
An Algorithm for Generating
Model-Sensitive Search Plans for EMF Models

Gergely Varró?, Frederik Deckwerth, Martin Wieber, and Andy Schürr

Technische Universität Darmstadt,
Real-Time Systems Lab,

D-64283 Merckstraße 25, Darmstadt, Germany
{gergely.varro@es,f.deckwerth@stud}.tu-darmstadt.de,

{martin.wieber,andy.schuerr}@es.tu-darmstadt.de

Abstract. In this paper, we propose a new model-sensitive search plan
generation algorithm to speed up the process of graph pattern matching.
This dynamic programming based algorithm, which is able to handle
general n-ary constraints in an integrated manner, collects statistical
data from the underlying EMF model, and uses this information for
optimization purposes. Additionally, runtime performance measurements
have been carried out to quantitatively evaluate the effects of the search
plan generation algorithm on the pattern matching engine.

Keywords: graph pattern matching, search plan generation algorithm,
model-sensitive search plan

1 Introduction

Efficient, scalable, and standard compliant techniques and tools are still un-
doubtedly needed to promote the spread of model-driven technologies in an
industrial context. As numerous scenarios in the model-based domain, such as
(i) checking the application conditions in rule-based model transformation tools
[1, 2], (ii) bidirectional model synchronization, or (iii) on-the-fly consistency val-
idation, can be described as a general pattern matching problem, its efficient
implementation is undisputedly an important task.

In this general pattern matching context, a pattern consists of constraints,
which place restrictions on variables, and the number of variables involved in
a constraint is referred as its arity. The pattern matching process determines a
mapping of variables to the elements of the underlying model in such a way that
the assigned model elements must fulfill all constraints. Structural constraints
can be checked by using the services of the modelling layer (e.g., type checks,
navigation along links), while non-structural constraints are handled by some
other means (e.g., integer or textual comparison).

As non-structural constraints are easily manageable [3], the current paper
only focuses on structural constraints, which correspond to the graph pattern

? Supported by the Postdoctoral Fellowship of the Alexander von Humboldt Founda-
tion and associated with the Center for Advanced Security Research Darmstadt.

The final publication is available at http://link.springer.com/chapter/10.1007%2F978-3-642-30476-7_15

2 Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr

matching problem [4]. Although available pattern matching engines support type
checks and link navigations as unary and binary structural constraints, respec-
tively, practical model-driven scenarios additionally require the handling of n-ary
constraints to express ordered references or pattern composition [5].

When building a pattern matching engine, its performance highly depends
on the order in which the constraints of a pattern are evaluated (cf. the impact
of the variable ordering in general backtracking). This rationale motivates the
construction of heuristics-based algorithms for generating constraint sequences
or search plans [6], which can be efficiently evaluated.

While the majority of state-of-the-art search plan generation algorithms [1, 7,
8] exploits only type and multiplicity restrictions derived from the metamodel of
the problem domain, two novel model-sensitive approaches [9, 10] take, for opti-
mization purposes, the potential structure of instance models into account as fur-
ther domain-specific knowledge. Although the inherent performance advantages
of model-sensitive search plan generation techniques have already been clearly
shown [11], the applicability of the tools themselves in a more general modeling
context is hindered by the fact that both engines (i) operate on non-standard
(tool specific) model representations, and (ii) apply graph-based algorithms for
search plan generation, which can handle only unary and binary constraints in
an integrated manner.

In this paper, we propose a completely new model-sensitive search plan gen-
eration algorithm, based on dynamic programming, to enable the integrated
handling of general n-ary constraints. The algorithm collects statistical data
from the model under transformation via an extensible framework and uses this
information for optimization purposes. The pluggable collection of statistical
data is exemplified on Eclipse Modeling Framework (EMF) compliant models.
Finally, the effects of the search plan generation algorithm on the performance of
pattern matching are quantitatively evaluated by using runtime measurements.

The remainder of the paper is structured as follows: Section 2 introduces ba-
sic modeling and pattern specification concepts. The general pattern matching
process is sketched in Sec. 3, while Sec. 4 presents the new search plan generation
algorithm. Section 5 gives a quantitative assessment and performance compari-
son. Related work is discussed in Sec. 6, and Sec. 7 concludes our paper.

2 Metamodel, Model and Pattern Specification

2.1 Metamodels and Models

A metamodel represents the core concepts of a domain. In this paper, our ap-
proach is demonstrated on a real-world running example from the railway domain
[12] (developed in the MOGENTES project [13]), whose metamodel is depicted
in Fig. 1(a). Classes are the nodes in the metamodel: Routes, Sensors, Signals,
SwitchPositions, and TrackElements, which can either be Switches or Segments.
References are the edges between classes, which can be uni- or bidirectionally
navigable as indicated by the arrows at the end points. A navigable end is la-
belled with a role name and a multiplicity, which restricts the number of target

An Algorithm for Generating Model-Sensitive Search Plans for EMF Models 3

objects that can be reached via the given reference. In our example, a Route
has at least 2 Sensors (as shown by the unidirectional reference hasSensors), and
defines an arbitrary number of SwitchPositions, which is a bidirectional refer-
ence. Attributes (depicted in the lower part of classes) store values of primitive
or enumerated types, e.g., the length integer in a Segment, or the actualState of
a Switch whose possible values are listed in the enumeration SwitchStateKind.
Figures 1(b) and 1(c) depict two models from the domain, whose nodes and
edges are called objects and links, respectively.

«eclass»
Signal

+ actualState :SignalStateKind

«eclass»
Route

«eclass»
SwitchPosition

+ switchState :SwitchStateKind

«eclass»
Switch

+ actualState :SwitchStateKind

«eclass»
Segment

+ length :EInt

«eclass»
TrackElement

«eclass»
Sensor

«enumeration»
SignalStateKind

 STOP
 FAILURE
 GO

«enumeration»
SwitchStateKind

 FAILURE
 LEFT
 RIGHT
 STRAIGHT

+sensor

0..* observes

+trackElement

0..*

+switchPosition

0..*
inPosition

+switch

0..1
*

hasSensors

+routeDefinition

2..*

+route

1 defines

+switchPosition

0..* *
hasExit +exit

1

*
hasEntry +entry

1

(a) The metamodel of the railway track domain

#Route 1

#Segment 3

#Sensor 2

#Signal 0

#Switch 2

#SwitchPosition 1

#defines 1

#hasEntry 0

#hasExit 0

#hasSensors 2

#inPosition 1

#observes 3

#Route 1

#Segment 0

#Sensor 2

#Signal 0

#Switch 1

#SwitchPosition 3

#defines 3

#hasEntry 0

#hasExit 0

#hasSensors 2

#inPosition 1

#observes 1

ro1 :Route se1 :Sensor

se2 :Sensor

swp1 :SwitchPosition sw1 :Switch

seg1 :Segment

seg3 :Segmentseg2 :Segmentsw2 :Switch

defines

observes
observes

hasS
ensors

hasSensors

observes

inPosition

(b) Model 1

#Route 1

#Segment 3

#Sensor 2

#Signal 0

#Switch 2

#SwitchPosition 1

#defines 1

#hasEntry 0

#hasExit 0

#hasSensors 2

#inPosition 1

#observes 3

#Route 1

#Segment 0

#Sensor 2

#Signal 0

#Switch 1

#SwitchPosition 3

#defines 3

#hasEntry 0

#hasExit 0

#hasSensors 2

#inPosition 1

#observes 1

ro1 :Route se1 :Sensor

swp1 :SwitchPosition sw1 :Switch

se2 :Sensor

swp2 :SwitchPosition

swp3 :SwitchPosition

hasSensors

de
fin

es

inPosition

observes

de
fin

es

de
fin

es
hasSensors

(c) Model 2

Fig. 1. Metamodel of the railway track domain and two sample models

EMF-Specific Issues: References and attributes are collectively referred to as
structural features and handled uniformly in EMF. Each navigable direction of
a structural feature is represented by an indexed List in the source class, which
stores corresponding target objects.

Our approach collects statistical data from the model at runtime via EMF
adapters. An object and link counter is introduced for each class and structural
feature, which stores the number of type conforming objects and links, respec-
tively, as shown by the tables in Figures 1(b) and 1(c).

2.2 Pattern Specification

As defined in [5, 14], a pattern is a set of constraints over a set of variables. A
variable is a placeholder for an object in a model, and it has a reference to a class
from the metamodel, which defines the type of the objects that can be assigned
to the variable during pattern matching. A constraint specifies a condition on a
set of variables (which are also referred to as parameters in this context) that
must be fulfilled by the objects, which are assigned to the parameters.

4 Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr

EMF-Specific Issues: Although the pattern matcher has a pluggable infras-
tructure for the constraints that can be used for specifying patterns, only one
kind of constraints is used throughout the paper.1 In the following, a constraint
maintains a reference to a structural feature, and it prescribes the existence of a
link, which (i) conforms to the referenced structural feature and (ii) connects the
source and the target object assigned to the first and last parameter, respectively.

An ordered or unordered structural feature can be modeled by a binary con-
straint in the pattern specification, when the order information is irrelevant in
the pattern matching process. In contrast, ternary constraints should be used
for ordered unidirectional structural features, where the second parameter is an
integer index, which prescribes the location of the target object in the list of the
source object containing links that conform to the structural feature.

Example. Pattern routeSensor (Fig. 2) expresses a sample requirement
defined by railway domain experts, which has been slightly simplified for presen-
tation purposes. It states that a route must have a sensor observing a switch, and
the observed switch itself must be part of the route. The pattern has 5 variables
(RO, IDX, SE, SW and SWP), 1 ternary and 3 binary constraints, which prescribe the
existence of an ordered unidirectional and 3 bidirectional references, respectively.

hasSensors

defines observes

inPosition

RO : Route SE : Sensor

SWP : SwitchPosition SW : Switch

IDX : Integer

1 pattern routeSensor(RO:Route, IDX:Integer,
2 SE:Sensor, SW:Switch, SWP:SwitchPosition) =
3 {
4 hasSensors(RO, IDX, SE);
5 observes(SE, SW);
6 inPosition(SW, SWP);
7 defines(RO, SWP);
8 }

Fig. 2. Pattern routeSensor in a graphical and textual representation

3 Pattern Matching Process at Runtime

As [14] states, pattern matching is the process of determining mappings for all
variables in a given pattern, such that all constraints in the pattern are fulfilled.
The mappings of variables to objects are collectively called a match, which can
be a complete match when all the variables are mapped, or a partial match in
all other cases. The overall process of pattern matching is as follows:

Section 3.1 Operations representing atomic steps in the pattern matching pro-
cess are created from the pattern specification.

Section 3.2 The operations are filtered and sorted by a search plan generation
algorithm (for the details see Sec. 4) to produce efficient search plans.

Section 3.3 The search plan is then used by an interpreter to control the actual
execution of pattern matching, which is carried out as a depth-first traversal.

1 Type restrictions for variables are going to be represented as constraints only in a
future version of the pattern matcher.

An Algorithm for Generating Model-Sensitive Search Plans for EMF Models 5

3.1 Creating Operations

This subsection, which reuses some definitions from [5, 14], describes the process
of creating operations from the constraints in the pattern specification. In the
following, it is assumed that an (arbitrary) order is fixed for the variables in the
pattern, and the notation vp denotes the pth variable according to this order.

An adornment [5] represents binding information for all variables in the
pattern by a corresponding character sequence consisting of letters B or F, which
indicate that the variable in that position is bound or free, respectively.

An operation represents a single atomic step in the matching process. It con-
sists of a constraint, an operation adornment, and a mask, which is derived from
the operation adornment. An operation adornment prescribes which parameters
must be bound when the operation is executed, while a mask represents the same
binding information, but projected on all variables in the pattern. A check oper-
ation has only bound parameters. An extension operation has free parameters,
which get bound when the operation is executed.

Setting operation adornments. For presentation purposes, we assume
that operations use the standard EMF services, which restricts the set of oper-
ations created for a constraint in the following manner.

For each binary constraint referring to a bidirectional structural feature, 3
operations with the corresponding BB, BF, and FB adornments are created. The
check operation (BB) verifies the existence of a link, while the other two, adorned
by BF and FB, denote forward and backward navigations, respectively. Analo-
gously, for each binary constraint referring to a unidirectional structural feature,
2 operations with the corresponding BB and BF adornments are prepared.

For each ternary constraint (referring to an ordered unidirectional structural
feature), operations adorned by BBB, BBF, and BFF are prepared (adornment
BFB is disallowed for presentation purposes). The check operation (BBB) verifies
that (i) a link connects the source and the target object mapped to the first
and the third parameter, respectively, and (ii) the target object is stored in
the appropriate List of the source object at the index assigned to the second
parameter. The operation with the BBF adornment is a forward navigation along
the single link, which is stored at the index assigned to the second parameter.
Finally, the operation adorned by BFF is a forward navigation along all links that
conform to the structural feature of the constraint, and that retain the source
object mapped to the first parameter.

Mask derivation. A mask mo is a sequence of *, B, and F characters.
Character * at position p means that the binding of variable vp is irrelevant,
while letters B or F at position p explicitly prescribe the corresponding variable
vp to be bound or free, respectively. For each letter B (F) in the adornment, the
position p of the corresponding parameter vp is looked up by using the fixed
variable order, and position p is set to B (F) in the mask. All other locations of
the mask are set to *.

Categorizing and applying operations. In the context of an adornment,
operations can be categorized. An operation o is a present (or applicable) oper-
ation with respect to an adornment a, if the following conditions hold:

6 Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr

1. General operation applicability. Each variable vp, that must be free
according to the mask mo of operation o, is also free in adornment a.

2. Immediate operation applicability. Each variable vp, that must be bound
according to the mask mo of operation o, is also bound in adornment a.

An operation o is a past operation, if the first condition on general operation
applicability is violated. An operation o is a future operation, if only the second
condition on immediate operation applicability is violated.

If an operation o is a present (or applicable) operation w.r.t. adornment
a, then applying the operation o on adornment a resulting in an adornment
a′ (denoted by a

o
=⇒ a′) (i) binds all free variables indicated by mask mo of

operation o, and (ii) leaves the binding of all other variables unaltered.

Example. Figure 3(a) lists the operations derived from the routeSensor
pattern. In the following, we suppose that variables RO, IDX, SE, SW and SWP

are ordered in this specific sequence. For instance, operation observes(SE,SW)

adorned by BF is an extension operation, and it is only applicable if variable
SE is bound, and variable SW is free, which is also reflected in mask **BF* as
SE and SW are the third and fourth variable, respectively. This operation can be
categorized as a future operation with respect to adornment BFFFF, as it violates
the immediate operation applicability condition at the third position.

Constraint Op. Adornm. Mask
hasSensors(RO,IDX,SE) BBB BBB** future check
hasSensors(RO,IDX,SE) BBF BBF** future extension
hasSensors(RO,IDX,SE) BFF BFF** present extension
observes(SE,SW) BB **BB* future check
observes(SE,SW) BF **BF* future extension
observes(SE,SW) FB **FB* future extension
inPosition(SW,SWP) BB ***BB future check
inPosition(SW,SWP) BF ***BF future extension
inPosition(SW,SWP) FB ***FB future extension
defines(RO,SWP) BB B***B future check

defines(RO,SWP) BF B***F present extension
defines(RO,SWP) FB F***B past extension

Constraint Op. Adornm. Mask

(1) defines(RO,SWP) BF B***F BFFFB
(2) inPosition(SW,SWP) FB ***FB BFFBB
(3) hasSensors(RO,IDX,SE) BFF BFF** BBBBB
(4) observes(SE,SW) BB **BB* BBBB B

(1) hasSensors(RO,IDX,SE) BFF BFF** BBBFF
(2) observes(SE,SW) BF **BF* BBBBF
(3) inPosition(SW,SWP) BF ***BF BBBBB
(4) defines(RO,SWP) BB B***B B BBBB

Operation
Applic. Type

Adornm. ai
(a0 = BFFFF)

Search plan Step
Operation

Search plan 1

(derived from

model 1)

Search plan 2

(derived from

model 2)

(a) Operations

Constraint Op. Adornm. Mask

hasSensors(RO,IDX,SE) BBB BBB** future check

hasSensors(RO,IDX,SE) BBF BBF** future extension

hasSensors(RO,IDX,SE) BFF BFF** present extension

observes(SE,SW) BB **BB* future check

observes(SE,SW) BF **BF* future extension

observes(SE,SW) FB **FB* future extension

inPosition(SW,SWP) BB ***BB future check

inPosition(SW,SWP) BF ***BF future extension

inPosition(SW,SWP) FB ***FB future extension

defines(RO,SWP) BB B***B future check

defines(RO,SWP) BF B***F present extension

defines(RO,SWP) FB F***B past extension

Constraint Op. Adornm. Mask

(1) defines(RO,SWP) BF B***F BFFFB
(2) inPosition(SW,SWP) FB ***FB BFFBB
(3) hasSensors(RO,IDX,SE) BFF BFF** BBBBB
(4) observes(SE,SW) BB **BB* BBBB B

(1) hasSensors(RO,IDX,SE) BFF BFF** BBBFF
(2) observes(SE,SW) BF **BF* BBBBF
(3) inPosition(SW,SWP) BF ***BF BBBBB
(4) defines(RO,SWP) BB B***B B BBBB

Operation
Applic. Type

Adornm. ai
(a0 = BFFFF)

Search plan Step Operation

Search plan 1

(derived from

model 1)

Search plan 2

(derived from

model 2)

(b) Search plans as sequence of operations

Fig. 3. Operations and search plans for the routeSensor pattern

3.2 Search Plan Generation

When pattern matching is invoked, variables can already be bound to objects
to restrict the search. The corresponding binding information of all variables
is called initial adornment a0. By using the initial adornment, a search plan
generation algorithm filters and sorts the operations to produce a search plan.
The current search plan formalism is a precise and extended variant of [5].

A search plan SP = 〈o1, o2, . . . , ol〉, starting from an initial adornment a0,
is a sequence of operations satisfying the following conditions:

An Algorithm for Generating Model-Sensitive Search Plans for EMF Models 7

1. No multiple constraint checks. Each constraint in the pattern has at
most one corresponding operation in the search plan.

2. Valid adornment sequence. An adornment sequence a0, a1, . . . , al can be
derived in such a way that a0

o1=⇒ a1
o2=⇒ . . .

ol=⇒ al. The last element al in
this adornment sequence is referred as the adornment of the search plan.

A search plan is complete, if each constraint is represented by exactly one oper-
ation in the sequence, and its adornment has only B characters.

Example. Figure 3(b) depicts two search plans generated by our algorithm
for Models 1 and 2, when variable RO is initially bound and, thus, the initial
adornment is BFFFF. The rightmost column presents the adornment after ap-
plying the operation in the same line. SP1 extends the partial match along two
separate directions before joining the branches with the last (check) operation,
while SP2 employs a clockwise navigation along the references in the pattern.

3.3 Search Plan Execution by a Pattern Matcher Interpreter

By conceptually following the corresponding part of [14], the interpreter uses a
match array for storing the matches, and the search plan for guiding the pattern
matching process. The size of the match array is determined by the number of
variables in the pattern. Each operation has a mapping, which identifies the slots
in the match array that correspond to the parameters of the operation.

When pattern matching is invoked, the initial match array is filled in by the
objects that are initially assigned to the variables, and it is passed on to the first
operation in the search plan. When an extension operation is executed, the struc-
tural feature of its constraint is navigated in forward (BF, BBF, BFF) or backward
(FB) direction depending on the operation adornment, then each accessed object
is type checked and bound to the corresponding free variable, and the execution
is passed on to the following operation for subsequent processing together with
the extended match array. A check operation simply passes on the unchanged
match array, if the actual check succeeded, and stops triggering further process-
ing steps otherwise. If a match array passes beyond the last operation, then it
represents a complete match, which is copied and stored in the result set.

This pattern matching (PM) process implements a depth-first traversal of a
PM state space, where a PM state represents a partial match that is produced
by an extension operation during pattern matching. The PM state space can
be described by a tree, whose root is the initial match, while internal nodes
and leaves correspond to partial and complete matches, respectively. Note that
each tree level is produced by a corresponding extension operation, and check
operations do not influence the tree structure as they do not bind any variables.

Example. Figure 4 depicts two PM state spaces, which are generated by
performing search plans SP1 and SP2 on Model 2, respectively. E.g., the second
level of Fig. 4(a) represents the partial matches that are prepared when navi-
gating along defines links from route ro1 to switch positions swp1, swp2, and
swp3, as prescribed by operation defines(RO,SWP) with adornment BF. Framed

8 Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr

leaves represent those complete matches that pass beyond the last check opera-
tion (only shown in Fig. 3(b)), while unframed ones fail this check. It is obvious
from Fig. 4 that SP2 is better than SP1, as SP2 traverses less PM states.

ROB IDXF SEF SWF SWPF

ro1 - - - -

ROB IDXF SEF SWF SWPB

ro1 - - - swp1

ROB IDXF SEF SWF SWPB

ro1 - - - swp2

ROB IDXF SEF SWF SWPB

ro1 - - - swp3

ROB IDXF SEF SWB SWPB

ro1 - - sw1 swp1

ROB IDXB SEB SWB SWPB

ro1 1 se1 sw1 swp1

ROB IDXB SEB SWB SWPB

ro1 2 se2 sw1 swp1

(1) defines(RO,SWP) BF B***F

(2) inPosition(SW,SWP) FB ***FB

(3) hasSensors(RO,IDX,SE) BFF BFF**

ROB IDXF SEF SWF SWPF

ro1 - - - -

ROB IDXB SEB SWF SWPF

ro1 1 se1 - -

ROB IDXB SEB SWF SWPF

ro1 2 se2 - -

ROB IDXB SEB SWB SWPF

ro1 1 se1 sw1 -

ROB IDXB SEB SWB SWPB

ro1 1 se1 sw1 swp1

(1) hasSensors(RO,IDX,SE) BFF BFF**

(2) observes(SE,SW) BF **BF*

(3) inPosition(SW,SWP) FB ***FB

(a) PM state space by performing SP1 on Model 2

ROB IDXF SEF SWF SWPF

ro1 - - - -

ROB IDXF SEF SWF SWPB

ro1 - - - swp1

ROB IDXF SEF SWF SWPB

ro1 - - - swp2

ROB IDXF SEF SWF SWPB

ro1 - - - swp3

ROB IDXF SEF SWB SWPB

ro1 - - sw1 swp1

ROB IDXB SEB SWB SWPB

ro1 1 se1 sw1 swp1

ROB IDXB SEB SWB SWPB

ro1 2 se2 sw1 swp1

(1) defines(RO,SWP) BF B***F

(2) inPosition(SW,SWP) FB ***FB

(3) hasSensors(RO,IDX,SE) BFF BFF**

ROB IDXF SEF SWF SWPF

ro1 - - - -

ROB IDXB SEB SWF SWPF

ro1 1 se1 - -

ROB IDXB SEB SWF SWPF

ro1 2 se2 - -

ROB IDXB SEB SWB SWPF

ro1 1 se1 sw1 -

ROB IDXB SEB SWB SWPB

ro1 1 se1 sw1 swp1

(1) hasSensors(RO,IDX,SE) BFF BFF**

(2) observes(SE,SW) BF **BF*

(3) inPosition(SW,SWP) BF ***BF

(b) PM state space by perform-
ing SP2 on Model 2

Fig. 4. Sample PM state spaces for Model 2

4 Dynamic Programming Based Search Plan Generation

As demonstrated in Fig. 4, the search plan has a large impact on the number of
produced matches, and consequently, on the performance of pattern matching.
As such, the production of a good search plan is an essential issue, and that is why
a quantitative characterization of operations and search plans is introduced for
optimization purposes by means of weights and costs. Note that a cost function
should ideally have a strong correlation with the size of the PM state space.

Operation weight calculation. An extension operation o is augmented by
a weight wo, which denotes the cost of performing the operation. In our approach,
a weight is defined as an average branching factor for that level of the PM state
space tree, which represents the operation execution, and is calculated using
the statistical data collected from the underlying model. The weights of ternary
operations with the BBF adornment are set to 1 (irrespective of the model), as
these operations never induce any branching in the matching process. For binary
and ternary operations with the corresponding BF and BFF adornments (forward
navigation), the structural feature referenced by the constraint of the operation is
determined, and the weight is the ratio of the link and object counters defined for
this structural feature and its source class, respectively. For binary operations
with FB adornment (backward navigation), the link counter of the structural
feature is divided by the object counter of the target class to define the weight.

Search plan costs. The search plan cost cl used in this paper estimates
the size of the PM state space tree via the cl =

∑l
j=1

∏j
i=1 woi expression [10],

which sums up the estimated number of PM states on a level-by-level basis
(excluding the root). To support an iterative search plan cost calculation, the

An Algorithm for Generating Model-Sensitive Search Plans for EMF Models 9

cost cl is complemented by a product value πl and the calculation is rearranged
as (cl, πl) = f(cl−1, πl−1, wol), where c0 = 0, π0 = 1, πl = πl−1wol , and

cl =

l∑
j=1

j∏
i=1

woi =

cl−1︷ ︸︸ ︷
wo1 + . . .+ wo1wo2 · · ·wol−1

+

πl︷ ︸︸ ︷
wo1 · · ·wol−1︸ ︷︷ ︸

πl−1

· wol︸︷︷︸
wol

= cl−1 + πl.

Algorithm data structures. To avoid unnecessary recalculations in our
approach, a state stores only the best of those search plans that share the same
adornment. A state S contains a search plan SPS with its adornment aS and
costs (cS , πS); and sequences of present extension OpeS , future extension OfeS ,

and future check OfcS operations2 (w.r.t. adornment aS), which are (i) pairwise
disjoint by definition, and (ii) ordered based on their weights. Two states are
adornment disjoint, if they have different adornments.

The initial state S0 has an empty operation sequence as its search plan, the
initial adornment a0 as its adornment, and its cost values are set as cS0

:=
c0, πS0

:= π0. Its operations are categorized w.r.t. the initial adornment a0.
Algorithm. An efficient search plan is generated by a dynamic program-

ming based algorithm (see Algorithm 1), which iteratively fills states into an
initially empty table T with n + 1 columns and k rows, where n is the number
of free variables |aS0 | in the adornment aS0 of the initial state S0 and k ≥ 1 is a
user-defined parameter that influences the trade-off between efficiency and opti-
mality of the algorithm. In general, the column T [i] stores the best k adornment
disjoint states (in an increasing cost order), which have i free variables in their
adornment, while T [i][j] is the jth best from these adornment disjoint states.

The two key features of the algorithm can be summarized as follows. (i) The
table only stores adornment disjoint states with the consequence of keeping only
the best search plan from those ones that share a common prefix. (ii) Addition-
ally, the table only stores a constant number of adornment disjoint states in each
column, immediately discarding costly search plans, which are not among the
best k solutions, and implicitly all their possible continuations. This avoids the
production of all search plans, which could alone result in the same (exponential)
complexity as the match calculation process.

First, the algorithm determines the number of free variables n = |aS0
| in

the adornment aS0
of the initial state S0 (line 1), and stores this state S0 in

T [n][1] (line 2). Then, the table is traversed by processing columns in a de-
creasing order based on the number of free variables in the state adornments
(lines 3–17). In contrast, the inner loop (lines 4–16) proceeds in an increasing
state cost order starting from the best state T [i][1] in each column T [i]. For
each present extension operation o in each stored state S (lines 6–15), the next
state S′ is prepared in a two-phase process, which (1) calculates the search plan
SPS′ , the adornment aS′ and the cost cS′ of the next state S′ immediately in
calculateNextState (lines 8–9), and (2) updates the search plan, and the se-
quences of present extension, future extension, and future check operations in

2 Note that past and present check operations need not be stored as they will be
immediately processed by the algorithm.

10 Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr

Algorithm 1 The procedure calculateSearchPlan(S0, k)

1: n := |aS0 | //number of free variables in the initial state adornment aS0 is calculated
2: T [n][1] := S0

3: for (i := n to 1) do
4: for (j := 1 to k) do
5: S := T [i][j] //current state S
6: for each (o ∈ Ope

S) do
7: // for each present extension operation
8: S′ := calculateNextState(S, o) // next state S′ is calculated
9: i′ := |aS′ | // next state S′ has i′ free variables in its adornment aS′

10: (a, c) := determineIndices(T [i′], S′)
11: if (checkInsertCondition(T [i′], S′,a, c)) then
12: updateOperations(S′, S, o)
13: insert(T [i′], S′,a, c)
14: end if
15: end for
16: end for
17: end for
18: return SPT [0][1]

a delayed manner in updateOperation (line 12), but only if the next state S′

passes the insert condition (line 11), which uses indices a and c for decision
making, which are calculated by determineIndices (line 10). In the latter case,
the complete next state S′ is inserted into the column T [i′] by using indices a
and c (line 13). Finally, the algorithm returns the search plan SPT [0][1] (line 18).

The procedure calculateNextState(S, o) partially calculates the new state
S′ from state S and operation o. The new search plan SPS′ is determined by
appending operation o to the search plan SPS of state S. The new adornment
aS′ is calculated by applying operation o on the adornment aS of state S (i.e.,

aS
o

=⇒ aS′). The new costs cS′ and πS′ are computed from the costs cS and πS
of state S, and the weight wo of operation o according to the cost function f .

The procedure determineIndices(T [i′], S′) calculates indices a and c. Index
a marks the position of that stored state T [i′][a], which has the same adornment
aS′ as state S′. Index a is set to k+1, if no such stored state exists. Index c marks
the position at which state S′ should be inserted based on its cost. Index c is set
to k+ 1, if state S′ is not among the best k adornment disjoint states. Formally,
c is the smallest index for which cS′ < cT [i′][c] holds (or cT [i′][c] = null).

The procedure checkInsertCondition(T [i′], S′,a, c) makes a positive deci-
sion, (1) if column T [i′] does not contain any states with the adornment aS′ of
new state S′ (a = k + 1), new state S′ is among the best k adornment disjoint
states (c < a), and a reachability analysis3 determines that the search plan SPS′

can be completed in a valid manner, or (2) if column T [i′] already stores a state
T [i′][a] at location a with the adornment aS′ of new state S′ (a < k + 1), and
this new state S′ is better than the stored state T [i′][a] (c ≤ a).

3 The reachability analysis is only discussed in [15] due to space limitations.

An Algorithm for Generating Model-Sensitive Search Plans for EMF Models 11

The procedure updateOperations(S′, S, o) processes all operations o∗ of

present extension OpeS , future extension OfeS , and future check OfcS sequences
of state S in an increasing weight order by also recategorizing these operations
with respect to the adornment aS′ of new state S′.

• Discard operations causing multiple checks. If operation o∗ originates
from the same constraint as the selected operation o, then operation o∗ is
discarded to avoid checking a constraint more than once. This can be easily
checked as each operation maintains a reference to its constraint.

• Discard past operations. If operation o∗ is a past operation, then it is
discarded as it violates the general operation applicability condition.

• Append present check operations to the search plan. If operation o∗

is a present check operation, then it is immediately appended to the search
plan to perform the corresponding checks as soon as possible.

• Append present extension, future extension, and future check op-
erations to the corresponding list. If operation o∗ is a present extension,
a future extension or a future check operation, then it is appended to the
corresponding operation sequence OpeS′ , O

fe
S′ , or OfcS′ of state S′, respectively.

As operation application can only change variables from free to bound, a past
operation can never be recategorized in any states derivable from S′, (hence, its
immediate disposal is justified) while a future operation might eventually become
a present or past operation in a later phase of the algorithm.

The procedure insert(T [i′], S′,a, c) determines m = min {a, k}, removes
state T [i′][m], shifts elements between T [i′][c] and T [i′][m − 1] downward, and
inserts state S′ at position c.

Example. The dashed box of Fig. 5 presents the contents of table T (with
3 empty fields in the second row) after running our algorithm on Model 2 with
initial adornment BFFFF. Each arrow represents the derivation of a new state,
which was produced by one execution of the innermost cycle (lines 6–15). States
with watermark A were temporarily stored in the table (but later discarded due
to the appearance of better states). The state with letter B failed the reachability
analysis, while states with watermark C were discarded as the corresponding
column had already contained a better state with the same adornment.

For instance, the first execution of the innermost cycle processes operation
hasSensors(RO,IDX,SE) with adornment BFF, whose weight is #hasSensors

#Route
=

2
1 = 2 as Model 2 has 2 hasSensors links, and 1 Route. The corresponding new
state is inserted into T [2][1] as its adornment BBBFF has 2 free variables, and
column T [2] is empty at this time. In this new state, both costs are 2, operations
with constraint hasSensors(RO,IDX,SE) are discarded, and all other operations
are recategorized w.r.t. adornment BBBFF.

5 Measurement Results

In this section, we quantitatively assess the effects of different cost models and
various configurations of our proposed search plan generation algorithm on the

12 Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr
T[4] (states w

ith 4 free variables)

T[3] (states w
ith 3 free variables)

T[2] (states w

ith 2 free variables)

T[1] (states w
ith 1 free variable)

T[0] (states w

ith 0 free variables)

1

0

B
F
F
F
F

1

3

B
F
F
F
B

3

2

B
B
B
F
F

2

3

B
B
B
B
F

1

4

B
B
B
B
B

1

defines(R

O
,S

W
P)

B
F

B
*
*
*
F

3
hasS

ensors(R
O

,ID
X,S

E
) B

F
F
 B
F
F
*
*

2
hasS

ensors(R
O

,ID
X,S

E
) B

F
F
 B
F
F
*
*

2
hasS

ensors(R
O

,ID
X,S

E
) B

F
F
 B
F
F
*
*

2

observes(S
E

,SW
)

B
F

*
*
B
F
*

1/2
observes(S

E
,SW

)
B
F

*
*
B
F
*

1/2

inP

osition(SW
,SW

P)
B
F

*
*
*
B
F

1

defines(R
O

,S
W

P)
B
B

B
*
*
*
B

hasS

ensors(R
O

,ID
X,S

E
) B

F
F
 B
F
F
*
*

2

inP
osition(SW

,SW
P)

F
B

*
*
*
F
B

1/3
observes(S

E
,SW

)
B
F

*
*
B
F
*

1/2
inP

osition(SW
,SW

P)
B
F

*
*
*
B
F

1

defines(R

O
,S

W
P)

B
F

B
*
*
*
F

3

hasS
ensors(R

O
,ID

X,S
E

) B
F
F
 B
F
F
*
*

2

defines(R
O

,S
W

P)
B
F

B
*
*
*
F

3

defines(R
O

,S
W

P)
B
F

B
*
*
*
F

3

inP

osition(SW
,SW

P)
F
B

*
*
*
F
B

1/3
observes(S

E
,SW

)
B
F

*
*
B
F
*

1/2
inP

osition(SW
,SW

P)
F
B

*
*
*
F
B

1/3

observes(S

E
,SW

)
B
F

*
*
B
F
*

1/2
hasS

ensors(R
O

,ID
X,S

E
) B

B
F
 B
B
F
*
*

1
inP

osition(SW
,SW

P)
B
F

*
*
*
B
F

1

hasS
ensors(R

O
,ID

X,S
E

) B
B
F
 B
B
F
*
*

1
observes(S

E
,SW

)
F
B

*
*
F
B
*

1

observes(S

E
,SW

)
F
B

*
*
F
B
*

1

inP

osition(SW
,SW

P)
B
F

*
*
*
B
F

1

hasS

ensors(R
O

,ID
X,S

E
) B

B
B
 B
B
B
*
*

hasS
ensors(R

O
,ID

X,S
E

) B
B
B
 B
B
B
*
*

observes(S

E
,SW

)
B
B

*
*
B
B
*

inP

osition(SW
,SW

P)
B
B

*
*
*
B
B

observes(S

E
,SW

)
B
B

*
*
B
B
*

observes(S
E

,SW
)

B
B

*
*
B
B
*

inP
osition(SW

,SW
P)

B
B

*
*
*
B
B

defines(R
O

,S
W

P)
B
B

B
*
*
*
B

inP

osition(SW
,SW

P)
B
B

*
*
*
B
B

inP
osition(SW

,SW
P)

B
B

*
*
*
B
B

defines(R
O

,S
W

P)
B
B

B
*
*
*
B

defines(R

O
,S

W
P)

B
B

B
*
*
*
B

2

4

B
F
F
B
B

1
8

B
B
B
F
B

6

defines(R

O
,S

W
P)

B
F

B
*
*
*
F

3
hasS

ensors(R
O

,ID
X,S

E
) B

F
F
 B
F
F
*
*

2

inP

osition(SW
,SW

P)
F
B

*
*
*
F
B

1/3
defines(R

O
,S

W
P)

B
F

B
*
*
*
F

3

observes(S

E
,SW

)
F
B

*
*
F
B
*

1
inP

osition(SW
,SW

P)
F
B

*
*
*
F
B

1/3

hasS

ensors(R
O

,ID
X,S

E
) B

F
F
 B
F
F
*
*

2
observes(S

E
,SW

)
B
F

*
*
B
F
*

1/2

hasS
ensors(R

O
,ID

X,S
E

) B
B
F
 B
B
F
*
*

1

hasS
ensors(R

O
,ID

X,S
E

) B
B
B
 B
B
B
*
*

observes(S

E
,SW

)
B
B

*
*
B
B
*

observes(S

E
,SW

)
B
B

*
*
B
B
*

inP
osition(SW

,SW
P)

B
B

*
*
*
B
B

c
S

a
S

π
S

9

B
B
B
F
B

6
6

B
B
B
B
B

2
S

P
S - search plan

defines(R

O
,S

W
P)

B
F

B
*
*
*
F

3
defines(R

O
,S

W
P)

B
F

B
*
*
*
F

3

O
s pe - present extension operations

hasS
ensors(R

O
,ID

X,S
E

) B
F
F
 B
F
F
*
*

2
inP

osition(SW
,SW

P)
F
B

*
*
*
F
B

1/3

O
s fe - future extension operations

hasS

ensors(R
O

,ID
X,S

E
) B

F
F
 B
F
F
*
*

2

O
s fc - future check operations

observes(S

E
,SW

)
B
B

*
*
B
B
*

inP
osition(SW

,SW
P)

F
B

*
*
*
F
B

1/3

observes(S

E
,SW

)
B
F

*
*
B
F
*

1/2

observes(S

E
,SW

)
B
B

*
*
B
B
*

6

B
B
B
B
B

3

inP
osition(SW

,SW
P)

B
B

*
*
*
B
B

hasS
ensors(R

O
,ID

X,S
E

) B
F
F
 B
F
F
*
*

2
5

B
F
B
B
B

1
observes(S

E
,SW

)
B
F

*
*
B
F
*

1/2

defines(R
O

,S
W

P)
B
F

B
*
*
*
F

3
defines(R

O
,S

W
P)

B
F

B
*
*
*
F

3

inP
osition(SW

,SW
P)

F
B

*
*
*
F
B

1/3
10

B
B
B
B
B

2

observes(S
E

,SW
)

F
B

*
*
F
B
*

1
hasS

ensors(R
O

,ID
X,S

E
) B

F
F
 B
F
F
*
*

2

defines(R
O

,S
W

P)
B
F

B
*
*
*
F

3

inP
osition(SW

,SW
P)

F
B

*
*
*
F
B

1/3

11

B
B
B
B
B

3

hasS
ensors(R

O
,ID

X,S
E

) B
F
F
 B
F
F
*
*

2

defines(R
O

,S
W

P)
B
F

B
*
*
*
F

3

observes(S
E

,SW
)

B
F

*
*
B
F
*

1/2

F
ig
.
5
.

E
x
ecu

tio
n

o
f

th
e

a
lg

o
rith

m
o
n

M
o
d
el

2
w

ith
k

=
2

An Algorithm for Generating Model-Sensitive Search Plans for EMF Models 13

runtime performance of the pattern matching process. More specifically, our
model-sensitive (MS) cost model was compared to a domain-specific (DS) ap-
proach, which latter used operation weights 1 and 10 for constraints representing
structural features with at most one (1) and arbitrary (*) multiplicity, respec-
tively. For configuring our algorithm, its parameter k was set to 1 and 2.

The pattern routeSensor of Fig. 2 and 10 models of different size from the
case study [12] were used for experimentation purposes. Pattern matching was
always restricted to a given Route in the model, which was assigned to variable RO
in the initial match and used as a starting point. The complete process (including
search plan generation) was repeated on each distinct Route.

Figure 6(a) presents the measured data. The first column indicates the model
identifier, the second and third columns the model size and the number of
distinct Routes in the model, respectively. The remaining columns show the
measured values for the different configurations, which independently involve
domain-specific (DS) and model-sensitive (MS) cost models, and algorithm pa-
rameter values k = 1 and 2. The PM columns denote the number of PM states
(i.e., elementary pattern matching steps), which was averaged over all distinct
Routes in the model. The SP columns show the cost of the (model-sensitive)
search plan that was considered the best by the search plan generation algo-
rithm and that was actually used to control pattern matching.

Sheet2

Model Routes DS (k=1) DS (k=2)
size PM PM SP PM SP PM

cT[0][1] # cT[0][1]
1 1450 20 1128.55 579.80 430 579.80 115 118.50
2 2601 40 885.15 456.75 349 456.75 102 104.78
4 5234 80 881.15 454.94 355 454.94 101 105.19
8 10627 160 912.64 470.81 361 470.81 102 106.29

16 21186 320 939.48 483.93 357 483.93 104 107.36
32 42202 640 936.80 482.44 353 482.44 104 107.21
64 85428 1280 960.83 494.65 362 494.65 105 108.51

128 171030 2560 955.14 491.77 362 491.77 105 108.78
256 339490 5120 943.89 486.02 356 486.02 104 107.93
512 685830 10240 953.93 491.18 364 491.18 106 109.18

MS (k=1) MS (k=2)

Page 1

(a) Comparison of PM state spaces

10

15

20

25

eq
ue

nc
y
of
 d
iff
er
en

ce
 in
te
rv
al
s

(%
)

DS is better
(negative difference)

MS is better
(positive difference)

0

5

‐100 ‐10 0 10 100 1000 10000

Re
la
ti
ve
 fr
e

PM state difference of DS and MS approaches (DS ‐MS)

(b) PM state difference profile

Fig. 6. Measurement results

Fig. 6(a) shows that model-sensitive search plans have the capability to
clearly outperform domain-specific ones (in this case on all test models by nearly
400 steps in average) when the pattern has many structural feature constraints
with arbitrary multiplicity. Our algorithm generated the same search plan for
the settings of the fifth and the seventh column, which explains the equal values
there. Fig. 6(b) presents the relative frequency distribution histogram of the PM
state differences of DS and MS approaches (with parameter k = 2) when these
differences are calculated on a route-by-route basis for each of the 2560 starting
points of model 128 (see the thick frames in Fig. 6(a)). Fig. 6(b) shows that
the DS approach was better by 6 to 10 steps in 1.875% of the 2560 cases (first

14 Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr

column), the MS search plan was faster by 562 to 1000 steps in nearly 10% of the
cases (last column), while a draw occured in 6.875% of the cases (fifth column).

In contrast to our preliminary expectations, which assumed that it was suf-
ficient to set parameter k only to 1 in practical cases, it can be seen that a more
thorough analysis with k = 2 can already pay off for small and simple patterns.

Unfortunately, the models of this case study were structurally similar, since
all the MS search plans (irrespectively of the different models) were the same
for a given parameter, which should not necessarily be the case. As further
general characteristics, the average wall clock time4 for search plan generation
was 50 µs (for all configurations), and a single PM step took 51 ns in average.
Neither the search plan generation, nor the pattern matching is affected by the
model-sensitive nature of the approach, as object and link counters are initialized
and incrementally updated, when the model is loaded and changed, respectively.

6 Related Work

Numerous useful model transformation tools are now surveyed, which internally
perform search plan driven pattern matching. A more detailed comparison of
pattern matcher engines is provided in [14].

Search plan driven pattern matchers. Fujaba [1] uses a search plan
generation strategy that solely exploits type and multiplicity restrictions, which
are derived from the metamodel. According to the used strategy, a navigation
along an edge with an at most one multiplicity precedes navigations along edges
with arbitrary multiplicity. Fujaba originally operated on top of a non-standard
model representation, but recent versions can handle EMF models as well.

Pattern matchers driven by model-sensitive search plans. Although
Fujaba [16] is a model-sensitive approach and runs on EMF models, it has only
a simple greedy strategy to control pattern matching. GrGen [9] and Viatra [10],
which employ model-sensitive search plans, operate on a non-standard model-
ing layer, which has several consequences. On one hand, these tools can use an
arbitrary and optimized model representation, which can already have an inte-
grated support for statistical data collection. On the other hand, if these tools
aim to manipulate EMF-compliant models, then they have to be converted by
import and export mechanisms, which (i) is not always possible for legacy EMF-
based systems, and (ii) results in the inherent duplication of the complete model,
which has a significant negative impact on the memory consumption. Since all
other similarities and distinctions of GrGen, Viatra, and our approach are re-
lated to the employed search plan generation algorithms, these are evaluated in
the following separate paragraphs.

Analysis of model-sensitive search plan generation algorithms. In
contrast to our dynamic programming search plan generation algorithm, GrGen

4 A 2.93 GHz Intel Pentium Dual-Core CPU with 3.7 GB RAM was used for all
measurements. A 64-bit Ubuntu 11.04 with kernel 2.6.32–33 and Java 1.6.0 20 served
as the underlying operating system and virtual machine, respectively. Measurements
that result in time values were repeated 50 times for each starting point.

An Algorithm for Generating Model-Sensitive Search Plans for EMF Models 15

and Viatra use graph based techniques, which are obviously sufficient for sorting
and filtering unary and binary constraints, which are the most widespread re-
striction types, but these solutions lack the integrated handling of general n-ary
constraints, which are required for ordered references and pattern composition
[5]. Both GrGen and Viatra support the construction of complex patterns from
simpler ones, but the calculation of matches along pattern composition is sched-
uled by a separate piece of code and not the core search plan algorithm.

Search plan costs are calculated from the operation weights as a sum
∑
i woi

in Viatra, and as a product
∏
i woi in GrGen, which can also be restructured

to a sum by using the logarithm operator (i.e.,
∑
i lnwoi). As a graph based

algorithm provides a provably optimal solution with these cost functions, they
are perfect for filtering operations, but completely useless for sorting due to the
insensitivity of these cost functions to the operation order.

A dynamic programming algorithm can cope with more complex cost func-
tions, and it can provably find the optimum, if the whole solution space is ex-
plored when k =

(
n
bn2 c
)
. For a smaller k, the optimality is no longer guaranteed

as the optimal search plan might have a prefix that is not among the best k
adornment disjoint solutions at some point, and thus, this solution is discarded.
In this sense, the selection of k can be considered as a trade-off between the
polynomial runtime of the algorithm and the proven optimality of the solution.

Finally, it must be emphasized that the overall success of model-sensitive
search plan generation algorithms highly rely on a strong correlation between
the search plan cost and the size of the actually traversed state space, which is
only a hypothesis that was thoroughly analyzed in [11], but not a provable fact.5

7 Conclusion

In this paper, we proposed a novel search plan generation algorithm based on
dynamic programming together with a model-sensitive cost function for EMF
models to speed up pattern matching in practice. Additionally, performance mea-
surements have been carried out in a hardware and JVM independent manner
to assess the effects of search plan generation on the pattern matching process.

Our future tasks are to repeat measurements in additional scenarios, to give a
quantitative performance comparison of our approach to other pattern matchers,
and to embed the pattern matching framework into different modeling tools.
Acknowledgements. The authors acknowledge the help of Benedek Izsó, István
Ráth and Dániel Varró in providing us the railway scenario for the measurements.

References

1. Geiger, L., Schneider, C., Reckord, C.: Template- and modelbased code generation
for MDA-tools. In Giese, H., Zündorf, A., eds.: Proc. of the 3rd International

5 This means that the execution of the optimal search plan does not necessarily result
in the traversal of the smallest state space.

16 Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr

Fujaba Days. (2005) 57–62 ftp://ftp.upb.de/doc/techreports/Informatik/

tr-ri-05-259.pdf.
2. Jouault, F., Kurtev, I.: Transforming models with ATL. In Bézivin, J., Rumpe,

B., Schürr, A., Tratt, L., eds.: Proc. of the International Workshop on Model
Transformation in Practice. Volume 3844 of LNCS., Springer (2005) 128–138

3. Anjorin, A., Varró, G., Schürr, A.: Complex attribute manipulation in TGGs
with constraint-based programming techniques. In Hermann, F., Voigtländer, J.,
eds.: Proc. of the 1st International Workshop on Bidirectional Transformations.
Electronic Communications of the EASST (2012) Accepted paper.

4. Rozenberg, G., ed.: Handbook of Graph Grammars and Computing by Graph
Transformation. Volume 1: Foundations. World Scientific (1997)

5. Horváth, Á., Varró, G., Varró, D.: Generic search plans for matching advanced
graph patterns. In Ehrig, K., Giese, H., eds.: Proc. of the 6th Int. Workshop on
Graph Transformation and Visual Modeling Techniques. Volume 6 of ECEASST.
(2007)

6. Zündorf, A.: Graph pattern matching in PROGRES. In Cuny, J., Ehrig, H., Engels,
G., Rozenberg, G., eds.: Proc. 5th Int. Workshop on Graph Grammars and Their
Application to Computer Science. Volume 1073 of LNCS., Springer (1996) 454–468

7. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the Unified Modeling Language. In Engels, G., Rozen-
berg, G., eds.: Proc. of the 6th International Workshop on Theory and Application
of Graph Transformation. Volume 1764 of LNCS., Springer (1998) 296–309

8. Rensink, A.: The GROOVE simulator: A tool for state space generation. In Pfalz,
J.L., Nagl, M., Böhlen, B., eds.: Proc. of the 2nd International Symposium on the
Applications of Graph Transformations with Industrial Relevance. Volume 3062 of
LNCS., Springer (2004) 479–485

9. Geiß, R., Batz, V., Grund, D., Hack, S., Szalkowski, A.M.: GrGen: A fast SPO-
based graph rewriting tool. In Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L.,
Rozenberg, G., eds.: Proc. of the 3rd International Conference on Graph Transfor-
mation. Volume 4178 of LNCS., Springer (2006) 383–397

10. Varró, G., Varró, D., Friedl, K.: Adaptive graph pattern matching for model trans-
formations using model-sensitive search plans. In Karsai, G., Taentzer, G., eds.:
Proc. of International Workshop on Graph and Model Transformation. Volume 152
of ENTCS., Elsevier (2005) 191–205

11. Batz, G.V., Kroll, M., Geiß, R.: A first experimental evaluation of search plan
driven graph pattern matching. In Schürr, A., Nagl, M., Zündorf, A., eds.: Proc.
of the 3rd International Symposium on the Applications of Graph Transformation
with Industrial Relevance. Volume 5088 of LNCS., Springer (2008) 471–486

12. Izsó, B.: Ontology based verification of system models. Master’s thesis, Budapest
University of Technology and Economics (2011) In Hungarian.

13. The MOGENTES project. http://www.mogentes.eu/
14. Varró, G., Anjorin, A., Schürr, A.: Unification of compiled and interpreter-

based pattern matching techniques. Technical Report 2922, Technische Universität
Darmstadt (March 2012) http://tuprints.ulb.tu-darmstadt.de/2922/.

15. Deckwerth, F.: Model-sensitive search plan algorithm for EMF models. Master’s
thesis, Technische Universität Darmstadt (January 2012)

16. Giese, H., Hildebrandt, S., Seibel, A.: Improved flexibility and scalability by inter-
preting story diagrams. In Margaria, T., Padberg, J., Taentzer, G., eds.: Proc. of
the 8th Int. Workshop on Graph Transformation and Visual Modeling Techniques.
Volume 18 of ECEASST. (2009)

