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Abstract

Many important combinatorial problems can be mod-
elled as constraint satisfaction problems, hence identifying
polynomial-time solvable classes of constraint satisfaction
problems received a lot of attention. In this paper, we are
interested in structural properties that can make the problem
tractable. So far, the largest structural class that is known
to be polynomial-time solvable is the class of bounded hy-
pertree width instances introduced by Gottlob et al. [20].
Here we identify a new class of polynomial-time solvable
instances: those having bounded fractional edge cover num-
ber.

Combining hypertree width and fractional edge cover
number, we then introduce the notion of fractional hyper-
tree width. We prove that constraint satisfaction problems
with bounded fractional hypertree width can be solved in
polynomial time (provided that a the tree decomposition is
given in the input). We also prove that certain parameter-
ized constraint satisfaction, homomorphism, and embedding
problems are fixed-parameter tractable on instances having
bounded fractional hypertree width.

1. Introduction

Constraint satisfaction problems form a large class of combi-
natorial problems that contains many important “real-world”
problems. An instance of a constraint satisfaction problem
consists of a setV of variables, a domainD, and a setC
of constraints. For example, the domain may be{0, 1}, and
the constraints may be the clauses of a 3-CNF-formula. The
objective is to assign values inD to the variables in such
a way that all constraints are satisfied. In general, con-
straint satisfaction problems are NP-hard; considerable ef-
forts, both practical and theoretical, have been made to iden-
tify tractable classes of constraint satisfaction problems.

On the theoretical side, there are two main directions to-
wards identifying polynomial-time solvable classes of con-
straint satisfaction problems. One is to restrict theconstraint
language, that is, the type of constraints that are allowed
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(see, for example, [5, 6, 7, 15, 24, 28]). Formally, the con-
straint language can be described as a set of relations on the
domain. The other direction is to restrict thestructure in-
duced by the constraints on the variables (see, for example,
[10, 11, 13, 16, 25]). The present work goes into this di-
rection; our main contribution is the identification of a natu-
ral new class of structurally tractable constraint satisfaction
problems.

The hypergraphof an instance(V,D,C) hasV as its
vertex set and for every constraint inC a hyperedge that con-
sists of all variables occurring in the constraint. For a classH
of hypergraphs, we let CSP(H) be the class of all instances
whose hypergraph is contained inH. The central questions
is for which classesH of hypergraphs the problem CSP(H)
is tractable. Most recently, this question has been studiedin
[8, 10]. It is worth pointing out that the corresponding ques-
tion for the graphs (instead of hypergraphs) of instances, in
which two variables are incident if they appear together in a
constraint, has been completely answered in [22, 23] (under
the complexity theoretic assumption FPT6= W[1]): For a
classG of graphs, the corresponding problem CSP(G) is in
polynomial time if and only ifG has bounded tree width.
This can be generalized to CSP(H) for classesH of hy-
pergraphs ofbounded hyperedge size(that is, classesH for
which max{|e| | ∃H = (V,E) ∈ H : e ∈ E} exists). It
follows easily from the results of [22, 23] that for all classes
H of bounded hyperedge size,

(1.1) CSP(H) ∈ PTIME ⇐⇒ H has bounded tree width

(under the assumption FPT6= W[1]).
It is known that (1) does not generalize to arbitrary

classesH of hypergraphs (we will give a very simple coun-
terexample in Section 2). The largest known family of
classes of hypergraphs for which CSP(H) is in PTIME con-
sists of all classes of boundedhypertree width[20, 21, 19].
Hypertree width is a hypergraph invariant that generalizes
acyclicity [4, 14, 30]. It is a very robust invariant; up to a
constant factor it coincides with a number of other natural
invariants that measure the global connectivity of a hyper-
graph [2]. On classes of bounded hyperedge size, bounded
hypertree width coincides with bounded tree width, but in
general it does not. It has been asked in [8, 10, 18, 22]
whether there are classesH of unbounded hypertree width
such that CSP(H) ∈ PTIME. We give an affirmative answer
to this question.



Our key result states that CSP(H) ∈ PTIME for all
classesH of boundedfractional edge cover number. A frac-
tional edge coverof a hypergraphH = (V,E) is a map-
pingψ : E → [0,∞) such that

∑

e∈E,v∈e ψ(e) ≥ 1 for all
v ∈ V . The number

∑

e∈E ψ(e) is theweightof ψ. The
fractional edge cover numberρ∗(H) of H is the minimum
of the weights of all fractional edge covers ofH . It follows
from standard linear programming results that this minimum
exists and is rational. Furthermore, it is easy to construct
classesH of hypergraphs that have bounded fractional edge
cover number and unbounded hypertree width (see Exam-
ple 8).

We then start a more systematic investigation of the in-
teraction between fractional covers and hypertree width. We
propose a new hypergraph invariant, thefractional hypertree
width, which generalizes both the hypertree width and frac-
tional edge cover number in a natural way. Fractional hyper-
tree width is an interesting hybrid of the “continuous” frac-
tional edge cover number and the “discrete” hypertree width.
We show that it has similarly nice properties as hypertree
width. In particular, we give an approximative game charac-
terization of fractional hypertree width similar to the charac-
terization of tree width by the “robber and cops” game [29].
Furthermore, we prove that for classesH of bounded frac-
tional hypertree width, the problem CSP(H) can be solved in
polynomial time provided that a fractional hypertree decom-
position of the underlying hypergraph is given together with
the input instance. We leave open the question of whether for
fixed k there is a polynomial-time algorithm that computes
a fractional-hypertree decomposition of widthk of a given
hypergraphH of fractional hypertree widthk.

We also discuss the problem of evaluating conjunctive
database queries and the homomorphism problem for rela-
tional structures, which are both known to be equivalent to
constraint satisfaction problems, and the embedding problem
for relational structures. We show that all these problems,
as well as constraint satisfaction problems parameterizedby
the number of variables, arefixed parameter tractablefor
instances of bounded fractional hypertree width.

2. Preliminaries

2.1. Hypergraphs. A hypergraph is a pair H =
(V (H), E(H)), consisting of a setV (H) of verticesand a
setE(H) of subsets ofV (H), the hyperedgesof H . We
always assume that hypergraphs have no isolated vertices,
that is, for everyv ∈ V (H) there exists at least onee ∈
E(H) such thatv ∈ e.

For a hypergraphH and a setX ⊆ V (H), the sub-
hypergraph ofH induced byX is the hypergraphH [X ] =
(X, {e ∩X | e ∈ E(H)}). We letH \X = H [V (H) \X ].

Theprimal graphof a hypergraphH is the graph

H = (V (H),{{v, w} | v 6= w, there exists an

e ∈ E(H) such that{v, w} ⊆ e}).

A hypergraphH is connectedif H is connected. A setC ⊆
V (H) is connected (inH) if the induced subhypergraph
H [C] is connected, and aconnected componentof H is a
maximal connected subset ofV (H). A sequence of vertices
of H is apathof H if it is a path ofH .

A tree decompositionof a hypergraphH is a tuple
(T, (Bt)t∈V (T )), whereT is a tree and(Bt)t∈V (T ) a family
of subsets ofV (H) such that for eache ∈ E(H) there is a
nodet ∈ V (T ) such thate ⊆ Bt, and for eachv ∈ V (H)
the set{t ∈ V (T ) | v ∈ Bt} is connected inT . The setsBt

are called thebagsof the decomposition. Thewidthof a tree-
decomposition(T, (Bt)t∈V (T )) is max

{

|Bt|
∣

∣ t ∈ V (t)}−1.
Thetree widthtw(H) of a hypergraphH is the minimum of
the widths of all tree-decompositions ofH . It is easy to see
that tw(H) = tw(H) for all H .

It will be convenient for us to view the trees in tree-
decompositions as being rooted and directed from the root
to the leaves. For a nodet in a (rooted) treeT =
(V (T ), E(T )), we letTt be the subtree rooted att, that is,
the induced subtree ofT whose vertex set is the set of all
vertices reachable fromt.

We say that a classH of hypergraphs is ofbounded tree
width if there is ak such that tw(H) ≤ k for all H ∈ H. We
use a similar terminology for other hypergraph invariants.

2.2. Constraint satisfaction problems. A CSP instance
is a tripleI = (V,D,C), whereV is a set ofvariables, D
is a set called thedomain, andC is a set ofconstraintsof
the form〈(v1, . . . , vk), R〉, wherek ≥ 1 andR is a k-ary
relation onD. A solutionto the instanceI is an assignment
α : V → D such that for all constraints〈(v1, . . . , vk), R〉 in
C we have(α(v1), . . . , α(vk)) ∈ R.

Constraints are specified by explicitly enumerating all
possible combinations of values for the variables, that is,all
tuples in the relationR. Consequently, we define thesizeof
a constraintc = 〈(v1, . . . , vk), R〉 ∈ C to be the number
‖c‖ = k + k · |R|. Thesizeof an instanceI = (V,D,C)
is the number‖I‖ = |V | + |D| +

∑

c∈C ‖c‖. Of course
there is no need to store a constraint relation repeatedly ifit
occurs in several constraints, but this only changes the size
by a polynomial factor.

Let us make a few remarks about this explicit represen-
tation of the constraints. There are important special cases
of constraint satisfaction problems where the constraintsare
stored implicitly, which may make the representation expo-
nentially more succinct. Examples are Boolean satisfiabil-
ity, where the constraint relations are given implicitly bythe
clauses of a formula in conjunctive normal form, or systems
of arithmetic (in)equalities, where the constraints are given



implicitly by the (in)equalities. However, our representation
is the standard “generic” representation of constraint satis-
faction problems in artificial inntelligence (see, for exam-
ple, [12]). An important application where the constraints
are always given in explicit form is the conjunctive query
containment problem, which plays a crucial role in database
query optimization. Kolaitis and Vardi [25] observed that it
can be represented as a constraint satisfaction problem, and
the constraint relations are given explicitly as part of oneof
the input queries. A related problem from database systems
is the problem of evaluating conjunctive queries (cf. Theo-
rem 17). Here the constraint relations represent the tables
of a relational database, and again they are given in explictit
form.

Observe that there is a polynomial-time algorithm de-
ciding whether a given assignment for an instance is a solu-
tion.

The hypergraph of the CSP instanceI = (V,D,C)
is the hypergraphHI with vertex setV and a hyperedge
{v1, . . . , vk} for all constraints〈(v1, . . . , vk), R〉 in C. For
every classH, we consider the following decision problem:

CSP(H)
Instance: A CSP instanceI with HI ∈ H.
Problem: Decide ifI has a solution.

If the classH is not polynomial-time decidable, we view
this as a promise problem, that is, we assume that we are
only given instancesI with HI ∈ H, and we are only
interested in algorithms that work correctly and efficiently
on such instances.

We close this section with a simple example of a class
of hypergraphs of unbounded tree width such that CSP(H)
is tractable.

Example 1. Let H be that class of all hypergraphsH that
have a hyperedge that contains all vertices, that is,V (H) ∈
E(H). Clearly,H has unbounded tree width, because the
hypergraph(V, {V }) has tree width|V | − 1. We claim that
CSP(H) ∈ PTIME.

To see this, letI = (V,D,C) be an instance of
CSP(H). Let 〈(v1, . . . , vk), R〉 be a constraint inC with
{v1, . . . , vk} = V . Such a constraint exists becauseHI ∈
H. Each tupled̄ = (d1, . . . , dk) ∈ R completely specifies
an assignmentαd̄ defined byαd̄(vi) = di for 1 ≤ i ≤ k.
If for somei, j we havevi = vj , butdi 6= dj , we leaveαd̄

undefined.
Observe thatI is satisfiable if and only if there is a tuple

d̄ ∈ R such thatαd̄ is (well-defined and) a solution forI. As
|R| ≤ ‖I‖, this can be checked in polynomial time.

3. A Polynomial-time algorithm for CSPs with bounded
fractional cover number

In this section we prove that if the hypergraphHI of a
CSP instanceI has fractional edge cover numberρ∗(HI),
then it can be decided in‖I‖ρ∗(HI )+O(1) time whetherI
has a solution. Thus ifH is a class of hypergraphs with
bounded fractional edge cover number (that is, there is a
constantr such thatρ∗(H) ≤ r for everyH ∈ H), then
CSP(H) ∈ PTIME.

Actually, we prove a stronger result: A CSP instanceI
has at most‖I‖ρ∗(HI) solutions and all the solutions can be
enumerated in time‖I‖ρ∗(HI)+O(1).

The proof relies on a combinatorial lemma known as
Shearer’s Lemma. We use Shearer’s lemma to bound the
number of solutions of a CSP instance; our argument resem-
bles an argument that Friedgut and Kahn [17] used to bound
the number of subhypergraphs of a certain isomorphism type
in a hypergraph. The second author recently applied similar
ideas in a completely different algorithmic context [26].

Lemma 2 (Shearer’s Lemma [9]). Let H = (V,E) be a
hypergraph, and letA1, A2, . . . , Ap be (not necessarily
distinct) subsets ofV such that eachv ∈ V is contained
in at leastq of theAi’s. Denote byEi the edge set of the
induced hypergraphH [Ai]. Then

|E| ≤

p
∏

i=1

|Ei|
1/q.

Note that we admit empty hyperedges. In particular, if
e ∩ Ai = ∅ for somee ∈ E and i ≤ p, then∅ ∈ Ei.
Lemma 2 is easy to see in the special case whenq = 1 and
{A1, . . . , Ap} is a partition ofV . The proof of the general
case is based on an entropy argument.

Lemma 3. A CSP instanceI has at most‖I‖ρ∗(HI ) solu-
tions.

Proof: Consider a CSP instanceI = (V,D,C) with
V = {v1, . . . , vn}. Let Ĥ be a hypergraph overV ×
D where the edges correspond to the solutions of the in-
stance: for each solutionα : V → D there is an edge
{(v1, α(v1)), . . . , (vn, α(vn))} in Ĥ . We will bound the
number of edges in̂H using Shearer’s Lemma. Letψ be
a fractional edge cover ofHI with

∑

e∈E ψ(e) = ρ∗(HI); it
follows from the standard results of linear programming that
such aψ exists with rational values. Denote byq the least
common denominator of the valuesψ(e). Letp = ρ∗(HI)·q,
and letA1, . . . , Ap be a sequence of edges such that edge
e ∈ E appears exactlyψ(e) · q times. From the definition of
the fractional edge cover, it follows that each vertexv ∈ V
appears in at leastq of theAi’s. Define Âi = Ai × D,
these sets cover every vertex ofĤ at leastq times. Hence by
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Shearer’s Lemma, the number of edges ofĤ can be bounded
by

p
∏

i=1

|Êi|
1/q,

whereÊi is the edge set of the subhypergraphĤ [Âi] induced
by Âi. The hypergrapĥH[Âi] describes how the solutions
look like if we consider only the variables inAi: each
edge ofĤ [Âi] describes a possible combination of values
that a solution can have on the variables inAi. More
precisely, assume thatAi corresponds to some constraint
〈(v′1, . . . , v

′
k), R〉. The hypergrapĥH [Âi] contains the edge

{(v′1, d1), . . . , (v
′
k, dk)} if and only if there is a solutionα

with α(v′i) = di. This means that there can be at most
|R| ≤ ‖I‖ edges inÊi. Hence the number of edges of̂H
and hence the number of solutions can be bounded by

p
∏

i=1

‖I‖1/q = ‖I‖p/q = ‖I‖ρ∗(HI ). 2

We would like to turn the upper bound of Lemma 3 into
an algorithm enumerating all the solutions, but the proof of
Shearer’s Lemma is not algorithmic. However, a very simple
algorithm can enumerate the solutions, and Lemma 3 can be
used to bound the running time of this algorithm. We need
the following definition:

Definition 4. Let I = (V,D,C) be a CSP instance and
let V ′ ⊆ V be a nonempty subset of variables. TheCSP
instanceI[V ′] induced byV ′ is I ′ = (V ′, D,C′), where
C′ is defined the following way: For each constraintc =
〈(v1, . . . , vk), R〉 having at least one variable inV ′, there is
a corresponding constraintc′ inC′. Suppose thatvi1 , . . . , viℓ

are the variables amongv1, . . . , vk that are inV ′. Then
the constraintc′ is defined as〈(vi1 , . . . , viℓ

), R′〉, where
the relationR′ is the projection ofR to the components
i1, . . . , iℓ, that is,R′ contains anℓ-tuple(d′1, . . . , d

′
ℓ) ∈ Dℓ

if and only if there is ak-tuple (d1, . . . , dk) ∈ R such that
d′j = dij

for 1 ≤ j ≤ ℓ.

Thus an assignmentα on V ′ satisfiesI[V ′] if for each
constraintc of I, there is an assignment extendingα that
satisfiesc (however, it is not necessariliy true that there is an
assignment extendingα that satisfies every constraint ofI
simultaneously).

Theorem 5. The solutions of a CSP instanceI can be
enumerated in time‖I‖ρ∗(HI)+O(1).

Proof: If V = {v1, . . . , vn} is an arbitrary ordering of the
variables ofI, then letVi be the subset{v1, . . . , vi}. For
i = 1, 2, . . . , n, the algorithm creates a listLi containing the
solutions ofI[Vi]. SinceI[Vn] = I, the listLn is exactly
what we want.

For i = 1, the instanceI[Vi] has at most|D| solutions,
hence the listLi is easy to construct. Notice that a solution
of I[Vi+1] induces a solution ofI[Vi]. Therefore, the
list Li+1 can be constructed by considering the solutions
in Li, extending them to the variablevi+1 in all the |D|
possible ways, and checking whether this assignment is a
solution of I[Vi+1]. Clearly, this can be done in|Li| ·
|D| · ‖I[Vi+1]‖O(1) = |Li| · ‖I‖O(1) time. Repeating
this procedure fori = 1, 2, . . . , n − 1, the listLn can be
constructed.

The total running time of the algorithm can be bounded
by

∑n−1
i=1 |Li| · ‖I‖O(1). Observe thatρ∗(HI[Vi]) ≤ ρ∗(HI):

HI[Vi] is the subhypergraph ofHI induced byVi, thus any
fractional cover of the hypergraph ofI gives a fractional
cover ofI[Vi]. Therefore, by Lemma 3,|Li| ≤ ‖I‖ρ∗(HI ),
and it follows that the total running time is‖I‖ρ∗(HI)+O(1).
2

We note that the algorithm of Theorem 5 does not
actually need a fractional edge cover: the fact that the
hypergraph has small fractional edge cover number is used
only in proving the time bound of the algorithm.

Corollary 6. Let H be a class of hypergraphs of bounded
fractional edge cover number. ThenCSP(H) is in polyno-
mial time.

4. Fractional hypertree decompositions

Let H be a hypergraph. Ageneralized hypertree de-
composition ofH is a triple (T, (Bt)t∈V (T ), (Ct)t∈V (T )),
where (T, (Bt)t∈V (T )) is a tree decomposition ofH and
(Ct)t∈V (T ) is a family of subsets ofE(H) such that for ev-
ery t ∈ V (T ) we haveBt ⊆

⋃

Ct. Here
⋃

Ct denotes
the union of the sets (hyperedges) inCt, that is, the set
{v ∈ V (H) | ∃e ∈ Ct : v ∈ e}. We call the setsBt thebags
of the decomposition and the setsCt theguards. Thewidth
of (T, (Bt)t∈V (T ), (Ct)t∈V (T )) is max{|Ct| | t ∈ V (T )}.
Thegeneralized hypertree widthghw(H) of H is the mini-
mum of the widths of the generalized hypertree decomposi-
tions ofH .

For the sake of completeness, let us mention that
a hypertree decompositionof H is a generalized hyper-
tree decomposition(T, (Bt)t∈V (T ), (Ct)t∈V (T )) that satis-
fies the following additionalspecial condition: (

⋃

Ct) ∩
⋃

u∈V (Tt)
Bu ⊆ Bt for all t ∈ V (T ). Recall thatTt de-

notes the subtree of theT with root t. Thehypertree width
hw(H) of H is the minimum of the widths of all hyper-
tree decompositions ofH . It has been proved in [2] that
ghw(H) ≤ hw(H) ≤ 3 · ghw(H) + 1. This means that
for our purposes, hypertree width and generalized hypertree
width are equivalent. For simplicity, we will only work with
generalized hypertree width.



Observe that for every hypergraphH we have
ghw(H) ≤ tw(H) + 1. Furthermore, ifH is a hyper-
graph withV (H) ∈ E(H) we have ghw(H) = 1 and
tw(H) = |V (H)| − 1.

We now give an approximate characterization of (gen-
eralized) hypertree width by a game that is a variant of the
robber and copsgame [29], which characterizes tree width:
In therobber and marshals game onH [21], a robber plays
againstk marshals. The marshals move on the hyperedges
of H , trying to catch the robber. In each move, some of the
marshals fly in helicopters to new hyperedges. The robber
moves on the vertices ofH . She sees where the marshals
will be landing and quickly tries to escape running arbitrar-
ily fast along paths ofH , not being allowed to run through
a vertex that is occupied by a marshal beforeand after the
flight. The marshals’ objective is to land a marshal via heli-
copter on a hyperedge containing the vertex occupied by the
robber. The robber tries to elude capture. Themarshal width
mw(H) of a hypergraphH is the least numberk of marshals
that have a winning strategy in the robber and marshals game
played onH (see [1] or [21] for a formal definition).

It is easy to see that mw(H) ≤ ghw(H) for every hy-
pergraphH . To win the game on a hypertree of general-
ized hypertree widthk, the marshals always occupy guards
of a decomposition and eventually capture the robber at a
leaf of the tree. Conversely, it can be proved that ghw(H) ≤
3 · mw(H) + 1.

Observe that for every hypergraphH , the generalised
hypertree width is less than or equal to the (integral) edge
cover number ofH . The following two examples show
that hypertree width and fractional edge cover number are
incomparable.

Example 7. Consider the class of all graphs that only have
disjoint edges. The tree width and hypertree width of this
class is1, the fractional edge cover number is unbounded.

Example 8. Forn ≥ 1, letHn be the following hypergraph:
Hn has a vertexvS for every subsetS of {1, . . . , 2n} of
cardinalityn. Furthermore, for everyi ∈ {1, . . . , 2n} the
hypergraphHn has a hyperedgeei = {vS | i ∈ S}.

Observe that the fractional edge cover numberρ∗(Hn) is
at most2, because the mappingψ that assigns1/n to every
hyperedgeei is a fractional edge cover of weight2. Actually,
it is easy to see thatρ∗(Hn) = 2.

We claim that the hypertree width ofHn is n. It is easy
to see thatHn has a hypertree decomposition of widthn
(with a two node tree). Thus ghw(Hn) ≤ n. To see that
ghw(Hn) > n − 1, we argue that the robber has a winning
strategy against(n− 1) marshals in the robber and marshals
game. Consider a position of the game where the marshals
occupy edgesej1 , . . . , ejn−1

and the robber occupies a vertex
vS for a setS with S ∩ {j1, . . . , jn−1} = ∅. Suppose that in
the next round of the game the marshals move to the edges

ek1
, . . . , ekn−1

. The robber moves along the edgeei to a
vertexvR for a setR ⊆ {1, . . . , 2n} \ {k1, . . . , kn−1} of
cardinalityn that containsi. If she plays this way, she can
never be captured.

For a hypergraphH and a mappingγ : E(H) → [0,∞),
we let

B(γ) = {v ∈ V (H) |
∑

e∈E(H),v∈e

γ(e) ≥ 1}.

We may think ofB(γ) as the set of all vertices “blocked” by
γ. Furthermore, we let weight(γ) =

∑

e∈E γ(e).

Definition 9. LetH be a hypergraph. Afractional hypertree
decomposition ofH is a triple(T, (Bt)t∈V (T ), (γt)t∈V (T )),
where (T, (Bt)t∈V (T )) is a tree decomposition ofH and
(γt)t∈V (T ) is a family of mappings fromE(H) to [0,∞)
such that for everyt ∈ V (T ) we haveBt ⊆ B(γt).

We call the setsBt thebagsof the decomposition and the
mappingsγt the(fractional) guards.

The width of (T, (Bt)t∈V (T ), (γt)t∈V (T )) is
max{weight(γt) | t ∈ V (T )}. The fractional hyper-
tree widthfhw(H) ofH is the minimum of the widths of the
fractional hypertree decompositions ofH .

It is easy to see that the minimum of the widths of
all fractional hypertree decompositions of a hypergraphH
always exists and is rational. This follows from the fact that,
up to an obvious equivalence, there are only finitely many
tree decompositions of a hypergraph.

Clearly, for every hypergraphH we have

fhw(H) ≤ ρ∗(H) and fhw(H) ≤ ghw(H).

Examples 7 and 8 above show that there are families of
hypergraphs of bounded fractional hypertree width, but un-
bounded fractional edge cover number and unbounded gen-
eralized hypertree width.

It is also worth pointing out that for every hypergraph
H ,

fhw(H) = 1 ⇐⇒ ghw(H) = 1.

To see this, note that ifγ : E(H) → [0,∞) is a mapping
with weight(γ) = 1 andB ⊆ B(γ), thenB ⊆ e for all
e ∈ E(H) with γ(e) > 0. Thus instead usingγ as a
guard in a fractional hypertree decomposition, we may use
the integral guard{e} for anye ∈ E(H) with γ(e) > 0. Let
us remark that ghw(H) = 1 if and only ifH is acyclic [20].

4.1. The robber and army game. As robbers are
getting ever more clever, it takes more and more powerful
security forces to capture them. In therobber and army
game on a hypergraphH , a robber plays against a general
commanding an army ofr battalions of soldiers. The general
may distribute his soldiers arbitrarily on the hyperedges.
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However, a vertex of the hypergraph is only blocked if the
number of soldiers on all hyperedges that contain this vertex
adds up to the strength of at least one battalion. The game is
then played like the robber and marshals game.

Definition 10. Let H be a hypergraph andr a nonnegative
real. The game RA(H, r) (therobber and army game onH
with r battalionsis played by two players, therobber and
the general. A positionof the game is a pair(γ, v), where
v ∈ V (H) andγ : E(H) → [0,∞) with weight(γ) ≤ r.
To start a play of the game, the robber picks an arbitraryv0,
and the initial position is(0, v0), where0 denote the constant
zero mapping.

In each round, the players move from the current position
(γ, v) to a new position(γ′, v′) as follows: The general
selectsγ′, and then the robber selectsv′ such that there is
a path fromv to v′ in the hypergraphH \ (B(γ) ∩B(γ′)

)

.
If a position(γ, v) with v ∈ B(γ) is reached, the play

ends and the general wins. If the play continues forever, the
robber wins.

Thearmy widthaw(H) of H is the leastr such that the
general has winning strategy for the game RA(H, r).

Again, it is easy to see that aw(H) is well-defined and
rational.

Theorem 11. For every hypergraphH ,

aw(H) ≤ fhw(H) ≤ 3 · aw(H) + 2.

The rest of this subsection is devoted to a proof of
this theorem. The proof is similar to the proof of the
corresponding result for the robber and marshal game and
generalized hypertree width in [2], which in turn is based on
ideas from [27, 29].

LetH be a hypergraph andγ, σ : E(H) → [0,∞). For
a setW ⊆ V (H), we let

weight(γ|W ) =
∑

e∈E(H)
e∩W 6=∅

γ(e).

A mappingσ : E(H) → [0,∞) is abalanced separator for
γ if for every connected componentR ofH \B(σ),

weight(γ|R) ≤
weight(γ)

2
.

Lemma 12. LetH be a hypergraph andr = aw(H). Then
everyγ : E(H) → [0,∞) has a balanced separator of
weightr.

Proof: Suppose for contradiction thatγ : E(H) → [0,∞)
has no balanced separator of weightr. We claim that the
robber has a winning strategy for the game RA(H, r). The
robber simply maintains the invariant that in every position

(σ, v) of the game,v is contained in the connected compo-
nentR of H \B(σ) with weight(γ|R) > weight(γ)/2.

To see that this is possible, let(σ, v) be such a position.
Suppose that the general moves fromσ to σ′, and letR′ be
the connected component ofH \B(σ′) with weight(γ|R′) >
weight(γ)/2. Then there must be somee ∈ E(H) such that
e ∩R 6= ∅ ande ∩R′ 6= ∅, because otherwise we had

weight(γ) = weight(γ)/2 + weight(γ)/2

< weight(γ|R) + weight(γ|R′) ≤ weight(γ),

which is impossible. Thus the robber can move fromR to
R′ via the edgee. 2

Let H be a hypergraph andH ′ an induced subhyper-
graph ofH . Then therestrictionof a mappingγ : E(H) →
[0,∞) to H ′ is the mappingγ′ : E(H ′) → [0,∞) defined
by

γ′(e′) =
∑

e∈E(H)
e∩V (H′)=e′

γ(e).

Conversely, thecanonical extensionof a mappingγ′ :
E(H ′) → [0,∞) toH is the mappingγ : E(H) → [0,∞)
defined by

γ(e) =
γ′(e ∩ V (H ′))

|{e1 ∈ E(H) | e1 ∩ V (H ′) = e ∩ V (H)}|
.

Note that in both cases, we have weight(γ) = weight(γ′)
andB(γ′) = B(γ) ∩ V (H ′).

Proof of Theorem 11:Let H be a hypergraph. To prove
that aw(H) ≤ fhw(H), let (T, (Bt)t∈V (T ), (γt)t∈V (T )) be a
fractional hypertree decomposition ofH . We claim that the
general has a winning strategy for RA(H, r). Let (0, v0) be
the initial position. The general plays in such a way that all
subsequent positions are of the form(γt, v) such thatv ∈ Bu

for someu ∈ V (Tt). Intuitively, this means that the robber
is trapped in the subtree belowt. Furthermore, in each move
the general reduces the height oft. He starts by selectingγt0

for the roott0 of T . Suppose the game is in a position(γt, v)
such thatv ∈ Bu for someu ∈ V (Tt). If u = t, then the
robber has lost the game. So let us assume thatu 6= t. Then
there is a childt′ of t such thatu ∈ V (Tt′). The general
moves toγt′ . Suppose the robber escapes to av′ that is not
contained inBu′ for anyu′ ∈ Tt′ . Then there is a path from
v to v′ in H \ (B(γt)∩B(γt′ )) and hence inH \ (Bt ∩Bt′).
However, it follows easily from the fact that(T, (Bt)t∈T ) is
a tree decomposition ofH that every path from a bag inTt′

to a bag inT \ Tt′ must intersectBt ∩Bt′ . This proves that
aw(H) ≤ fhw(H).

For the second inequality, we shall prove the following
stronger claim:



Claim: Let H be a hypergraph andr = aw(H). Further-
more, letγ : E(H) → [0,∞) such that weight(γ) ≤ 2r+2.
Then there exists a fractional hypertree decomposition ofH
of width at most3r + 2 such thatB(γ) is contained in the
bag of the root of this decomposition.

Note that for γ = 0, the claim yields the desired
fractional hypertree decomposition ofH .

Proof of the claim:The proof is by induction on the cardi-
nality of V (H) \B(γ).

By Lemma 12, there is a balanced separator of weight at
most r for γ in H . Let σ be such a separator, and define
χ : E(H) → [0,∞) by χ(e) = γ(e) + σ(e). Then
weight(χ) ≤ 3r + 2, andB(γ) ⊆ B(χ).

If V (H) = B(χ) (this is the induction bases), then
the 1-node decomposition with bagV (H) and guardχ is
a fractional hypertree decomposition ofH of width at most
3r + 2.

Otherwise, letR1, . . . , Rm be the connected compo-
nents ofH \ B(χ). Note that we cannot exclude the case
m = 1 andR1 = V (H) \B(γ).

For 1 ≤ i ≤ m, let ei be an edge ofH such that
ei ∩ Ri 6= ∅, and letSi be the unique connected component
ofH \B(σ) with Ri ⊆ Si. Note that weight(γ|Si) ≤ r+ 1,
becauseσ is a balanced separator forγ. Let χi : E(H) →
[0,∞) be defined by

χi(e) =











1 if e = ei,

σ(e) + γ(e) if e 6= ei andSi ∩ e 6= ∅,

σ(e) otherwise.

Then

weight(χi) ≤ 1 + weight(σ) + weight(γ|Si) ≤ 2r + 2.

LetHi = H [Ri ∪B(χi)] and observe that

V (Hi) \B(χi) ⊆ Ri \ e ⊂ Ri ⊆ V (H) \B(γ).

Thus the induction hypothesis is applicable toHi and the
restriction ofχi to Hi. It yields a fractional hypertree de-
composition(T i, (Bi

t)t∈V (T i), (γ
i
t)t∈V (T i)) ofHi of weight

at most3r + 2 such thatB(χi) ∩ V (Hi) is contained in the
bagBi

ti
0

of the rootti0 of T i.

LetT be the disjoint union ofT 1, . . . , Tm together with
at a new roott0 that has edges to the rootsti0 of theT i. Let
Bt0 = B(χ) andBt = Bi

t for all t ∈ V (T i). Moreover, let
γt0 = χ, and letγt be the canonical extension ofγi

t toH for
all t ∈ V (T i).

It remains to prove that(T, (Bt)t∈V (T ), (γt)t∈V (T )) is
a fractional hypertree decomposition ofH of width at most
3r + 2. Let us first verify that(T, (Bt)t∈V (T )) is a tree
decomposition.

– Let v ∈ V (H). To see that{v ∈ V (T ) | v ∈ Bt} is
connected inT , observe that{t ∈ V (T i) | v ∈ Bti

}
is connected (maybe empty) for alli. If v ∈ V (Hi) for
exactly onei, this already shows that{v ∈ V (T ) | v ∈
Bt} is connected. Otherwise,v ∈ B(χ) = Bt0 and
hencev ∈ B(χi) ⊆ Bti

0

for all i such thatv ∈ V (Hi).
Again this shows that{v ∈ V (T ) | v ∈ Bt} is
connected.

– Let e ∈ E(H). Eithere ⊆ B(χ) = Bt0 , or there is
exactly onei such thate ⊆ Ri ∪ B(χi). In the latter
case,e ⊆ Bt for somet ∈ V (T i).

It remains to prove thatBt ⊆ B(γt) for all t ∈ T . For
the root, we haveBt0 = B(γt0). For t ∈ V (T i), we have
Bt ⊆ B(γi

t) = B(γt) ∩ V (Hi) ⊆ B(γt). Finally, note that
weight(γt) ≤ 3r + 2 for all t ∈ V (T ). This completes the
proof of the claim. 2

Remark 13. With respect to the difference between hyper-
tree decompositions and generalized hypertree decomposi-
tions, it is worth observing that the fractional tree decompo-
sition (T, (Bt)t∈V (T ), (γt)t∈V (T )) of width at most3r + 2
constructed in the proof of the theorem satisfies the follow-
ing special condition:B(γt) ∩

⋃

u∈V (Tt)
Bu ⊆ Bt for all

t ∈ V (T ).
This implies that a hypergraph of fractional hypertree

width at mostr has a fractional hypertree decomposition of
width at most3r + 2 that satisfies the special condition.

4.2. Finding decompositions. We currently do not
know whether for any fixedr > 1 there is a polynomial-
time algorithm that, given a hypergraphH of fractional
hypertree width at mostr, computes a fractional hypertree
decomposition ofH of width r or at least of widthf(r)
for some functionf . Similar to hypertree width, one way
of obtaining such an algorithm would be through the army
and robber game characterization. The idea would be to
inductively compute the set of all positions of the game from
which the general wins in0, 1, . . . rounds. The problem is
that, as opposed to the robber and marshals game, there is no
polynomial bound on the number of positions. Let us state a
conjecture which would imply such a polynomial bound for
a sufficiently large set of positions and hence for everyr > 1
a polynomial-time algorithm that, given a hypergraphH of
fractional hypertree width at mostr, computes a fractional
hypertree decomposition ofH of width 3r + 2.

LetH be a hypergraph andr ≥ 1. Let us call a setB ⊆
V (H) maximalr-coveredif there is aγ : E(H) → [0,∞)
with weight(γ) ≤ r andB ⊆ B(γ), but there is noB′ ⊃ B
for which such aγ exists. Note that a coveringγ for a
maximalr-covered set can easily be computed in polynomial
time by linear programming. In the robber and army game,
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we may assume without loss of generality that the general
always plays mappingsγ such thatB(γ) is maximal r-
covered.

Conjecture 14. Let r ≥ 1. Then for every hypergraph
H , there are at most|V (H) + E(H)|O(fhw(H)) maximal
r-covered sets. Furthermore, there is a polynomial-time
algorithm that enumerates all these sets.

4.3. Algorithmic applications. Recall thatHI denotes the
hypergraph of a CSP instanceI.

Theorem 15. Let r ≥ 1. Then there is a polynomial-time
algorithm that, given a CSP instanceI and a fractional
hypertree decompositionD ofHI of width at mostr, decides
if I is satisfiable (and computes a solution if it is).

Proof: Given a fractional hypertree decomposition(T,
(Bt)t∈V (T ), (γt)t∈V (T )) of an instanceI, defineVt :=
⋃

t∈V (Tt)
Bt. For eacht ∈ V (T ), our algorithm constructs

the listLt of those solutions ofI[Bt] that can be extended
to a solution ofI[Vt] (recall thatI[Bt] denotes the instance
induced byBt, see Definition 4.) Clearly,I has a solution
if and only if Lt0 is not empty for the roott0 of the tree
decomposition.

The algorithm proceeds in a bottom-up manner: when
constructing the listLt, we assume that for every childt′ of
t, the listsLt′ are already available.

If t is a leaf node, thenVt = Bt, andLt is simply the
list of all solutions ofI[Bt]. By the definition of fractional
hypertree decompositions, the hypergraph ofI[Bt] has frac-
tional edge cover number at mostr, hence by Theorem 5,Lt

can be determined in time‖I‖r+O(1).
Assume now thatt has childrent1, . . . , tk. It is easy

to see that a solutionα of I[Bt] can be extended toI[Vt]
if and only if for each1 ≤ i ≤ k, there is a solutionαi

of I[Vti
] that is compatible withα (that is,α andαi assign

the same values to the variables inBt ∩ Vti
). Therefore,

Lt can be determined by first enumerating every solution
α of I[Bt] using the algorithm of Theorem 5, and then for
eachi, going through the listLti

and checking whether it
contains an assignment compatible withα. Since the number
of solutions ofI[Bt] and the size of eachLti

is ‖I‖r+O(1),
the algorithm spends‖I‖O(r) time at each node, hence the
total running time is polynomial for each fixedr. Using
standard bookkeeping techniques, it is not difficult to extend
the algorithm such that it actually returns a solution if exists.
2

In the remainder of this section, we sketch further algo-
rithmic applications of fractional hypertree decompositions.
Details will appear in the full version of this paper, but we
believe that for a reader familiar with the concepts and tech-
niques our brief outline should be sufficient.

To prove that CSP(H) for classesH of hypergraphs of
bounded fractional hypertree width is in polynomial time,
we probably need a polynomial algorithm that, for fixedr,
computes an at least approximately optimal fractional hyper-
tree decompositions for hypergraphs of fractional hypertree
width at mostr. However, if we are only interested in the
parameterized complexityof our constraint satisfaction prob-
lems, we do not need a decomposition algorithm. Aparam-
eterizationof a problem is a functionκ (usually assumed to
be polynomial-time computable) that maps instances of the
problem to the positive integers. A parameterized problem is
fixed parameter tractableif there is an algorithm that, given
an instanceI, solves it in timef(κ(I)) · p(‖I‖) for some
computable functionf and polynomialp(X). This defini-
tion reflects the idea that if the parameter is small, then the
dependence of the running time on the parameter can be dis-
regarded.

We consider the following parameterization of CSP(H):

p-CSP(H)
Instance:A CSP instanceI = (V,D,C)

with HI ∈ H.
Parameter: |V |, the number of variables of

I.
Problem: Decide ifI has a solution.

Corollary 16. For every classH of hypergraphs of bounded
fractional hypertree width, p-CSP(H) is fixed parameter
tractable.

Fixed-parameter tractability is only relevant in situations
where the parameter can be expected to be small, and
it is very dubious to expect the number of variables in
a constraint satisfaction problem to be small. However,
there is an equivalent problem where this assumption is
realistic, and that is the evaluation of conjunctive (database)
queries. Database queries can usually be assumed to be
small, certainly if compared to the size of the database,
and the number of variables of the corresponding constraint
satisfaction is bounded by the size of the query. The size
of the domain, on the other hand, gets very large, because
the domain consists of all database entries. However, when
evaluating a database query, one is usually not interested
in solving the decision problem (“Does there exist a tuple
satisfying the query?”), but in the enumeration problem
(“Compute all tuples satisfying the query.”). As the number
of tuples satisfying a query is not polynomially bounded
in terms of the size of the database, it is reasonable to
measure the running time of an enumeration algorithm in
terms of the input size plus the output size. We refer to
the corresponding notion of fixed-parameter tractability as
output fixed-parameter tractability.



Theorem 17. Let H be a class of hypergraphs of bounded
fractional hypertree width. Then the evaluation problem for
conjunctive queries whose underlying hypergraph is inH is
output fixed-parameter tractable.

This is proved very similarly to Theorem 15 and Corol-
lary 16.

It is has been observed by Feder and Vardi [15] that con-
straint satisfaction problems can be described as homomor-
phism problems for relational structures. Ahomomorphism
from a structureA to a structureB is a mapping from the
domain ofA to the domain ofB that preserves membership
in all relations. With each structureA we can associate a hy-
pergraphHA whose vertices are the elements of the domain
of A and whose hyperedges are all sets{a1, . . . , ak} such
that(a1, . . . , ak) is a tuple in some relation ofA. For every
classH of hypergraphs, we consider the following problem:

HOM(H)
Instance:StructureA with HA ∈ H and

structureB.
Problem: Decide if there is a homomor-

phism fromA toB.

We may also consider the parameterized versionp-HOM(H),
where the parameter is the number of elements ofA. Then
HOM(H) and CSP(H) are essentially the same problem,
and all results we obtained for (p-)CSP(H) also apply to
(p-)HOM(H).

An embeddingis a homomorphism that is one-to-one.
Note that there is an embedding from a structureA to a
structureB if and only if B has a substructure isomorphic
to A. Analogously to HOM(H) andp-HOM(H) we define
the embedding problems EMB(H) and p-EMB(H). Note
that EMB(P) is NP-complete even for the classP of all
paths, because the Hamiltonian path problem is a special
case. However, for the parameterized version we obtain the
following result:

Theorem 18. Let H be a class of hypergraphs of bounded
fractional hypertree width. Then p-EMB(H) is fixed param-
eter tractable.

The proof combines our previous results with Alon, Yuster,
and Zwick’s [3] color coding technique.

5. Conclusions

In this paper we have considered structural properties that
can make a constraint satisfaction problem polynomial-time
solvable. Previously, bounded hypertree width was the most
general such property. Answering an open question raised in
[8, 10, 18, 22], we have identified a new class of polynomial-

time solvable CSP instances: instances having bounded frac-
tional edge cover number. This result suggests the defini-
tion of fractional hypertree width, which is always at most
as large as the hypertree width (and in some cases much
smaller). It turns out that CSP is polynomial-time solvable
for instances having bounded fractional hypertree width, if
the hypertree decomposition is given together with the in-
stance. It remains an important open question whether there
is a polynomial-time algorithm that determines (or approx-
imates) the fractional hypertree width and constructs a cor-
responding decomposition. We have provided an approxi-
mate characterization of fractional hypertree width usingthe
so-called robber and army game, and we have laid out how
it might help to design an algorithm for approximating the
fractional hypertree width.

Another open question is whether there are polynomial-
time solvable families of CSP instances having unbounded
fractional hypertree width. If the answer is no, then it might
be possible to prove this using parameterized complexity
similarly to [22, 23].
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