Languages and Automata (Gyula Katona) December 8., 2016, 18:15-19:15

Neptun code: Name:

Midterm 3

1. (a) Define the language class \mathcal{R} (i.e. recursive languages):

(b) Define the language class TIME(t(n)) (where t(n) is a function):

(c) Prove that $TIME(t(n)) \subseteq \mathcal{R}$ holds for any function t(n):

Neptun code:

Name:

2. Let L be the language of all words $w \in \Sigma^*$ for which M_w (the TM described by w) exists and M_w stops on the empty input in at most 100 steps. Prove that $L \in \mathcal{R}$.

Neptun code:

Name:

3. Let w be a Turing Machine description and $s \in \Sigma^*$ any word. Construct a Turing Machine M_{w_s} such that $L(M_{w_s}) = \emptyset$ holds if and only if $s \notin L(M_w)$.

(Using this construction it is easy to prove that the following problem is undecidable (the corresponding language is $\notin \mathcal{R}$): Given a Turing machine, M, is it true that $L(M) = \emptyset$?)

Neptun code:

Name:

- 4. Let $L = \{a^n b a^n \mid n \ge 0\}$. Is it true that:
 - (a) $L \in \mathcal{R}$?
 - (b) $L \in NP$?
 - (c) $L \in SPACE(n^{2016})$?

Prove your claims.