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Abstract (see, for example, [5, 6, 7, 15, 24, 28]). Formally, the con-
straint language can be described as a set of relations on the
Many important combinatorial problems can be modiomain. The other direction is to restrict teucturein-
elled as constraint satisfaction problems, hence identfy duced by the constraints on the variables (see, for example,
polynomial-time solvable classes of constraint satigbact [10, 11, 13, 16, 25]). The present work goes into this di-
problems received a lot of attention. In this paper, we amection; our main contribution is the identification of aunat
interested in structural properties that can make the pmblral new class of structurally tractable constraint satisfen
tractable. So far, the largest structural class that is knoproblems.
to be polynomial-time solvable is the class of bounded hy- The hypergraphof an instancgV, D, C) hasV as its
pertree width instances introduced by Gottlob et al. [2GJertex set and for every constraintGha hyperedge that con-
Here we identify a new class of polynomial-time solvablgsts of all variables occurring in the constraint. For asld
instances: those having bounded fractional edge cover nuhhypergraphs, we let €(H) be the class of all instances
ber. whose hypergraph is contained®# The central questions
Combining hypertree width and fractional edge covés for which classe${ of hypergraphs the problemsg(H)
number, we then introduce the notion of fractional hypds tractable. Most recently, this question has been studied
tree width. We prove that constraint satisfaction problerf& 10]. It is worth pointing out that the corresponding ques
with bounded fractional hypertree width can be solved fion for the graphs (instead of hypergraphs) of instanges, i
polynomial time (provided that a the tree decompositionvghich two variables are incident if they appear together in a
given in the input). We also prove that certain parameteonstraint, has been completely answered in [22, 23] (under
ized constraint satisfaction, homomorphism, and embeddthe complexity theoretic assumption FBZ W[1]): For a
problems are fixed-parameter tractable on instances hawtagsG of graphs, the corresponding problensrg) is in
bounded fractional hypertree width. polynomial time if and only ifG has bounded tree width.
This can be generalized tosg(H) for classesH of hy-
pergraphs obounded hyperedge sitthat is, classes( for
1. Introduction whichmaxle| | 3H = (V,E) € H: e € E} exists). It
follows easily from the results of [22, 23] that for all class
Constraint satisfaction problems form a large class of dem#{ of bounded hyperedge size,
natorial problems that contains many important “real-aorl )
problems. An instance of a constraint satisfaction problér]nl) Cs”(H) € PTIME <« 7 has bounded tree width
consists of a sev” of variables, a domai®, and a seC’  (under the assumption FPZ W[1]).
of constraints. For example, the domain may{bel }, and It is known that (1) does not generalize to arbitrary
the constraints may be the clauses of a 3-CNF-formula. Tdigsses+ of hypergraphs (we will give a very simple coun-
objective is to assign values iP to the variables in suchterexample in Section 2). The largest known family of
a way that all constraints are satisfied. In general, caflasses of hypergraphs for whicts&) is in PTIME con-
straint satisfaction problems are NP-hard; considerable ists of all classes of boundégpertree widt20, 21, 19].
forts, both practical and theoretical, have been made t® idgiypertree width is a hypergraph invariant that generalizes
tify tractable classes of constraint satisfaction proldem  acyclicity [4, 14, 30]. It is a very robust invariant; up to a
On the theoretical side, there are two main directions tgonstant factor it coincides with a number of other natural
wards identifying polynomial-time solvable classes of cofhvariants that measure the global connectivity of a hyper-
straint satisfaction problems. One is to restrict¢bestraint graph [2]. On classes of bounded hyperedge size, bounded
language that is, the type of constraints that are allowegypertree width coincides with bounded tree width, but in
general it does not. It has been asked in [8, 10, 18, 22]
" FInstitut fur Informatik, Humboldt-Universitat zu Benlj Unter den whether there are classes of unpounded _hype_rtree width
Linden 6, 10099 Berlin, Germany. such that GP(H) € PTIME. We give an affirmative answer
{gr ohe, dmar x}@ nf or mat i k. hu- berlin. de to this question.



Our key result states thata®(H) € PTIME for all Theprimal graphof a hypergraptH is the graph
classedt of boundedractional edge cover numbeA frac- _
tional edge coveof a hypergraptd = (V, E) is a map- H = (V(H),{{v,w} | v# w, there exists an
pingy : £ — [0,00) suchthaty® . . %(e) > 1 forall e € E(H) suchthaf{v, w} Ce}).
v € V. The numbery_ . ¢(e) is theweightof ¢). The . )
fractional edge cover number (H) of H is the minimum A hypergraphH is connectedf H is connected. A sef’ C
of the weights of all fractional edge coversHt It follows Vv (H) is connected (inH) if the induced subhypergraph
from standard linear programming results that this minimufhlC] is connected, and eonnected componeof I is a
exists and is rational. Furthermore, it is easy to constriig@ximal connected subset B /). A sequence of vertices
classes of hypergraphs that have bounded fractional ed§éH is apathof H ifitis a path of . .
cover number and unbounded hypertree width (see Exam- A tree decompositiorof a hypergraphH is a tuple
ple 8). (T, (Bt)tev(r)), WhereT is a tree and By ),cv (1) a family

We then start a more systematic investigation of the iff subsets oV (H) such that for each € E(H) there is a
teraction between fractional covers and hypertree widta. Wodet € V(T') such thate C B, and for each € V(H)
propose a new hypergraph invariant, freetional hypertree the set{t € V/(T') [ v € B} is connected iff". The setsB;
width, which generalizes both the hypertree width and fra@(e called th@agsof the decomposition. Theidthof a tree-
tional edge cover number in a natural way. Fractional hyp@&COMPOSItionT, (B).ev (r)) is max(|By| | t € V ()} —1.
tree width is an interesting hybrid of the “continuous” frac hetree widthtw(H ) of a hypergrapt is the minimum of
tional edge cover number and the “discrete” hypertree widti€ Widths of all tree-decompositions &f. It is easy to see
We show that it has similarly nice properties as hypertrétat WH) = tw(H) for all H. . .
width. In particular, we give an approximative game charac- It Will be convenient for us to view the trees in tree-
terization of fractional hypertree width similar to the cha decompositions as being rooted and directed from the root
terization of tree width by the “robber and cops” game [29%‘.7 the leaves. For a nodein a (rooted) treel” =
Furthermore, we prove that for classksof bounded frac- (V(T), E(T)), we letT; be the subtree rooted gtthat is,
tional hypertree width, the problens®(#) can be solved in the .|nduced subtree &f whose vertex set is the set of all
polynomial time provided that a fractional hypertree decor¥ertices reachable from _
position of the underlying hypergraph is given togethehwit ~ We say that a clask of hypergraphsis dfounded tree
the input instance. We leave open the question of whether¥égithif there is ak such that twH) < k forall H € H. We
fixed k there is a polynomial-time algorithm that computé4se @ similar terminology for other hypergraph invariants.

a fractional-hypertree decomposition of widthof a given 2.2. Constraint satisfaction problems. A CSP instance

hypergraphH of fractional hypertree width. ; . - . .
We also discuss the problem of evaluating conjuncti\'/Sea triplel = (V. D, C).' whereV_ Is a set ofvanabl_es D
IS a set called thelomain andC' is a set ofconstraintsof

database queries and the homomorphism problem for rela- ;
tional structures, which are both known to be equwalent(ioe form{(vy, ..., vk), ), wherek > 1 andR is ak-ary

constraint satisfaction problems, and the embedding pmblzyel'a‘t}oiogDs.uﬁhstcr)]I;: If% r:t;)"ﬂ;irl]rs]it;g(éjvls an a:}ss)lg}g;r}ﬁnt
for relational structures. We show that all these probler;ts,'we have(a(v:) a(vy)) € R Lyw-e ks
as well as constraint satisfaction problems parametelige 17520 BAVk '

the number of variables, afixed parameter tractabléor Constraints are specified by explicitly enumerating all
instances of bounded fra’ctional hypertree width possible combinations of values for the variables, thalis,

tuples in the relatiorR. Consequently, we define tis&zeof

a constraint = {(v1,...,v;), R) € C to be the number
lle]l = k + k- |R|. Thesizeof an instancd = (V, D, C)

is the numbet|I|| = [V[ + [D| + > ..o llcl|. Of course
there is no need to store a constraint relation repeatedly if
2.1. Hypergraphs. A hypergraphis a pair H = occurs in several constraints, but this only changes the siz

(V(H), E(H)), consisting of a se¥'(H) of verticesand a PY & polynomial factor. _ o
set E(H) of subsets off’ (H), the hyperedgesf H. We Let us make a few remarks about this explicit represen-

always assume that hypergraphs have no isolated vertj¢@4on of the constraints. There are important specialsase
that is, for everyy € V(H) there exists at least one e Of constraint satisfaction problems where the constrairgs

E(H) such thaw € e. stored implicitly, which may make the representation expo-
For a hypergraphi and a setY C V(H), thesub- nentially more succinct. Examples are Boolean satisfiabil-
hypergraph off induced byX is the hypergraptif[X] = ity where the constraint relations are given implicitly thy

(X,{enX |ec E(H)}). WeletH \ X = H[V(H)\ X]. clauses of aformulain conjunctive normal form, or systems
of arithmetic (in)equalities, where the constraints anegi

2. Preliminaries



implicitly by the (in)equalities. However, our represdiga 3. A Polynomial-time algorithm for CSPs with bounded

is the standard “generic” representation of constrairissat fractional cover number

faction problems in artificial inntelligence (see, for exam

ple, [12]). An important application where the constrainta this section we prove that if the hypergraphy of a

are always given in explicit form is the conjunctive quer€SP instancd has fractional edge cover numbgr(H;),

containment problem, which plays a crucial role in databasen it can be decided ifiZ||”" (#1)+°(1) time whetherl

query optimization. Kolaitis and Vardi [25] observed that has a solution. Thus it is a class of hypergraphs with

can be represented as a constraint satisfaction problai, dounded fractional edge cover number (that is, there is a

the constraint relations are given explicitly as part of ohe constant- such thatp*(H) < r for every H € H), then

the input queries. A related problem from database syste@&(H) € PTIME.

is the problem of evaluating conjunctive queries (cf. Theo- Actually, we prove a stronger result: A CSP instarice

rem 17). Here the constraint relations represent the talfhes at mosfI|”" (1) solutions and all the solutions can be

of a relational database, and again they are given in eitplienumerated in timg1||»" (H)+0(1),

form. The proof relies on a combinatorial lemma known as
Observe that there is a polynomial-time algorithm d&hearer's Lemma. We use Shearer’s lemma to bound the

ciding whether a given assignment for an instance is a satwimber of solutions of a CSP instance; our argument resem-

tion. bles an argument that Friedgut and Kahn [17] used to bound
The hypergraph ofthe CSP instancé = (V,D,C) the number of subhypergraphs of a certain isomorphism type

is the hypergraptH; with vertex setV and a hyperedgein a hypergraph. The second author recently applied similar

{v1,..., v} for all constraints/(v,...,vx), R) in C. For ideas in a completely different algorithmic context [26].

every clasg{, we consider the following decision problem:
Lemma 2 (Shearer's Lemma [9]).Let H = (V,FE) be a

hypergraph, and letd;, A,, ..., A, be (not necessarily
distinct) subsets of” such that eachy € V is contained
CsP(H) in at leastq of the A;’s. Denote byE; the edge set of the
Instance: A CSP instancd with H; € H. induced hypergrapit/ [A;]. Then
Problem: Decide if I has a solution.

p
Bl < [ 1B
i=1

If the class™ is not polynomial-time decidable, we view

this as a promise problem, that is, we assume that we are Note that we admit empty hyperedges. In particular, if

only given instanced with H; € M, and we are only ¢ N 4i = 0 for somee € E andi < p, thenl) € E;.

interested in algorithms that work correctly and efficignt€mma 2 is easy to see in the special case whenl and

on such instances. {A1,...,A,} is a partition ofV. The proof of the general
We close this section with a simple example of a claggse is based on an entropy argument.

of hypergraphs of unbounded tree width such thab@{) | arnma 3. A CSP instanced has at most| I]|*" (1) solu-
is tractable. tions.

Example 1. Let H be that class of all hypergraplié that proof: Consider a CSP instancé = (V, D,C) with
have a hyperedge that contains all vertices, thatid]) € v = {4,,...,v,}. Let H be a hypergraph ovey x
E(H). Clearly,H has unbounded tree width, because the where the edges correspond to the solutions of the in-
hypergraph(V, {V'}) has tree widthV’| — 1. We claim that stance: for each solution : V — D there is an edge

CsP(H) € PTIME. {(v1,(v1)),..., (vn,(vp))} in H. We will bound the

To see this, let/ = (V,D,C) be an instance of number of edges il using Shearer's Lemma. Let be
CsP(H). Let ((v1,...,vx), R) be a constraint irC’ with 3 fractional edge cover di; with 3", ¥/(e) = p*(Hy); it
{v1,...,ux} = V. Such a constraint exists becau$e € follows from the standard results of linear programmind tha
H. Each tupled = (di,...,dx) € R completely specifies sych ay exists with rational values. Denote lgythe least
an assignment; defined bya;(v;) = d; for 1 < i < k. common denominator of the valugge). Letp = p* (H;)-q,
If for somes, j we havev; = v;, butd; # d;, we leavea; and letA,, ..., A, be a sequence of edges such that edge
undefined. e € E appears exacthy(e) - ¢ times. From the definition of

_ Observe tha is satisfiable if and only if there is a tuplahe fractional edge cover, it follows that each vertex V/
d € R such thaty; is (well-defined and) a solution fdt. As  appears in at least of the A;’s. Define 4; = A4; x D,

|R| < |||, this can be checked in polynomial time. these sets cover every vertexidfat leasyy times. Hence by
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Shearer’s Lemma, the number of edgesfofan be bounded Fori = 1, the instancd [V;] has at mostD| solutions,

by hence the list; is easy to construct. Notice that a solution
LA /g of I[Vi41] induces a solution off[V;]. Therefore, the
H | B9, list L;;; can be constructed by considering the solutions
i=1

in L;, extending them to the variable; in all the |D|

whereF; is the edge set of the subhypergra’]ﬁhﬁii] induced possible ways, and checking whether this assignment is a
by A;. The hypergrapti[A;] describes how the solutiongsolution of I[V;,]. Clearly, this can be done ifL| -
look like if we consider only the variables id;: each |D| - [[I[Visa]|91) = |Li| - [1]|]°) time. Repeating
edge of H[A;] describes a possible combination of valudBis procedure for = 1,2,...,n — 1, the list L,, can be
that a solution can have on the variablesAp. More constructed.
precisely, assume that; corresponds to some constraint _The total running time of the algorithm can be bounded
(v}, ..., v}), R). The hypergraptf[A;] contains the edgeby =71 |Li|-[[||°). Observe thap* (H 1v;)) < p*(Hr):
{(W},dr), ..., (v,,dx)} if and only if there is a solutiom H11v; is the subhypergraph dff; induced byV;, thus any
with a(v}) = d;. This means that there can be at mo#@ctional cover of the hypergraph df gives a fractional
IR| < ||I]| edges inE;. Hence the number of edges & Ccover of I[Vi]. Therefore, by Lemma 3L;| < ||1]|>" D),
and hence the number of solutions can be bounded by ~ @nd it follows that the total running time ji ||*(#/1)+9(1).

O

p
[Tz = qoje/e = o). m We note that the algorithm of Theorem 5 does not
i=1 actually need a fractional edge cover: the fact that the

) ._hypergraph has small fractional edge cover number is used
We would like to turn the upper bound of Lemma 3 int nly in proving the time bound of the algorithm.

an algorithm enumerating all the solutions, but the proof of
Shearer's Lemma is not algorithmic. However, a very simp®orollary 6. Let H be a class of hypergraphs of bounded

algorithm can enumerate the solutions, and Lemma 3 carflgtional edge cover number. The&@sr(H) is in polyno-
used to bound the running time of this algorithm. We neggial time.

the following definition:

Definition 4. Let I = (V,D,C) be a CSP instance and
let V' C V be a nonempty subset of variables. TB8P
instancel[V’] induced byV’ is I’ = (V', D, C"), where
C' is defined the following way: For each constraint

4. Fractional hypertree decompositions

Let H be a hypergraph. Ageneralized hypertree de-
: , _ composition ofH is a triple (T, (Bt)iev (), (Ct)iev(m))s
((v1, .. .,vk),R> having at I.eass one variable I, thereis | o (T, (Be)sev(r)) is a tree decgm(pc))sition SH( a)nd
acorrespon_dlng constrairitin C’. Suppose th_athl, Vi (C}),cy ) is a family of subsets of () such that for ev-
are the variables among, ..., v; that are inV’. Then eryt € V(T) we haveB, C |JC;. HerelJC; denotes
R : f C
the constraintc’ Is defme_d :’:l_S((vil,...,v”),R )» Where yoe union of the sets (hyperedges)dh, that is, the set
the relationR’ is the projection ofR to the components {ve V(H)|3e € Cy: v e e}. We call the sets; thebags
; : H / H ! U 4 . .
.Zfl’ ’ 'd’”'l th_?tr:s,R _contamf arf-tuple (dy, ..., dy) i jﬁ of the decomposition and the se&fs the guards Thewidth
|Ian onfyl t ere is a-tuple (dy,...,dr) € R such that of (T, (By)sev(r), (Colreviry) is max|Cy| | t € V(T)}.
dj = di; forl < j < ¢ Thegeneralized hypertree widtghw(H) of H is the mini-

Thus an assignment on V' satisfiesI[V"] if for each mum of the widths of the generalized hypertree decomposi-

constraintc of I, there is an assignment extendingthat t10NS Of 7. _
satisfies: (however, it is not necessariliy true that there isan  FOr the sake of completeness, let us mention that
assignment extending that satisfies every constraint of & hypertree decompositionf I is a generalized hyper-
simultaneously). tree decompogmor@T, (_].Bt)tev(T)Z (Ct)tevl(?“)) that satis-

fies the following additionakpecial condition (|JC:) N
Theorem 5. The solutions of a CSP instanck can be Uue\/(T,)Bu C B;forallt € V(T). Recall thatT; de-
enumerated in timg7||e" (H)+0M), notes the subtree of tHE with root¢. The hypertree width

hw(H) of H is the minimum of the widths of all hyper-
Proof: If V.= {v4,...,v,} is an arbitrary ordering of thetree decompositions off. It has been proved in [2] that
variables ofI, then letV; be the subsefvq,...,v;}. For ghw(H) < hw(H) < 3-ghw(H) + 1. This means that
i=1,2,...,n, the algorithm creates a ligt; containing the for our purposes, hypertree width and generalized hypeertre
solutions ofI[V;]. Sincel[V,] = I, the listL,, is exactly width are equivalent. For simplicity, we will only work with
what we want. generalized hypertree width.




Observe that for every hypergrap/ we have eg,,...,er, ,. The robber moves along the edgeto a
ghw(H) < tw(H) + 1. Furthermore, ifH is a hyper- vertexvg for a setR C {1,...,2n} \ {k1,...,kn_1} Of
graph withV(H) € E(H) we have ghwH) = 1 and cardinalityn that containg. If she plays this way, she can
tw(H) = |V(H)| — 1. never be captured.

We now give an approximate characterization of (gen- )
eralized) hypertree width by a game that is a variant of the Forahypergrapfl and amapping : E(H) — [0, c0),
robber and copgiame [29], which characterizes tree width¥€ let
In therobber and marshals game diii [21], a robber plays
againstk marshals. The marshals move on the hyperedges
of H, trying to catch the robber. In each move, some of the
marshals ﬂt)r/1 in he:FCOPt%S tgr?ew hyperk(]edgetsh. The r%leé may think ofB(v) as the set of all vertices “blocked” by
moves on the vertices dff. e sees where the marsha i _
will be landing and quickly tries to escape running arbitralr?' Furthermore, we let weight) =2 e, 7(¢)
ily fast along paths off, not being allowed to run throughDefinition 9. Let H be a hypergraph. &actional hypertree
a vertex that is occupied by a marshal befarel after the decomposition off is a triple(T, (Bt):ev (1), (7 )tev (1))
flight. The marshals’ objective is to land a marshal via helivhere (T, (B;).cv (1) is a tree decomposition off and
copter on a hyperedge containing the vertex occupied by the):cv (r) is a family of mappings from&(H) to [0, co)
robber. The robber tries to elude capture. Tiershal width such that for every € V(T') we haveB; C B(y:).
mw(H ) of a hypergrapHi is the least numbeér of marshals We call the set®3; thebagsof the decomposition and the
that have a winning strategy in the robber and marshals gam&ppingsy; the (fractional) guards
played onH (see [1] or [21] for a formal definition). The width of (T, (Bt)iev(r), (Ve)tev(r)) is

It is easy to see that m\il) < ghw(H) for every hy- max{weighty;) | ¢ € V(T)}. The fractional hyper-
pergraphH. To win the game on a hypertree of generafree widthfhw(H ) of H is the minimum of the widths of the
ized hypertree widtlk, the marshals always occupy guardgactional hypertree decompositions &t
of a decomposition and eventually capture the robber at a

leaf of the tree. Conversely, it can be proved that gHw < It is easy to see that the minimum of the widths of
3. mw(H) + L. all fractional hypertree decompositions of a hypergraph

Observe that for every hypergraph, the generalised always exists and is rational. This follows from the factitha
hypertree width is less than or equal to the (integral) edge t©© an obvious equivalence, there are only finitely many
cover number offf. The following two examples show!r€€ decompositions of a hypergraph.
that hypertree width and fractional edge cover number are Clearly, for every hypergrapH we have

incomparable. fhw(H) < p*(H) and fhwH) < ghw(H).

B(y)={veV(H)| > =1}

ecE(H),vee

Example 7. Consider the class of all graphs that only ha -
disjoint edges. The tree width and hypertree width of tqvli;éxamples 7 and 8 above show that there are families of

class isl, the fractional edge cover number is unbounded ypergraphs of bounded fractional hypertree width, but un-
' ‘bounded fractional edge cover number and unbounded gen-

Example 8. Forn > 1, let H,, be the following hypergraph: eralized hypertree width.

H,, has a vertexs for every subsetS of {1,...,2n} of Itis also worth pointing out that for every hypergraph
cardinalityn. Furthermore, for every € {1,...,2n} the H,
hypergraphH,, has a hyperedge = {vs | i € S}. fhw(H) =1 < ghw(H) = L.

Observe that the fractional edge cover numii&#., ) is 1o see this, note that if : E(H) — [0,00) is a mapping
at most2, because the mappingthat assigng /» to every \uith weighty) = 1 and B C B(y), thenB C e for all
hyperedge,; is a fractional edge cover of weightActually, . ¢ E(H) with yv(e) > 0. Thus instead using as a
itis easy to see that"(H,) = 2. . _ guard in a fractional hypertree decomposition, we may use
We claim that the hypertree width @f,, is 1. Itis €asy the integral guarde} for anye € E(H) with y(e) > 0. Let

to see thatff,, has a hypertree decomposition of width ;5 remark that gh¢H) = 1 ifand only if H is acyclic [20].
(with a two node tree). Thus gh,,) < n. To see that

ghw(H,,) > n — 1, we argue that the robber has a winning.1. The robber and army game. As robbers are
strategy againgin — 1) marshals in the robber and marshalgetting ever more clever, it takes more and more powerful
game. Consider a position of the game where the marstsasurity forces to capture them. In tih@bber and army
occupy edges;, , ..., ¢e;, , and the robber occupies a vertegame on a hypergraph/, a robber plays against a general
vg for a setS with SN {j1,...,jn—1} = 0. Suppose that in commanding an army afbattalions of soldiers. The general
the next round of the game the marshals move to the edgesy distribute his soldiers arbitrarily on the hyperedges.
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However, a vertex of the hypergraph is only blocked if thg, v) of the gamey is contained in the connected compo-

number of soldiers on all hyperedges that contain this xerteentR of H \ B(o) with weighty|R) > weight(vy)/2.

adds up to the strength of at least one battalion. The game is To see that this is possible, let, v) be such a position.

then played like the robber and marshals game. Suppose that the general moves frero o', and letR’ be
L _the connected component8f\ B(¢’) with weighty|R') >

Definition 10. Let H be a hypergraph anda nonnegative weight(y)/2. Then there must be somes E(H) such that

real. The game RAH, r) (therobber and army game ol , A R £ (hande N R’ # (), because otherwise we had
with r battalionsis played by two players, thebber and

the general A positionof the game is a paify, v), where . o .
v € V(H) andy : E(H) — [0,00) with weigh(y) < r.  "e9N) = "",e'r?h‘(’g/ 2*"",6'5“‘(’2,/ 2< "
To start a play of the game, the robber picks an arbitrary < weight(y|R) + weight(y|R’) < weight(y),
and the initial position i$0, v ), where0 denote the constant . .
zero mappingp %0, o) which is impossible. Thus the robber can move fré&to
) o
In each round, the players move from the current positi& via the edge. =

(7,v) to/a new position(«’,v’) as follows: The gener_al Let H be a hypergraph ani’ an induced subhyper-

selectsy’, and thle_n the robber seleai$ such that th/ere IS graph of /. Then therestrictionof a mappingy : E(H) —

a path fromo to v’ in the hypergraptif \ (B(y) N B(y')). [0,00) to H' is the mapping’ : E(H') — [0, 00) defined
If a position (v, v) with v € B(v) is reached, the playby

ends and the general wins. If the play continues forever, the

N
robber wins. V)= > Ale).
Thearmy widthaw(H) of H is the least such that the mﬁfﬁ}f;fie/

general has winning strategy for the game(RAr).
Conversely, thecanonical extensiorof a mapping~’
Again, it is easy to see that &) is well-defined and g(H'") — [0, ) to H is the mappingy : E(H) — [0, c0)
rational. defined by

Theorem 11. For every hypergrapli, v (enV(H"))

aw(H) < fhw(H) < 3 - aw(H) + 2. e = {er€ E(H) |eaNV(H') =enV(H)}

The rest of this subsection is devoted to a proof HO€ th"j‘t in both cases, we have weight = weight')
this theorem. The proof is similar to the proof of th@NdB(Y") = B(y) NV (H).

corresponding result for the robber and marshal game ggof of Theorem 11:Let H be a hypergraph. To prove
generalized hypertree width in [2], which in turn is based qRat aw(H) < fhw(H), let(T, (By)iev(ry, (1 )iev(r)) be a

ideas from [27, 29). fractional hypertree decomposition &f. We claim that the
Let I be a hypergraph ang o : E(H) — [0,00). For general has a winning strategy for R, r). Let (0, v,) be
asetW C V(H), we let the initial position. The general plays in such a way that all
) subsequent positions are of the fofm, v) such thav € B,
weight(y[W) = > 7(e). for someu € V(T}). Intuitively, this means that the robber
igg/(% is trapped in the subtree belawFurthermore, in each move

the general reduces the heightofHe starts by selecting,
A mappingo : E(H) — [0, 00) is abalanced separator for for the roott, of 7. Suppose the game is in a position, v)

~ if for every connected componeRtof H \ B(o), such that € B, for someu € V(T;). If v = t, then the
) robber has lost the game. So let us assumeuthatt. Then

weighty| ) < weight(y) there is a child’ of ¢ such thatu € V(T}/). The general

- 2 moves toy,. Suppose the robber escapes t¢ #hat is not

contained inB,, for anyu’ € T}.. Then there is a path from
ftov’in H\ (B(v) N B(y)) and hence ii \ (B: N By).
However, it follows easily from the fact thé&l", (B;):cr) is

a tree decomposition dff that every path from a bag ifi
to a bag inT" \ T, must intersecB; N By,. This proves that
aw(H) < fhw(H).

Lemma 12. Let H be a hypergraph and = aw(H). Then
everyy : E(H) — [0,00) has a balanced separator o
weightr.

Proof: Suppose for contradiction that: E(H) — [0, 00)
has no balanced separator of weight We claim that the
robber has a winning strategy for the game(RAr). The For the second inequality, we shall prove the following
robber simply maintains the invariant that in every positicstronger claim:



Claim: Let H be a hypergraph and = aw(H). Further- — Letv € V(H). To seethafv € V(T) | v € B} is
more, lety : E(H) — [0, co) such that weightty) < 2r + 2. connected ifl", observe thaf{t € V(T%) | v € B}
Then there exists a fractional hypertree decompositioli of is connected (maybe empty) for alllf v € V(H;) for
of width at most3r + 2 such thatB(v) is contained in the exactly one;, this already shows thdv € V(T') | v €
bag of the root of this decomposition. B,} is connected. Otherwise, € B(x) = By, and
hencev € B(x;) C By; for all i such that € V(H;).
Again this shows thafv € V(T) | v € B} is
connected.

Note that fory = 0, the claim yields the desired
fractional hypertree decomposition &f.

Proof of the claim:The proof is by induction on the cardi-
nality of V(H) \ B(y).

By Lemma 12, there is a balanced separator of weight at
mostr for v in H. Let o be such a separator, and define

x i E(H) — [0,00) by x(e) = 7(e) + o(e). Then |t remains to prove thaB, C B(v) for all t € T. For
weight(x) < 3r +2,andB(y) C B(x). the root, we haveB;, = B(v,). Fort € V(T%), we have
If V(H) = B(x) (this is the induction bases), therp B(v}) = B(y) NV(H?) C B(v;). Finally, note that
the 1-node decomposition with bag(H) and guardy is \eight,) < 3r + 2 forall t € V(T). This completes the
a fractional hypertree decomposition &f of width at most 0 of the claim. O

3r + 2.

Otherwise, letR;,..., R, be the connected compo-

nents ofH \ B(x). Note that we cannot exclude the caggemark 13. With respect to the difference between hyper-
m=1andR;, = V(H)\ B(v). tree decompositions and generalized hypertree decomposi-

Forl < i < m, lete; be an edge off such that tiONS, itis worth observing that the fractional tree decomp
e; N R; # 0, and letS; be the unique connected componefttion (T, (Bt_)tGV(T)v (7 )tev (1)) of width at mostir + 2
of H \ B(c) with R; C ;. Note that weighty|S;) < r+1, Constructed in the proof of the theorem satisfies the follow-
because is a balanced separator for Let y; : £(H) — N9 special condition:B(v;) N U,ev (1) Bu € B for all

— Lete € E(H). Eithere C B(x) = By,, or there is
exactly onei such thate C R; U B(x;). In the latter
casee C B, for somet € V(T").

[0, 00) be defined by teV(T).
This implies that a hypergraph of fractional hypertree
1 if e = e;, width at mostr has a fractional hypertree decomposition of

xi(e) =L o(e) +v(e) if e+ e;andSine 0 width at mosBr + 2 that satisfies the special condition.

a(e) otherwise
4.2. Finding decompositions.  We currently do not
Then know whether for any fixed > 1 there is a polynomial-
time algorithm that, given a hypergrapth of fractional
weight(x;) < 1+ weight(o) 4+ weight(|S;) < 2r + 2. hypertree width at most, computes a fractional hypertree
decomposition of of width r or at least of widthf(r)

Let H; = H[R; U B(x;)] and observe that for some functionf. Similar to hypertree width, one way
of obtaining such an algorithm would be through the army
V(H;)\ B(xi) € Ri\e C R; CV(H)\ B(7). and robber game characterization. The idea would be to

inductively compute the set of all positions of the game from

Thus the induction hypothesis is applicable/io and the \yhich the general wins i0, 1, ... rounds. The problem is
restrictiqr? ofx,-. to HZ It yields.a fractional hypertre_e de-that, as opposed to the robber and marshals game, there is no
composition(T™, (Bf)scv (1), (7¢)rev (ri)) Of H; of weight - polynomial bound on the number of positions. Let us state a
at most3r + 2 such thatB(x;) NV (H;) is contained in the copjecture which would imply such a polynomial bound for
bagB;, of the roott; of 7. a sufficiently large set of positions and hence for every 1

LetT be the disjoint union of ™, ..., T™ together with a polynomial-time algorithm that, given a hypergrafghof
at a new root, that has edges to the rodtsof the 7. Let fractional hypertree width at most computes a fractional
By, = B(x) andB; = B; forall t € V(T*). Moreover, let hypertree decomposition @f of width 3r + 2.
Y = X, and lety; be the canonical extension gf to H for Let H be a hypergraphand> 1. Let us call a seB C
allt e V(T). V (H) maximalr-coveredif there is ay : E(H) — [0, 00)

It remains to prove thalT', (B:)icv (1), (V¢ )tev(ry) IS with weight(y) < randB C B(v), butthereis nd3’ > B
a fractional hypertree decomposition Bf of width at most for which such ay exists. Note that a covering for a
3r + 2. Let us first verify that(T, (B;).cv () IS @ tree maximalr-covered set can easily be computed in polynomial
decomposition. time by linear programming. In the robber and army game,



we may assume without loss of generality that the general To prove that GP(H) for classesH of hypergraphs of
always plays mappings such thatB(y) is maximalr- bounded fractional hypertree width is in polynomial time,
covered. we probably need a polynomial algorithm that, for fixed
. computes an at least approximately optimal fractional hype
Conjecture 14. Let » > 1. Then foroi:/erg hypergraphree decompositions for hypergraphs of fractional hygertr
H, there are at mostV(H) + E(H)| _( WD) maximal \idth at mostr. However, if we are only interested in the
r-covered sets. Furthermore, there is a polynomial-timgameterized complexiof our constraint satisfaction prob-
algorithm that enumerates all these sets. lems, we do not need a decomposition algorithmpakam-
eterizationof a problem is a functior (usually assumed to
4.3. Algorithmic applications. Recall thatF/; denotes the be polynomial-time computable) that maps instances of the
hypergraph of a CSP instanée problem to the positive integers. A parameterized probkemi
fixed parameter tractabli there is an algorithm that, given
Theorem 15. Letr > 1. Then there is a pOlyﬂomial'timean instance, solves it in t|mef(,€([)) . p(”[”) for some
algorithm that, given a CSP instanceand a fractional Computab|e functiorf and po|yn0m|alD(X) This defini-
hypertree decompositial of H; of width at most,, decides tjon reflects the idea that if the parameter is small, then the

if I is satisfiable (and computes a solution if it is). dependence of the running time on the parameter can be dis-
regarded.
Proof: Given a fractional hypertree decompositi¢#’, We consider the following parameterization c$&H):

(Bt)tEV(T)1 (’yt)tEV(T)) of an instancel, deﬁne‘/} =

Usev(z,) Bt For eacht € V(T'), our algorithm constructs
the list L, of those solutions of [B,] that can be extended p-CSP(71) .
b ¢ : Instance: A CSP instancd = (V,D,C)

to a solution ofI[V}] (recall that/[B;] denotes the instance with H, € H
induced byB;, see Definition 4.) Clearly] has a solution i ! ' .
. ; . Parameter: |V|, the number of variables of
if and only if L;, is not empty for the root, of the tree I
decomposition. R .

The algorithm proceeds in a bottom-up manner: when Problem: Decide if/ has a solution.

constructing the lisf.;, we assume that for every chittlof
t, the listsL,. are already available. Corollary 16. For every classt of hypergraphs of bounded

If ¢ is a leaf node, thel, = B, andL, is simply the fractional hypertree width, f=sP(H) is fixed parameter
list of all solutions ofI[B,]. By the definition of fractional tractable.
hypertree decompositions, the hypergrapfii[d@;] has frac-
tional edge cover number at mosthence by Theorem 3.,
can be determined in timlgl ||"+° (),

Assume now that has childrenty, ..., tx. Itis easy
to see that a solution of I[B;] can be extended td[V/]
if and only if for eachl < i < k, there is a solutiony;

Fixed-parameter tractability is only relevantin situago
where the parameter can be expected to be small, and
it is very dubious to expect the number of variables in
a constraint satisfaction problem to be small. However,
there is an equivalent problem where this assumption is
realistic, and that is the evaluation of conjunctive (dats)

of IV;,] that is compatible withy (that is,« and«; assign ; .
the same values to the variables i N ;). Therefore queries. Database queries can usually be assumed to be
L '.small, certainly if compared to the size of the database,

Ly can be determined by first enumerating every SOIUti%ﬁd the number of variables of the corresponding constraint
« of I[B,] using the algorithm of Theorem 5, and then for P 9

eachi, going through the list.,, and checking whether itsatlsfactlon is bounded by the size of the query. The size

; . . o of the domain, on the other hand, gets very large, because
contains an assignment compatible withSince the numberthe domain consists of all database entries. However, when
of solutions of7[B;] and the size of each;, is ||I||"T°™), ' ’

the algorithm spendsZ[|°") time at each node, hence the()avaluatmg a database query, one is usually not interested

total running time is polynomial for each fixed Using in solving the decision problem (“Does there exist a tuple

L o . )
standard bookkeeping techniques, it is not difficult to Bdte?%'oszmu%etgﬁ tﬂuleerg.sazt,is?;tn mthtge ueer;uw)]efst'?r?e ?\fr?llsé?
the algorithm such that it actually returns a solution ifséi P b 9 query. ).

O of tuples satisfying a query is not polynomially bounded
in terms of the size of the database, it is reasonable to
In the remainder of this section, we sketch further algmeasure the running time of an enumeration algorithm in
rithmic applications of fractional hypertree decompasii. terms of the input size plus the output size. We refer to
Details will appear in the full version of this paper, but wehe corresponding notion of fixed-parameter tractabilgy a
believe that for a reader familiar with the concepts and-teafutput fixed-parameter tractability
niques our brief outline should be sufficient.



Theorem 17. Let H be a class of hypergraphs of boundetime solvable CSP instances: instances having bounded frac
fractional hypertree width. Then the evaluation problem féional edge cover number. This result suggests the defini-
conjunctive queries whose underlying hypergraph ig{irs tion of fractional hypertree width, which is always at most
output fixed-parameter tractable. as large as the hypertree width (and in some cases much
o o smaller). It turns out that CSP is polynomial-time solvable
This is proved very similarly to Theorem 15 and Corofy jnstances having bounded fractional hypertree width, i
lary 16. . the hypertree decomposition is given together with the in-
Itis has been observed by Feder and Vardi [15] that cafjance. It remains an important open question whether there
strfaunt satisfaction problt_ams can be described as hornorri@rg1 polynomial-time algorithm that determines (or approx-
phism problems for relational structures.h@momorphism jmates) the fractional hypertree width and constructs a cor
from a structured to a structure3 is a mapping from the responding decomposition. We have provided an approxi-
domain ofA to the domain ofB that preserves membershipyaie characterization of fractional hypertree width usirey
in all relations. With each structuré we can associate a hy-g_called robber and army game, and we have laid out how
pergraphH 4 whose vertices are the elements of the domainnight help to design an algorithm for approximating the
of A and whose hyperedges are all sfits, ..., ar} such factional hypertree width.
that(ay, ..., ax) is atuple in some relation of. For every Another open question is whether there are polynomial-
classH of hypergraphs, we consider the following problemine solvable families of CSP instances having unbounded
fractional hypertree width. If the answer is no, then it ntigh
Hom(H) be possible to prove this using parameterized complexity
Instance: Structure A with H4 € 'H and similarly to [22, 23].
structureB.
Problem: Decide if there is a homomot
phism fromA to B.
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