
GraMoT 2005 Preliminary Version

Adaptive Graph Pattern Matching
for Model Transformations using
Model-sensitive Search Plans1

Gergely Varŕo 2 Katalin Friedl 4

Department of Computer Science and Information Theory
Budapest University of Technology and Economics

H-1521 Budapest, Magyar tudósok k̈orútja 2., Hungary

Dániel Varŕo 3

Department of Measurement and Information Systems
Budapest University of Technology and Economics

H-1521 Budapest, Magyar tudósok k̈orútja 2., Hungary

Abstract

The current paper makes two contributions for the graph pattern matching problem of
model transformation tools. First, model-sensitive search plan generation is proposed for
pattern traversal (as an extension to traditional multiplicity and type considerations of ex-
isting tools) by estimating the expected performance of search plans on typical instance
models that are available at transformation design time. Then, an adaptive approach for
graph pattern matching is presented, where the optimal search plan can be selected from
previously generated search plans at run-time based on statistical data collected from the
current instance model under transformation.

Key words: graph transformation, adaptive graph pattern matching,
search plans.

1 Introduction

While nowadays model-driven system development is being supported by a wide
range of conceptually differentmodel transformation tools, nearly all of these tools

1 The first author was partially funded by the Péter Biźaki Puky Scholarship and the second author
was partially funded by the János Bolyai Scholarship.
2 Email: gervarro@cs.bme.hu
3 Email: varro@mit.bme.hu
4 Email: friedl@cs.bme.hu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Varró, Varró and Friedl

have to solve a common problem: the efficient query and manipulation of complex
graph-based model structures. Tools based on the visual, rule and pattern-based
formal paradigm ofgraph transformation (GT)[13,5] already integrate research
results of several decades. Informally, a graph transformation rule performs local
manipulation on graph models by finding a matching of the pattern prescribed by
its left-hand side (LHS) graph in the model, and changing it according to the right-
hand side (RHS) graph.

A recent survey [18] assessing the performance of graph transformation tools
following essentially different approaches on various benchmark examples revealed
that approaches (such as Fujaba [7], PROGRES [14] or GReAT [1]) compiling
transformation rules into native executable code(Java, C, C++) are very powerful
for model transformation purposes. The performance of the executable code is
optimized at compile time by evaluating and optimizing differentsearch plans[21]
for the traversal of the LHS pattern, which typicallyexploits the multiplicity and
type restrictionsimposed by the metamodel of the problem domain.

While in many cases, types and multiplicities provide a very powerful heuristics
to prune the search space, in practical model transformation problems, one has
further domain-specific knowledge on the potential structure of instance models of
the domain, which is typically not used in these approaches. Furthermore, in case
of intensive changes during the evolution of models, the characteristic structure of
a model may change as well, therefore a search plan generated a priori at compile
time might not be flexible and powerful enough.

The current paper makes two contributions for the graph pattern matching prob-
lem of model transformation tools. First, model-sensitive search plan generation is
proposed for pattern traversal (as an extension to traditional multiplicity and type
considerations of existing tools) by estimating the expected performance of search
plans on typical instance models that are available at transformation design time
(Sec.3). Then, an adaptive approach for graph pattern matching is presented, where
the optimal search plan can be selected from previously generated search plans at
run-time based on statistical data collected from the current instance model under
transformation (Sec.4).

It is worth emphasizing that the concepts of the first technique is directly appli-
cable to furtherly fine-tune the performance of the above mentioned compiler-based
GT approaches, while we believe that the second technique is a step towards effi-
cient incremental model transformation engines where the consistency of several
models need to be maintained while the different models are being manipulated.

Overview of the Approach
The proposed workflow of using these techniques is summarized in Fig.1.

Optim First, typical models of the domain are collected (from transformation de-
signers, end users, etc.) from which the optimizer generates one search plan with
the best average performance for each typical model.

Cdgen Still at transformation design time, executable (object-oriented) code is

2



Varró, Varró and Friedl

Fig. 1. Overview of the Approach

generated as the implementation of each search plan.

Adapt At execution time, statistical data is collected on-the-fly from the current
model under transformation. Based on this data, a pattern matching strategy (i.e.
the implementation of a search plan) is selected which yields the best expected
performance cost. It is important to ensure that model statistics causes little
memory overhead, and the cost of each pre-compiled search plan can also be
estimated rapidly.

Exec Finally, the transformation rule is applied on the instance model using the
selected pattern matching strategy.

The current paper focuses on stepsOptimandAdapt, while the detailed discus-
sion of stepCdgen(see [2]) is out of scope for the current paper.

2 Model manipulation by graph transformation

We first briefly introduce the main notions of metamodels and models, and then
show how these models can be manipulated by using graph transformation.

2.1 Metamodels

In order to present the concepts of models, metamodels and transformations, a
standard object relational mapping (see e.g. [16]) will be used throughout this
paper as a running example, which generates a relational database schema from a
UML class diagram.

Fig. 2. An extended metamodel for the object relational mapping

3



Varró, Varró and Friedl

Themetamodeldescribes the abstract syntax of a modeling language, which can
be formally represented by a type graph. The metamodels of UML class diagrams
and relational database schemas (following the CWM standard [12]) are depicted
in Fig. 2. Nodes (e.g.Schema, Table) of the type graph are calledclasses. A
class may haveattributesthat define some kind of properties of the specific class.
(E.g. the name of a table could be an attribute, but it is not depicted in Fig.2.)
Inheritancemay be defined between classes, which means that the inherited class
has all the properties its parent has, but it may further contain some extra attributes.
Note that the CWM standard derives database notions like tables, columns, etc.
from UML notions by inheritance (see Fig.2).

Associationslike EO, CF, KRF and UF define connections between classes.
Both ends of an association may have amultiplicity constraint attached to them,
which declares the number of objects that, at run-time, may participate in an asso-
ciation. We consider the most typical multiplicity constraints, which are (i) the at
most one (denoted by arrows or diamonds), and (ii) the arbitrary (denoted by line
ends without arrows and diamonds). Furthermore, we use one-to-one reference
edges (denoted by bidirectional dashed lines in instance models) connecting source
and target model nodes. Finally, we assume without the loss of generality that both
ends of associations are navigable.

2.2 Instance models with statistics

The instance model(or, formally, an instance graph) describes concrete systems
defined in a modeling language and it is a well-formed instance of the metamodel.
Nodes and edges are calledobjectsand links, respectively. Objects and links are
the instances of metamodel level classes and associations, respectively. Attributes
in the metamodel appear asslotsin the instance model. Inheritance in the instance
model imposes that instances of the subclass can be used in every situation, where
instances of the superclass are required.

Example 2.1 A well-formed instance model of this domain (shown in Fig.4(a))
has 4 instances of classClass. Generalization nodesg1 andg2 express thatc1 is a
superclass ofc2 andc2 is a superclass ofc3, respectively. Classc2 has already been
transformed by the object-relational mapping algorithm, which means that tablet2
is attached to classc2 via an edge of typeRef. Tablet2 has a single columncl2 and
a primary key constraintp2 referring to the columncl2.

We assume that the total number of nodes of a certain type (denoted by#type)
are maintained during the evolution of each model. Furthermore, we establish a
similar counter for edges of a certain type leading between nodes of the corre-
sponding types (denoted by#t edge(t src,t trg)). For instance, in Fig.4(a), #Class
= 5 (note that tables are classes as well according to the CWM metamodel), and
#CE(Generalization,Class) = 2. This model statistics will be heavily used both for
the search plan optimization and the search plan adaptation steps. Note that the
overhead caused by the maintenance of this data is relatively cheap: one option is
to use class-level (static) attributes and methods. In fact, in many cases, such de-

4



Varró, Varró and Friedl

tails are already provided by the execution environment (e.g. a relational DBMS, if
models are persisted in a database).

2.3 Graph transformation

Graph transformation [13,5] provides a pattern and rule based manipulation of
graph-based models. Each rule application transforms a graph by replacing a part
of it by another graph.

A graph transformation ruler = (LHS, RHS, NAC) contains a left–hand side
graphLHS, a right–hand side graphRHS, and negative application condition graph
NAC [9]. TheLHS and theNAC graphs are together called the preconditionPRE.

In the paper, we use the graphical representation initially introduced in [7]
where the union of these graphs is presented. Elements to be deleted are marked
by thedel keyword, elements to be created are labelled by thenew, while elements
in theNAC graph are denoted by theneg keyword.

The applicationof r to a host (instance) modelM replaces a matching of the
LHS in M by an image of theRHS. This is performed by (i) finding a matching of
LHS in M (by graph pattern matching), (ii) checking the negative application condi-
tionsNAC (which prohibit the presence of certain objects and links) (iii) removing
a part of the modelM that can be mapped toLHS but not toRHS yielding the con-
text model, and (iv) gluing the context model with an image of theRHS by adding
new objects and links (that can be mapped to theRHS but not to theLHS) obtaining
the derived modelM′. A graph transformationis a sequence of rule applications
from an initial modelMI .

Example 2.2 A single graph transformation rule (GeneralizationR in Fig. 3(a)) is
selected as an example for the paper, which handles the inheritance of classes. The
rule expresses that if there is already a database table (with a primary key column)
related to both the parent and the child class, then the rule becomes applicable,
and a new foreign key constraint is generated to express that the identifier of (an
instance of) a child should also be found in the table of the parent. The entire object
relational mapping formalized as graph transformation rules can be found in [19].

3 Search plan generation

It is well-known that the most critical step for the performance of graph transfor-
mation is the graph pattern matching phase. The pattern matching is determined
by only the precondition of a graph transformation rule, so we restrict our current
investigations only on this part of GT rules.

For this purpose, the generation ofsearch plansis a frequently used and efficient
strategy. Informally, a search plan defines the order of traversal (asearch sequence)
for the nodes of the instance model to check whether the pattern can be matched.

The search space traversed according to a specific search plan is represented as
a search space tree (SST)which contains all the decisions that can be made at a
certain point during pattern matching. The root node of a SST represents a partial

5



Varró, Varró and Friedl

matching as provided by fixing the input parameter nodes of rules. Each path of a
SST starting from the root node extends this partial matching by the matching of a
fresh (unmatched) node in the pattern.

In the current section, we present a model-specific search plan generation tech-
nique in the following way.

(i) First , we introduce the concept of search graphs to obtain an easy to manage
representation of GT rule preconditions in Sec.3.1.

(ii) Based on the statistics of typical models, model-specific search graphs are pre-
pared by adding numerical weights on the edges of search graphs (Sec.3.2).

(iii) The concept of search plans is defined together with a cost function that helps
estimating the performance of search plans and formulating when a search
plan is optimal in Sec.3.3.

(iv) Finally, two algorithms are presented that implement the generation of low
cost search plans for model-specific search graphs (Sec.3.4).

3.1 Search graphs

In the first phase of the search plan generation process, a search graph is created
for each pattern.

A search graphis a directed graph with the following structure. Each node of
the pattern is mapped to a node in the search graph. We also add astarting nodeto
the graph.

(i) Directed edges connect the starting node to every other search graph nodes.
When such an edge is selected in the search graph for a certain search plan,
then the graph pattern matching engine executing this search plan needs to
iterate over all objects in the model of the corresponding type.

(ii) Each edge of the pattern is mapped toa pair of edgesin the search graph
that connect the corresponding end nodes in both directions expressing bidi-
rectional navigability.5 A such edge can be selected by the pattern matching
engine only when the source pattern node is already matched. In this case,
the selection of such a search graph edge means a navigation along the corre-
sponding pattern edge towards the unmatched (target) pattern node.

Search graphs for negative application conditions can be handled similarly. In
this case, all the matched nodes (i.e. the ones that are shared withLHS graphs) have
to be considered as starting nodes. Negative application conditions are typically
checked after a complete matching has been found for theLHS, but simple checks
(e.g. like testing whether edges leaving the shared nodes in theNAC has zero
cardinality) can be immediately performed as soon as shared nodes are processed
during the traversal ofLHS.

The graph transformation rule of Ex.2.2and its corresponding search graph are
depicted in Fig.3(a)and3(b), respectively. Note that nodes and edges of the pattern

5 In case of navigability restrictions, only the navigable direction is generated.

6



Varró, Varró and Friedl

with add (or del) annotation have no corresponding elements in the search graph as
they denote nodes and edges to be added (or removed) in the updating phase.

(a)GeneralizationRule

G

C1 C2

T1 T2

P1 P2

Col1 Col2

(b) Search graph forGener-
alizationRule

Fig. 3. A sample graph transformation rule and its corresponding search graph

3.2 Model-specific search graphs

The initial step for search plan generation takes typical models from the problem
domain, e.g. typical UML class diagrams and corresponding database schemas in
our case. Node and edge statistics of these typical models are also available, so
weights can be defined for the edges of the search graph based on the statistical
data collected from a model.

A weighted search graphis a search graph with numeric weights on its edges.
(Weights are depicted as labels of edges in Figs.4(c) and4(d).) Informally, the
weight of an edge can be considered as an average branching factor of a possible
SST at the level, when the pattern matching engine selects the given pattern edge
for navigation. Such a choice for edge weights provides an easy to calculate cost
function that estimates the size of the search space.

Two models and their corresponding weighted search graphs are depicted in
Fig. 4. The weight calculation rule is demonstrated on the edge of Fig.4(c) (de-
noted by a dashed line), which corresponds to the traversal of pattern edger2 of type
Ref in theClass-to-Table direction. According to our statistics,Model1 contains 5
Classes (since aTable is aClass in CWM) and 1 reference edge betweenClasses
andTables, respectively. As a consequence, if the pattern matching engine matches
a Class to the pattern nodeC2 at some time during the execution, then the proba-
bility to find a validTable for pattern nodeT2 by navigating along a reference (Ref)
edge is 0.2 derived by the formula#Ref(Class,Table)/#Class. In case of navigation
in the opposite direction, the formula can be expressed as#Ref(Class,Table)/#Table,
thus the corresponding weight is 1.

7



Varró, Varró and Friedl

(a)Model1 (b) Model2

G

C1 C2

T1 T2

P1 P2

Col1 Col2

2

5

5

1 1

1

1

1

1 1

1

0.4

5

16

0.4

0.2

1

4

0.2
7

1

1
1 1

1

1

1 3 1

8
1

1

2 1 1

1
9

(c) Weighted search graph generated for the
GeneralizationRule from the statistics
of Model1 and a possible search plan

G

C1 C2

T1 T2

P1 P2

Col1 Col2

2

18

8

4 4

4 4

4 4

1

2

0.25 14

0.25

0.5

31 0.5
5

1

1
1 1

1

16

1 1

8
1

1

1

7

1

1
9

(d) Weighted search graph generated for the
GeneralizationRule from the statistics
of Model2 and a possible search plan

Fig. 4. Sample instance models and corresponding search plans

3.3 Search trees and plans

At this point, a weighted search graph is available for each typical model selected
by the domain engineer. In this section, first, we introduce the concept of search
trees and search plans based on weighted search graphs. Then a cost function is
defined for search plans to predict its performance.

A search treeis a spanning tree of the weighted search graph. As the starting
node has no incoming edges, all other nodes should be reachable on a directed
path from the starting node.6 Edges of a search tree are denoted by thick lines in
Figs.4(c)and4(d).

A search planis one possible traversal of a search tree. A traversal defines
a sequence in which edges are traversed. The position of a given edge in this
sequence is marked by increasing integer numbers writtenon the thick edges in
Figs. 4(c) and 4(d). Two sample search plans (with their corresponding search
trees) are shown in Fig.4(c)and4(d).

The cost of a search plan(denoted byw(P )) is the estimated number of tra-
versed nodes in the corresponding search space tree (SST). The number of nodes at
theith depth-level of the SST is the product of branching factors of edges up to the

6 The search tree concept can be generalized to handle the completion of partially matched patterns.
The generalized concept allows several starting nodes. In this case, a search tree is a forest rooted
at starting nodes and they should ensure reachability for all other nodes on edges of trees.

8



Varró, Varró and Friedl

level i in the search plan, which is
∏i

j=1 wj, wherewj is the weight of thejth edge
according to the order defined by the search plan. The total number of nodes can be
calculated by summing the nodes of the SST on a level-by-level basis, which yields
to a formulaw(P ) =

∑n
i=1

∏i
j=1 wj. By using this cost function for the search

plan of Fig.4(c) on the model of Fig.4(a)and for the search plan of Fig.4(d) on
the model of Fig.4(b), we get cost values 5.04 and 8.5, respectively.

As weights denote branching factors, the minimization of a search plan with
such a cost function results in a SST that is expected to be optimal in size. More-
over, such a search plan fulfills the first-fail principle criteria as it represents a SST
that is narrow at the levels near to its root.

3.4 Algorithms for finding optimal search plans

Two traditional greedy algorithms are adapted to solve the problems of finding (i) a
low cost search tree for a given weighted search graph and (ii) a low cost search plan
for a given search tree. Note that traditional algorithms use a different cost function
(i.e. the sum of weights) for determining the cost of a spanning tree, which means
that their solutions are not necessarily optimal in our case.

For finding a minimum search tree in a weighted search graph, the Chu-Liu /
Edmonds algorithm [3,4] is used. This algorithm searches for a spanning tree in a
directed graph that has the smallest cost according to a cost function defined as the
sum of weights. This algorithm can be outlined in Alg.1.

Algorithm 1 Given a weighted search graph with a starting node.
Step 1: Discard the edges entering the starting node.
Step 2: For each other node, select the incoming edge with the smallest weight. Let
the selectedn− 1 edges be the setS.
Step 3: If there are no cycles formed by the edges ofS, then the selected edges
constitute a minimum spanning tree of the graph and the algorithm terminates.
Otherwise the algorithm continues.
Step 4: For each cycle formed, contract the nodes in the cycle into a pseudo-node
k, and modify the weight of each edge entering nodej in the cycle from some node
i outside the cycle according to the following equation.

c(i, k) = c(i, j)− (c(x(j), j)−minl{c(x(l), l)})

wherec(x(j), j) is the weight of the edge in the cycle which entersj.
Step 5: For each pseudo-node, select the entering edge, which has the smallest
modified weight. Replace the edge, which enters the same real node inS by the
new selected edge.
Step 6: Go to step 3 with the contracted graph.

In case offinding a low cost search plan in a given search tree, a simple greedy
algorithm is used, which is sketched in Alg.2.

We do not state currently that these simple algorithms provide optimal solutions
also for our cost model, but best engineering practice suggests that if edges with

9



Varró, Varró and Friedl

Algorithm 2 Given a search tree with a starting node.
Step 0: Set the counter to 1 and letS be the set consisting of the starting node.
Step 1: Select the smallest tree edgee that goes out fromS.
Step 2: Set the label ofe to the value of the counter.
Step 3: Increment the counter by 1 and add the target node ofe to S.
Step 4: If the search tree still has a node that is not inS, then go back to Step 1.

weights giving the minimum sum are selected, then the search tree and the search
plan consisting of the same edges also have low cost when our special cost function
is employed. Simplicity and speed are further arguments in favour of the successful
application of such algorithms.

4 Adaptive Pattern Matching

Based on different typical models, several search plans were elaborated in Sec.3.
Then, for each search plan, a separate Java class is generated by a standard com-
pilation phase resulting in an executable Java code. A detailed description of this
code generation step can be found in [2].

We now present how this (or related) compiled graph transformation approach
can be made adaptive. Our solution for code generation uses the Strategy design
pattern [8] (see the figure below), which means that each Java class generated from
a search plan extends an abstract Strategy class, which has two basic functionalities.

(i) One method implements the actual pattern matching algorithm, which basi-
cally consists of a set of loops embedded into each other as defined in [2].

(ii) The other relevant functionality is the calculation of cost for the given pattern
matching strategy based on the statistics of the actual instance model available
at run-time. It is worth emphasizing that the complexity of cost calculation is
linear in the size a graph pattern.

The latter functionality suggests the way how
an adaptive behaviour can be achieved. AGraph-
Transformation class is created, which main-
tains references to strategies available for a given
rule and to the instance model. When a rule is to
be applied, this central class invokes the cost cal-
culation method of each strategy of the rule in turn
by also passing the actual model. Then the costs of
these strategies are compared and the strategy with

the smallest cost is executed. Since the cost of a single search plan may vary de-
pending on the current instance model, the relationship between costs of different
strategies may change as transformation progresses.

Example 4.1 For illustrating adaptivity, let us consider thatModel1 of Fig. 4(a) is
evolved intoModel2 of Fig. 4(b)as a result of some other rule applications.

Initially, whenModel1 is active, costs of search plans are 5.04 and 5.2, respec-

10



Varró, Varró and Friedl

tively, thus, the first plan is selected for execution. Since theGeneralizationRule
is not applicable forModel1, the failure of pattern matching is obviously detected
by both pattern matching strategies. On the other hand, note that the first strategy
recognizes earlier that the pattern cannot be matched.

When the model has been evolved intoModel2 by applying some other rules, a
new situation appears, since search plan costs are now 19.5 and 8.5, respectively.
As a result, the pattern matching engine executes the second strategy for this model.

It is worth pointing out that the target platform of our adaptive technique is not
traditional batch model transformations with explicit control structures (i.e. a rule
is to be applied as a well-defined step in the transformation flow). Our intention is
to exploit this technique for incremental model transformation providing the con-
sistent on-the-fly maintenance of models between multiple domains. Here, a large
set of rules should be applied independently at any phase of model evolution where
the optimal pattern matching strategy for a rule may vary during this evolution.
By following the first-fail principle, our approach facilitates the early detection of
pattern matching failure, which is highly demanded in incremental model transfor-
mations as the applicability of several rules has to be quickly determined. On the
other hand, this technique provides no solution for incremental query evaluation.

5 Related work

All graph transformation based tools use some clever strategies for pattern match-
ing. Since an intensive research has been focused to graph transformation for a
couple of decades, several powerful methods have already been developed.

While many graph transformation approaches (such as [11] in AGG [6], VIA-
TRA [17]) use algorithms based onconstraint satisfaction, here we focus on the
three most advanced compiled approaches withlocal searches using search plans.

Fujaba [10] performs local search starting from the node selected by the sys-
tem designer and extending the matching step-by-step by neighbouring nodes and
edges. Fujaba fixes a single, breadth-first traversal strategy at compile-time (i.e.
when the pattern matching code is generated) for each rule. Fujaba uses simple
rules of thumb for generating search plans. A sample rule is that navigation along
an edge with an at most one multiplicity constraint precedes navigations along
edges with arbitrary multiplicity.

PROGRES [21] uses a very sophisticated cost model for defining costs of ba-
sic operations (like enumeration of nodes of a type and navigation along edges).
These costs are not domain-specific in the sense that they are based on assumptions
about a typical problem domain on which the tool is intended to be used. Opera-
tion graphs of PROGRES, which are similar to search graphs in the current paper,
additionally support the handling of path expressions and attribute conditions. The
compiled version of PROGRES generates search plan at compile-time by a greedy
algorithm, which is based on the a priori costs of basic operations.

The pattern matching engine of GReAT [20] uses a breadth-first traversal strat-

11



Varró, Varró and Friedl

egy starting from a set of nodes that are initially matched. This initial binding is
referred to as pivoted pattern matching in GReAT terms. This tool uses the Strategy
design pattern for the purpose of future extensions and not for supporting different
pattern matching strategies like in our approach.

Object-oriented database management systems also use efficient algorithms
[15] for query optimization, but their strategy significantly differs as queries are
formulated as object algebra expressions, which are later transformed to trees of
special object manager operations during the query optimization process.

6 Conclusions

In the current paper, we first proposed a model-sensitive approach for generating
search plans for compiled graph transformation approaches. The essence of the
technique is to use a priori knowledge obtained from typical designer models. A
weighted search graph is derived from statistical data taken from these models.
Low cost search plans are defined by tailoring well-known greedy algorithms for
the cost function of a traversal.

Then we proposed an adaptive technique for switching between different pat-
tern matching strategies by exploiting run-time model statistics using the Strategy
design pattern. We expect to use this approach for incremental transformations that
consistently maintain models taken from different domains.

In the future, we plan to carry out a thorough experimental evaluation of our
approach. Initial experiments show that model-sensitive search plans perform at
least as well as existing approaches, but it is too early to make firm statements on
performance issues.

References

[1] Agrawal, A., G. Karsai, Z. Kalmar, S. Neema, F. Shi and A. Vizhanyo,The design of a
simple language for graph transformations, Journal in Software and System Modeling
(2005), in review.

[2] Balogh, A., G. Varŕo, D. Varŕo and A. Pataricza,Generation of platform-specific model
transformation plugins, submitted to ECMDA 2005.

[3] Chu, Y. J. and T. H. Liu,On the shortest arborescence of a directed graph, Science
Sinica14 (1965), pp. 1396–1400.

[4] Edmonds, J.,Optimum branchings, Journal Research of the National Bureau of
Standards (1967), pp. 233–240.

[5] Ehrig, H., G. Engels, H.-J. Kreowski and G. Rozenberg, editors, “Handbook on
Graph Grammars and Computing by Graph Transformation, volume 2: Applications,
Languages and Tools,” World Scientific, 1999.

[6] Ermel, C., M. Rudolf and G. Taentzer, “In [5], chapter The AGG-Approach: Language
and Tool Environment,” World Scientific, 1999 pp. 551–603.

12



Varró, Varró and Friedl

[7] Fischer, T., J. Niere, L. Torunski and A. Zündorf,Story diagrams: A new graph rewrite
language based on the Unified Modeling Language, in: G. R. G. Engels, editor,Proc.
of the 6th International Workshop on Theory and Application of Graph Transformation
(TAGT), LNCS1764(1998), pp. 296–309.

[8] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns: Elements of
Reusable Object-Oriented Software,” Addison-Wesley, 1995, 1st edition.

[9] Habel, A., R. Heckel and G. Taentzer,Graph grammars with negative application
conditions, Fundamenta Informaticae26 (1996), pp. 287–313.

[10] Klein, T., U. Nickel, J. Niere and A. Z̈undorf, From UML to Java and back again,
Technical report, University of Paderborn (2000).

[11] Larrosa, J. and G. Valiente,Constraint satisfaction algorithms for graph pattern
matching, Mathematical Structures in Computer Science12 (2002), pp. 403–422.

[12] Poole, J., D. Chang, D. Tolbert and D. Mellor, “Common Warehouse Metamodel,”
John Wiley & Sons, Inc., 2002.

[13] Rozenberg, G., editor, “Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1: Foundations,” World Scientific, 1997.

[14] Scḧurr, A., A. Winter and A. Z̈undorf, “In [5], chapter PROGRES: Language and
Environment,” World Scientific, 1999 .

[15] Straube, D. D. and M. T.̈Ozsu,Query optimization and execution plan generation in
object-oriented data management systems, Knowledge and Data Engineering7 (1995),
pp. 210–227.

[16] Ullman, J. D., J. Widom and H. Garcia-Molina, “Database Systems: The Complete
Book,” Prentice Hall, 2001.

[17] Varró, D., G. Varŕo and A. Pataricza,Designing the automatic transformation of visual
languages, Science of Computer Programming44 (2002), pp. 205–227.

[18] Varró, G., A. Scḧurr and D. Varŕo, Benchmarking for graph transformation, in: Proc.
of the 2005 IEEE Symposium on Visual Languages and Human-Centric Computing,
Dallas, Texas, USA, 2005, pp. 79–88.

[19] Varró, G., A. Scḧurr and D. Varŕo, Benchmarking for graph transformation,
Technical Report TUB-TR-05-EE17, Budapest University of Technology and
Economics (2005),http://www.cs.bme.hu/˜gervarro/publication/
TUB-TR-05-EE17.pdf .

[20] Vizhanyo, A., A. Agrawal and F. Shi,Towards generation of efficient transformations,
in: G. Karsai and E. Visser, editors,Proc. of 3rd Int. Conf. on Generative Programming
and Component Engineering (GPCE 2004), LNCS3286(2004), pp. 298–316.

[21] Zündorf, A., Graph pattern-matching in PROGRES, in: Proc. 5th Int. Workshop on
Graph Grammars and their Application to Computer Science, LNCS1073(1996), pp.
454–468.

13

http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf
http://www.cs.bme.hu/~gervarro/publication/TUB-TR-05-EE17.pdf

	Introduction
	Model manipulation by graph transformation
	Metamodels
	Instance models with statistics
	Graph transformation

	Search plan generation
	Search graphs
	Model-specific search graphs
	Search trees and plans
	Algorithms for finding optimal search plans

	Adaptive Pattern Matching
	Related work
	Conclusions
	References

