Languages and Automata (Gyula Katona) December 8., 2016, 18:15-19:15 Neptun code: Name:

Midterm 3

1. (a) Define the language class \mathcal{R} (i.e. recursive languages):
(b) Define the language class $\operatorname{TIME}(t(n))$ (where $t(n)$ is a function):
(c) Prove that $\operatorname{TIME}(t(n)) \subseteq \mathcal{R}$ holds for any function $t(n)$:
2. Let L be the language of all words $w \in \sum^{*}$ for which M_{w} (the TM described by w) exists and M_{w} stops on the empty input in at most 100 steps. Prove that $L \in \mathcal{R}$.
3. Let w be a Turing Machine description and $s \in \Sigma^{*}$ any word. Construct a Turing Machine $M_{w_{s}}$ such that $L\left(M_{w_{s}}\right)=\emptyset$ holds if and only if $s \notin L\left(M_{w}\right)$.
(Using this construction it is easy to prove that the following problem is undecidable (the corresponding language is $\notin \mathcal{R}$):
Given a Turing machine, M, is it true that $L(M)=\emptyset$?)

Neptun code:
4. Let $L=\left\{a^{n} b a^{n} \mid n \geq 0\right\}$.

Is it true that:
(a) $L \in \mathcal{R}$?
(b) $L \in N P$?
(c) $L \in S P A C E\left(n^{2016}\right)$?

Prove your claims.

