�j k are small enough (relative to
ky�i �y

�
j k), then 0����=2, and so for all x2H 0

j;i \H
�
i;j ; kxk�B

we have

�(x; h0j;i) � x�
y�i + y�j

2
sin� � 2B sin�

since k(y�i + y�j )=2k � B. Furthermore, in this case

sin� �
kyi � y�i k+ kyj � y�j k

ky�i � y�j k

and so for any x 2 H 0
j;i\H

�
i;j ; kxk � B; and kyi�y�i k and kyj�y

�
j k

sufficiently small, by (31) we have

xi;j �
yi + yj

2
= �(x; hj;i)

�
y�i + y�j

2
�
yi + yj

2
+

2B(kyi � y�i k+ kyj � y�j k)

ky�i � y�j k

�
2B

ky�i � y�j k
+

1

2
(kyi � y�i k+ kyj � y�j k) (32)

where xi;j denotes the orthogonal projection of x to the line connecting
yi and yj . Now since if x 2 Hj;i then it is either between hj;i and
h0j;i, or x 2 H 0

j;i (or both), (30) implies that (32) is valid for all
x 2 Hj;i \H

�
i;j ; kxk � B. This implies (29).

Therefore, since Sj � Hj;i and S�i � H�
i;j , for small enough kyi�

y�i k; kyj � y�j k, we have

EEEfk2Xi;j � yi � yjk
2IfX2S \S gg

� EEEfk2Xi;j � yi � yjk
2IfX2H \H gg

� 4
2B

ky�i � y�j k
+

1

2

2

(kyi � y�i k+ kyj � y�j k)
2

� 8
2B

ky�i � y�j k
+

1

2

2

(kyi � y�i k
2 + kyj � y�j k

2):

Thus, from (28)

VarfKi;j(X)g

� 32B2 2B

ky�i � y�j k
+

1

2

2

(kyi � y�i k
2 + kyj � y�j k

2)

� 32B2 2B

minu6=v ky�u � y�vk
+

1

2

2

(kyi � y�i k
2 + kyj � y�j k

2)

which, together with (25) and (27), implies

VarfkX �Q(X)k2 � kX �Q�(X)k2g

� B2N2 16 + 64(N � 1)
2B

minu6=v ky�u � y�vk2
+

1

2

2

�

N

i=1

kyi � y�i k
2

= Ckyyy � yyy�k2

if kyyy � yyy�k is sufficiently small, where

C = B2N2 16 + 64(N � 1)
2B

minu6=v ky�u � y�vk2
+

1

2

2
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is a positive constant. Now for such yyy’s, (24) yields

EEEfkX �Q(X)k2 � kX �Q�(X)k2g

VarfkX �Q(X)k2 � kX �Q�(X)k2g
�

�

2C
+
o(kyyy � yyy�k2)

kyyy � yyy�k2

and hence (23) holds, completing the proof. Note that carrying out the
same proof in one dimension, that is, when d = 1, the constant C has
the much simpler form C = 32(2N � 1)B2, thus, in that case C does
not depend on Q�.
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[9] L. Györfi, M. Kohler, A. Krzyżak, and H. Walk, A Distribution-Free
Theory of Nonparametric Regression. New York: Springer-Verlag,
2002.

[10] J. A. Hartigan, “Asymptotic distributions for clustering criteria,” Ann.
Statist., vol. 6, pp. 117–131, 1978.

[11] M. Hamers and M. Kohler, “A bound on the expected maximal devia-
tion of averages from their means,” Statist. Probab. Lett., vol. 62, pp.
137–144, 2003.

[12] W. S. Lee, P. L. Bartlett, and R. C. Williamson, “Efficient agnostic
learning of neural networks with bounded fan-in,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 2118–2132, Nov. 1996.

[13] Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp. 84–95, Jan.
1980.

[14] T. Linder, “On the training distortion of vector quantizers,” IEEE Trans.
Inf. Theory, vol. 46, no. 4, pp. 1617–1623, Jul. 2000.

[15] , “Learning-theoretic methods in vector quantization,” inPrinciples
of Nonparametric Learning, L. Györfi, Ed. Wien/NewYork: Springer-
Verlag, 2002, pp. 163–210.

[16] T. Linder, G. Lugosi, and K. Zeger, “Rates of convergence in the source
coding theorem, in empirical quantizer design, and in universal lossy
source coding,” IEEE Trans. Inf. Theory, vol. 40, no. 6, pp. 1728–1740,
Nov. 1994.

[17] , “Empirical quantizer design in the presence of source noise or
channel noise,” IEEE Trans. Inf. Theory, vol. 43, no. 2, pp. 612–623,
Mar. 1997.

[18] C. L. Mallows, “A note on asymptotic joint normality,” Ann. Math.
Statist., vol. 43, pp. 508–515, 1972.

[19] N. Merhav and J. Ziv, “On the amount of side information required for
lossy data compression,” IEEE Trans. Inf. Theory, vol. 43, no. 4, pp.
1112–1121, Jul. 1997.

[20] D. Pollard, “Strong consistency of k-means clustering,” Ann. Statist.,
vol. 9, no. 1, pp. 135–140, 1981.

[21] , “Quantization and the method of k-means,” IEEE Trans. Inf.
Theory, vol. IT-28, no. 2, pp. 199–205, Mar. 1982.

[22] , “A central limit theorem for k-means clustering,” Ann. Probab.,
vol. 10, no. 4, pp. 919–926, 1982.

[23] A. V. Trushkin, “Sufficient conditions for uniqueness of a locally optimal
quantizer for a class of convex error weighting function,” IEEE Trans.
Inf. Theory, vol. IT-28, no. 2, pp. 187–198, Mar. 1982.

[24] A. J. Zeevi, “On the performance of vector quantizers empirically de-
signed from dependent sources,” in Proc. Data Compression Confer-
ence, DCC’98, J. Storer and M. Cohn, Eds. Los Alamitos, CA: IEEE
Comp. Soc. Press, 1998, pp. 73–82.

Improved Minimax Bounds on the Test and
Training Distortion of Empirically Designed

Vector Quantizers

András Antos

Abstract—It has been shown by earlier results that theminimax expected
(test) distortion redundancy of empirical vector quantizers with three or
more levels designed from independent and identically distributed (i.i.d.)
data points is at least
(1 ) for the class of distributions on a bounded
set. In this correspondence, a much simpler construction and proof for this
are given with much better constants. There are similar bounds for the
training distortion of the empirically optimal vector quantizer with three
or more levels. These rates, however, do not hold for a one-level quantizer.
Here, the two-level quantizer case is clarified, showing that it already shares
the behavior of the general case. Given that theminimax bounds are proved
using a construction that involves discrete distributions, one suspects that
for the class of distributions with uniformly bounded continuous densi-
ties, the expected distortion redundancy might decrease as (1 ) uni-
formly. It is shown as well that this is not so, proving that the lower bound
for the expected test distortion remains true for these subclasses.

Index Terms—Clustering methods, distortion, empirical design, lower
bounds, minimax control, redundancy, training, vector quantization.

I. INTRODUCTION

Designing empirical vector quantizers is an important problem in
data compression. In many practical situations we do not have a good
sourcemodel in hand, but we are able to collect source samples, usually
referred to as the training data, to get information on the source distri-
bution. Here our aim is to design a quantizer with a given rate, based
on these samples, whose expected distortion on the source distribution
is as close to the distortion of an optimal quantizer (that is, one with
minimum distortion) of the same rate as possible.
One intuitive approach to this problem is, for example, the empirical

distortion minimization, supported by the idea that if the samples are
from the real source distribution, then a quantizer that performs well on
the training data (that is, that has small training distortion) should have
a good performance on this source distribution, as well. In fact, Pollard
[1], [2] showed that this method is consistent under general conditions
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