
AUTOMATIC GRAPH TRANSFORMATION IN SYSTEM VERIFICATION

Dániel Varró, Gergely Varró, András Pataricza
Technical University of Budapest,

Department of Measurement and Information Systems,
Budapest, 1111, Mûegyetem rkp. 3-11.

Hungary1

{pataric,varro}@mit.bme.hu

Abstract. The use of formal verification methods is essential in the design process of
dependable computer controlled systems. A complex environment should support the semi-
formal specification as well as the formal verification of the desired system. The efficiency
of applying these formal methods will be highly increased if the underlying mathematical
background is hidden from the designer. In such an integrated system effective techniques
are needed to transform the system model to different sort of mathematical models
supporting the assessment of system characteristics. The current paper introduces our
research results towards a general-purpose model transformation engine. This approach
results in yielding a provenly correct and complete transformation code by combining the
powerful techniques of graph transformation, planner algorithms and deductive databases.
Keywords: formal verification, graph transformation, visual languages, planner
algorithms, deductive databases.

1 Introduction

1.1 Formal Verification in Software Design

During the design process of dependable computer controlled systems verifying whether the system
fulfils its requirements or needs some re-design is indispensable at each level of abstraction and after each
step of system model refinement in order to spare time and resources.

When such a refinement step is performed, system characteristics like dependability, timeliness and
correctness are assessed. The characteristics are subsequently confronted with requirements, therefore
only provenly correct refinement steps are allowed.

Several sophisticated mathematical tools exist supporting the assessment of these system parameters (e.g.
SPIN model checker). However, they require special mathematical skills and a thorough knowledge of
the underlying mathematics for their use. Moreover, additional obstacles (such as problems in the
consistency and faithfulness of different sort of models) arise due to the lack of an automated
transformation and back-annotation between the mathematical and designer models.

These problems of consistency and faithfulness are planned to be eliminated by the European ESPRIT
project HIDE (High-level Integrated Design Environment for Dependability) [2] with the participation of
the Department of Measurement and Information Systems at Technical University of Budapest, Pisa
Dependable Computing Center, University of Erlangen and two UML provider enterprises.

1.2 HIDE

The HIDE project (regarded as a novel approach concerned with the process of dependable system
design) aims at the integration of the textual system specification and system model into a semi-formal
system description based on the Unified Modeling Language (UML), hence bridging the gap between a
practice-oriented CASE methodology and sophisticated mathematical tools.

1 This work was supported by the Hungarian National Scientific Foundation under contract OTKA T030804.

Formal verification, quantitative and timeliness analysis tools will be made available to the designer
within the design environment, and these mathematical models are planned to be derived automatically
from the user-end UML specification.

The system model is stored in a central HIDE repository (a conventional relational database) for gaining
an open, tool-independent architecture due to this architectural redundancy.

An overview of the designated architecture of HIDE can be observed later in Fig. 1.

1.3 Mathematical Model Transformation

The step when the input language of a mathematical tool is generated from the UML model repository is
called mathematical model transformation.

Several semi-formal transformation algorithms have already been designed and implemented for e.g.
formal verification of functional properties [5] and quantitative analysis of dependability attributes [3,4].

The inverse direction of model transformation (referred as back-annotation) is of immense importance if
some design faults (e.g. a deadlock) are detected during the mathematical analysis. After an automated
back-annotation these problems appear in the UML system model allowing the designer to fix these
conceptual bugs.

Unfortunately, the conventional (i.e. heuristic) way of model transformation as used in the pilot phase of
HIDE raises several problems due to the large number of target mathematical analysis tools. Moreover,
HIDE is an open environment in order to support user-defined checks. This way an integration possibility
of transformations has to be provided to the end-user.
• No unique and formal description of transformation algorithms exists therefore their implementation

was hand-written in the form of PL/SQL scripts and rather ad hoc (inconvenient for implementing
complex transformations).

• The formal verification of these scripts (aiming to prove correctness and completeness) was almost
impossible, hence their quality is a bottleneck of the entire architectural approach.

• Each model has to be verified individually disregarding from the same underlying algorithmical
skeletons.

1.4 Visual Automated Graph Transformation

In the following an alternate solution will be sketched based on the theoretical and practical results of
graph transformation, deductive databases and planner algorithms in order to obtain a system
supporting the graphical design and verification of similar sort of model transformation with the
capability of automatic generation of transformation code.

Such a solution undoubtedly increases the level of confidence that can be put on a system since the
derivation of the mathematical models (used as inputs for different formal verification tools) is provenly
correct and complete, moreover, tiresome implementation steps are also obsolete.

Fault-tolerant elements added to the system from a pre-defined set can be evaluated from several aspects
by well-known formal analysis techniques, thus highly improving dependability. Moreover, the back-
annotation of mathematical analysis results is also supported offering a possible candidate for HIDE
architecture.

Figure 1. gives an overview of the designated architecture of HIDE. In the rest of the report the system
components are discussed shortly.

2 Transformation System Components

2.1 Graph Transformation and Visual Languages

Graphs are well-known and frequently used means to represent system states, complex objects, diagrams
and networks like e.g. flowcharts, entity-relationship diagrams or Petri nets [1]. Rules have proved to be
extremely useful for describing computations by local transformation. Areas like language definition,

logic and functional programming, algebraic specification etc. are prominent witnesses of the role of
rules.

Fig.1. Proposed architectural framework of the HIDE environment

Graph transformation (also known as graph rewriting) combines the advantages of both, graphs and
rules, into an individual computational paradigm. A graph transformation rule is a special pair of
pattern graphs where the instance defined by the left-hand side is substituted with the instance defined by
the right-hand side when an applying such a rule (similarly to the well-known grammar rules of Chomsky
in computational linguistics).

The theory and application of visual languages is also based on the strong paradigm of graph
transformation. Visual languages (defined by special graph transformation rules, usually called graph
grammars) use coupled graph layers (logical and graphical) for supporting the visual information
contained in graphical diagrams (such as UML statecharts or Petri nets).

Visual languages are used in our case for defining both the source and target models of a transformation,
moreover, the transformation rules are also a special sort of graph grammar rules, referred as Tranlation
Rule Description (TRD) in Fig. 1.

The visual transformation rules are local in a sense that they handle only a small amount of model
elements at a time therefore the designer does not need to concentrate on the entire transformation
problem.

2.2 Planner algorithms

Planner algorithms (e.g. in [6]) are a sort of hierarchical search algorithms widely used in artificial
intelligence. According to the "divide and conquer" principle they divide the original problem into
smaller parts before trying to solve them. Finally, these partial solutions are merged together resulting in a
solution of the original problem.

The input of these algorithms are expressions describing the initial and goal state (usually first-order
logic formulae) while the output is a correct plan, which is a sequence of permitted operations providing
a trajectory from the initial state to the goal state.

The operations are structured as a precondition and an action part, where preconditions describe the
(positive or negative) conditions that must held before performing the specific operation. The action part
describes the necessary changes to the next state of the state-space.

Planner algorithms also play a major role in a transformation system as the two most essential questions
that arise in connection with a given set of transformation rules can be answered by means of planners.
• The correctness problem refers to whether the application of transformation rules always yields a

syntactically correct target model or not. (Naturally, transformation designers are responsible for
semantical correctness)

• The completeness problem refers to whether the given set of rules is complete, i.e., each situation
allowed in the source (input) model is covered by a corresponding rule.

As planner algorithms operate constructively, any problems arisen in connection with correctness and
completeness are indicated immediately. Therefore the construction of a novel set of rules by adding or
altering one or several rules in the previous set is simple and convenient.

As a consequence, the entire transformation is based on theoretical background thus highly increasing the
faithfulness and consistency of the target mathematical model.

2.3 Deductive Databases

Since the HIDE architectural framework is based on storing system and mathematical models in a central
relational repository our designated transformation system has to operate on these databases. As a
consequence, a model transformation proceeds between the source and target database tables, narrowing
our possibilities of system and mathematical model description.

However, as transformation rules of large complexity manipulate the source and target models therefore
intelligent and effective database search algorithms are necessitated.

In order to fulfil both requirements (complex searches on relational databases) a deductive database was
implemented by using Prolog hence obtaining a purely declarative data manipulation language with
backtracking yielding a legible and verifiable transformation code.

A suitable set of database tables can automatically be derived from the visual grammar and
transformation rules (in an SQL DDL format).

3 Concluding remarks

In the current paper our research towards a general-purpose transformation engine performing
mathematical model transformations has been summarized. For this specific purpose we integrated the
powerful techniques of visual languages, planner algorithms and deductive databases in order to obtain a
provenly correct and complete and automatically generated transformation code.

A sample transformation has already been implemented and investigated as a structural benchmark of
HIDE environment (considering its behaviour in time for source models of medium size), with promising
results. A source model of 2000 database objects was transformed within 15 minutes. Since the analysis
of a user model by mathematical tools using our transformed model as input must handle extremely large
problem spaces, therefore, according to our experiments, this model transformation does not take more
than a few percentage of the total time.

However, our research is still in an early phase, such a transformation system supporting formal
verification of the model transformation process seems to be a promising candidate for the HIDE
environment aiming at an integrated, easy-to-understand handling of both system and mathematical
models in order to increase dependability.

References

[1] ANDRIES, M. et al.: Graph transformation for specification and programming, Science of Computer
Programming 34 (1999) 1-54.

[2] BONDAVALLI, A. - DAL CIN, M. - LATELLA, D. - PATARICZA A.: High-level Integrated Design
Environment for Dependability. Invited paper to {WORDS'99}, 1999 Workshop on Real-Time Dependable
Systems (1999).

[3] BONDAVALLI, A. - MAJZIK, I. - MURA, I.: Automatic dependability analyses for supporting design
decisions in UML, (1998).

[4] DAL CIN, M. - HUSZERL, G. - KOSMIDIS K.: Evaluation of safety-critical system based on guarded
statecharts. In Proc. HASE'99, 4th IEEE International Symposium on High Assurance Systems Engineering,
(1999).

[5] LATELLA, D. - MAJZIK, I. - MASSINK M.: Towards a formal operational semantics of UML Statechart
Diagrams. In Proc, IFIP TC6/WG6.1, 3rd International Conference on Formal Methods for Open Object-
Oriented Distributed Systems, February, (1999).

[6] WELD, D.: An introduction to least commitment planning. AI Magazine, (1994).

