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Abstract: It is well-known that constraint satisfaction problems (CSP) over an unbounded
domain can be solved in timenO(k) if the treewidth of the primal graph of the instance is at
mostk andn is the size of the input. We show that no algorithm can be significantly better
than this treewidth-based algorithm, even if we restrict the problem to some special class
of primal graphs. Formally, letG be a recursively enumerable class of graphs and assume
that there is an algorithmA solving binary CSP (i. e., CSP where every constraint involves
two variables) for instances whose primal graph is inG. We prove that if the running time
of A is f (G)no(k/ logk), wherek is the treewidth of the primal graphG and f is an arbitrary
function, then the Exponential Time Hypothesis (ETH) fails. We prove the result also in
the more general framework of the homomorphism problem for bounded-arity relational
structures. For this problem, the treewidth of the core of the left-hand side structure plays
the same role as the treewidth of the primal graph above. Finally, we use the results to
obtain corollaries on the complexity of (Colored) Subgraph Isomorphism.

1 Introduction

Constraint Satisfaction Problems.Constraint satisfaction is a general framework that includes many
standard algorithmic problems such as satisfiability, graph coloring, database queries, etc. A constraint
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satisfaction problem (CSP) consists of a setV of variables, a domainD, and a setC of constraints, where
each constraint is a relation on a subset of the variables. The task is to assign a value fromD to each
variable in such a way that every constraint is satisfied (see Definition2.1for the formal definition). For
example, 3SAT can be interpreted as a CSP instance where the domain is{0,1} and the constraints in
C correspond to the clauses (thus the arity of each constraint is 3). Another example is vertex coloring,
which can be interpreted as a CSP instance where the variables correspond to the vertices, the domain
corresponds to the set of colors, and there is a binary disequality constraint corresponding to each edge.
Notice that the domain size can be arbitrarily large in the CSP instances arising from vertex coloring (as
the coloring problem might involve any number of colors). In the present paper, we think of the domain
as a set whose size is not a fixed constant, but can be be arbitrarily large. This viewpoint is natural in the
context of various database query and artificial intelligence applications, where in fact that domain size
is usually much larger than the number of variables [25, 41].

Due to its generality, solving constraint satisfaction problems is NP-hard if we do not impose any
additional restrictions on the possible instances. Therefore, the main goal of the research on CSP is to
identify tractable classes and special cases of the general problem. The theoretical literature on CSP
investigates two main types of restrictions. The first type is to restrict theconstraint language,that is,
the type of constraints that is allowed. This direction was initiated by the classical work of Schaefer
[42] and was subsequently pursued in e. g., [7, 6, 5, 15, 32]. The second type is to restrict thestructure
induced by the constraints on the variables. Theprimal graph(or Gaifman graph) of a CSP instance is
defined to be a graph on the variables of the instance such that there is an edge between two variables if
and only if they appear together in some constraint. If the treewidth of the primal graph isk, then CSP
can be solved in timenO(k) [21]. (Heren is the size of the input; in the cases we are interested in this
paper, the input size is polynomially bounded by the domain size and the number of variables.) The aim
of this paper is to investigate whether there exists any other structural property of the primal graph that
can be exploited algorithmically to speed up the search for the solution.

Structural complexity of CSP.The first question is to understand which graphs make CSP polynomial-
time solvable. We have to be careful with the formalization of this question: ifG is a graph withk
vertices, then any CSP instance with primal graphG can be solved in timenO(k). Therefore, restricting
CSP toanyfixed graph makes it polynomial-time solvable. The real question is whichclassesof graphs
makes CSP polynomial-time solvable. Formally, for a classG of graphs, let CSP(G) be the class of all
CSP instances where the primal graph of the instance is inG. Note that this definition does not make
any restriction on the constraint relations: it is possible that every constraint has a different constraint
relation. IfG has bounded treewidth, then CSP(G) is polynomial-time solvable. The converse statement
is also true:

Theorem 1.1 (Grohe, Schwentick, Segoufin [30]; Grohe [27]). If G is a recursively enumerable class
of graphs, then CSP(G) is polynomial-time solvable if and only ifG has bounded treewidth (assuming
FPT 6= W[1]).

The results in [30, 27] are actually more general and are stated in terms of the conjunctive query
and homomorphism problems (more on this in Section5), but it is easy to see that those results im-
ply Theorem1.1. The assumption FPT6= W[1] is a standard hypothesis of parameterized complexity
(cf. [13, 18]). Let us emphasize that the proof of Theorem1.1uses in an essential way the fact that the
domain size can be arbitrarily large.
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By Theorem1.1, bounded treewidth is the only property of the primal graph that can make the
problem polynomial-time solvable. However, Theorem1.1does not rule out the possibility that there is
some structural property that enables us to solve instances significantly faster than the treewidth-based
algorithm of [21]. Conceivably, there can be a classG of graphs such that CSP(G) can be solved in time
nO(

√
k) or even in timenO(logk), if k is the treewidth of the primal graph. The main result of the paper is

that this is not possible; thenO(k) time algorithm is essentially optimal, up to anO(logk) factor in the
exponent. Thus, in our specific setting, there is no other structural information beside treewidth that can
be exploited algorithmically.

We prove our result under the Exponential Time Hypothesis (ETH) [31]: we assume that there is
no 2o(n) time algorithm forn-variable 3SAT. This assumption is stronger than FPT6= W[1]. The formal
statement of the main result of the paper is the following (we denote by tw(G) the treewidth ofG):

Theorem 1.2. If there is a recursively enumerable classG of graphs with unbounded treewidth and a
function f such that binary CSP(G) can be solved in time f(G)‖I‖o(tw(G)/ logtw(G)) for instances I with
primal graph G∈ G, then ETH fails.

Binary CSP(G) is the special case of CSP(G) where every constraint is binary, i. e., involves two
variables. Note that adding this restriction makes the statement of Theorem1.2 stronger. Similarly,
allowing the multiplicative factorf (G) in the running time also makes the result stronger. We do make
any assumption onf , for example, we do not require thatf is computable.

The main technical tool of the proof of Theorem1.1 in [30, 27] is the Excluded Grid Theorem of
Robertson and Seymour [40], which states that there is an unbounded functiong(k) such that every
graph with treewidth at leastk contains ag(k)×g(k) grid as minor. The basic idea of the proof in [27] is
to show that CSP(G) is not polynomial-time solvable ifG contains every grid and then this result is used
to argue that CSP(G) is not polynomial for anyG with unbounded treewidth, since in this caseG contains
every grid as minor. However, this approach does not work if we want a tighter lower bound, as in
Theorem1.2. The problem is that the functiong(k) is very slowly growing, e. g.,o(logk), in the known
proofs of the Excluded Grid Theorem [12]. Therefore, if the only property of graphs with treewidth at
leastk that we use is that they haveg(k)×g(k) grid minors, then we immediately lose a lot: as CSP on
theg(k)×g(k) grid can be solved in time‖I‖O(g(k)), no lower bound stronger than‖I‖o(logtw(G)) can be
proved with this approach. Thus we need a characterization of treewidth that is tighter than the Excluded
Grid Theorem.

The almost-tight bound of Theorem1.2 is made possible by a novel characterization of treewidth
that is tight up to a logarithmic factor. This result might be of independent interest. We generalize
the notion of minors the following way. Anembeddingof H into G is a mappingψ from V(H) to
connected subsets ofG such that ifu,v∈V(H) are adjacent, then eitherψ(u)∩ψ(v) 6= /0 or there is an
edge connecting a vertex ofψ(u) and a vertex ofψ(v). Thedepthof the embedding is at mostq if every
vertex ofG appears in the images of at mostq vertices ofH. ThusH has an embedding of depth 1 into
G if and only if H is a minor ofG.

We characterize treewidth by the “embedding power” of the graph in the following sense. Ifq is
sufficiently large, thenH has a embedding of depthq into G. For example,q = 2|E(H)| is certainly
sufficient (if H has no isolated vertices). However, we show that if the treewidth ofG is at leastk, then
there is an embedding with depthq = O(|E(H)| logk/k), i.e., the depth is a factorO(k/ logk) better
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than in the trivial solution. We prove this result by using the well-known characterizations of treewidth
with separators and aO(logk) integrality gap result for the sparsest cut problem. The main idea of the
proof of Theorem1.2is to use the embedding power of a graph with large treewidth to simulate a 3SAT
instance efficiently.

We conjecture that Theorem1.2holds in a tight way: theO(logtw(G)) factor can be removed from
the exponent.

Conjecture 1.3. There is no recursively enumerable classG of graphs with unbounded treewidth and
no function f such that CSP(G) can be solved in timef (G)‖I‖o(tw(G)) for instancesI with primal graph
G∈ G.

This seemingly minor improvement would be very important for classifying the complexity of other
CSP variants [38]. However, it seems that a much better understanding of treewidth is required before
Theorem1.2can be made tight. At the very least, it should be settled whether there is a polynomial-time
constant-factor approximation algorithm for treewidth.

The homomorphism problem.A large part of the theoretical literature on CSP follows the notation
introduced by Feder and Vardi [15] and formulates the problem as a homomorphism between relational
structures. This more general framework allows a clean algebraic treatment of many issues. In Section5,
we translate the lower bound of Theorem1.2into this framework (Theorem5.1) to obtain a quantitative
version of the main result of [27]. That is, the left-hand side classes of structures in the homomorphism
problem are not only characterized with respect to polynomial-time solvability, but we prove almost-
tight lower bounds on the exponent of the running time. As a special case, Theorem5.1 immediately
implies a generalization of Theorem1.2 from binary CSP to constraints with any fixed finite arity: for
every fixedr ≥ 2, it can be used to give a lower bound on the running time ofr-ary CSP when restricted
to a family ofr-uniform hypergraphs.

As observed in [27], the complexity of the homomorphism problem does not depend directly on the
treewidth of the left-hand side structure, but rather on the treewidth of its core. Thus the treewidth of the
core appears in Theorem5.1, the analog of Theorem1.2. The reason why the notion of core is irrelevant
in Theorem1.2 is that the way we defined CSP(G) allows the possibility that every constraint relation
appearing in the instance is different. In such a case, a nontrivial homomorphism of the primal graph
does not provide any apparent shortcut for solving the problem. Similarly to [27], our result applies
only if the left-hand side structure has bounded arity. In the unbounded-arity case, issues related to
the representation of the structures arise, which change the problem considerably. The homomorphism
problem with unbounded arity is far from understood: recently, new classes of tractable structures were
identified [28, 36, 37].

Subgraph problems.Obtaining tight lower bounds in the exponent under assuming ETH has been
done previously in the framework of parameterized complexity. A basic result in this direction is the
following:

Theorem 1.4 ([9, 10]). There is no f(k) ·no(k) time algorithm for k-Clique, unless ETH fails.

For a number of problems parameterized by clique width, tight bounds on the exponent of the run-
ning time were given by [20]. The Closest Substring problem was studied in [35], and it was shown that
in two specific settings, there are no algorithms witho(logk) ando(log logk) in the exponent of the run-
ning time (unless ETH fails), and there are algorithms matching these lower bounds. The class M[1] was
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introduced as a tool that uses ETH to provide an alternative way of proving hardness in parameterized
complexity [14, 19].

Theorem1.4can be interpreted as a lower bound for the Subgraph Isomorphism problem (given two
graphsG andH, decide ifG is a subgraph ofH). Using the color coding technique of [2], it is possible
to solve Subgraph Isomorphism in timef (|V(G)|) ·nO(tw(G)). Theorem1.4and the fact that the treewith
of thek-clique isk−1 shows that it is not possible to improve the dependence on tw(G) in the exponent
to o(tw(G)), since in particular this would imply anf (k) ·no(k) time algorithm for thek-Clique problem.
However, this observation does not rule out the possibility that there is a special class of graphs (say,
bounded degree graphs or planar graphs) where it possible to improve the exponent too(tw(G)). In
Section6, we discuss lower bounds for Subgraph Isomorphism (and its colored version) that follows
from our CSP results.

Another important aspect of Theorem1.4 is that it can be used to obtain lower bounds for other
parameterized problems. W[1]-hardness proofs are typically done by parameterized reductions fromk-
Clique. It is easy to observe that a parameterized reduction implies a lower bound similar to Theorem1.4
for the target problem, with the exact form of the lower bound depending on the way the reduction
changes the parameter. Many of the more involved reductions use edge selection gadgets (see e.g.,
[17]). As thek-clique hasΘ(k2) edges, this means that the reduction increases the parameter toΘ(k2)
and we can conclude that there is nof (k) · no(

√
k) time algorithm for the target problem (unless ETH

fails). If we want to obtain stronger bounds on the exponent, then we have to avoid the quadratic
blow up of the parameter and do the reduction from a different problem. One possibility is to reduce
from Subgraph Isomorphism, parameterized by the number of edges. In a reduction from Subgraph
Isomorphism, we need|E(G)| edge selection gadgets, which usually implies that the new parameter
is Θ(|E(G)|). Therefore, the reduction and the following corollary obtained in Section6 allows us to
conclude that there is nof (k) ·no(k/ logk) time algorithm for the target problem:

Corollary 1.5. If Subgraph Isomorphism can be solved in time f(k)no(k/ logk), where f is an arbitrary
function and k= |E(G)| is the number ofedgesof the smaller graph G, then ETH fails.

Organization. Section2 summarizes the notation we use. Section3 presents the new character-
ization of treewidth. Section4 treats binary CSP and proves Theorem1.2. Section5 overviews the
homomorphism problem and presents the main result in this context. Section6 obtains hardness results
for subgraph problems as corollaries of the main result.

2 Preliminaries

Constraint satisfaction problems. We briefly recall the most important notions related to CSP. For
more background, see e. g., [26, 15].

Definition 2.1. An instance of aconstraint satisfaction problemis a triple(V,D,C), where:

• V is a set of variables,

• D is a domain of values,
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• C is a set of constraints,{c1,c2, . . . ,cq}. Each constraintci ∈C is a pair〈si ,Ri〉, where:

– si is a tuple of variables of lengthmi , called theconstraint scope,and

– Ri is anmi-ary relation overD, called theconstraint relation.

For each constraint〈si ,Ri〉 the tuples ofRi indicate the allowed combinations of simultaneous values
for the variables insi . The lengthmi of the tuplesi is called thearity of the constraint. Asolutionto a
constraint satisfaction problem instance is a functionf from the set of variablesV to the domain of values
D such that for each constraint〈si ,Ri〉 with si = (vi1,vi2, . . . ,vim), the tuple( f (vi1), f (vi2), . . . , f (vim)) is
a member ofRi . We say that an instance isbinary if each constraint relation is binary, i. e.,mi = 2 for
every constraint1. In this paper, we consider only binary instances. It can be assumed that the instance
does not contain two constraints〈si ,Ri〉, 〈sj ,Rj〉 with si = sj , since in this case the two constraints can
be replaced with the constraint〈si ,Ri ∩Rj〉.

In the input, the relation in a constraint is represented by listing all the tuples of the constraint.
We denote by‖I‖ the size of the representation of the instanceI = (V,D,C). For binary constraint
satisfaction problems, we can assume that‖I‖ = O(V2D2): by the argument in the previous paragraph,
we can assume that there areO(V2) constraints and each constraint has a representation of lengthO(D2).
Furthermore, it can be assumed that|D| ≤ ‖I‖: elements ofD that do not appear in any relation can be
removed.

Let I = (V,D,C) be a CSP instance and letV ′ ⊆V be a nonempty subset of variables. The instance
inducedbyV ′ is the CSP instanceI [V ′] = (V ′,D,C′), whereC′ ⊆C is the set of constraints whose scope
is contained inV ′. Clearly, if f is a solution ofI , then f restricted toV ′ is a solution ofI [V ′].

Theprimal graphof a CSP instanceI = (V,D,C) is a graphG with vertex setV, wherex,y∈V form
an edge if and only if there is a constraint〈si ,Ri〉 ∈C with x,y∈ si . For a classG of graphs, we denote
by CSP(G) the problem restricted to instances where the primal graph is inG.

Graphs. We denote byV(G) andE(G) the set of vertices and the set of edges of the graphG,
respectively. Given a graphG, the line graph L(G) has one vertex for each edge ofG, and two vertices
of L(G) are connected if and only if the corresponding edges inG share an endpoint. The line graph
L(Kk) of the complete graphKk will appear repeatedly in the paper. Usually we denote the vertices of
L(Kk) with v{i, j} (1≤ i < j ≤ k), wherev{i1, j1} andv{i2, j2} are adjacent if and only if{i1, j1}∩{i2, j2} 6= /0.

A tree decompositionof a graphG is a tuple(T,(Bt)t∈V(T)), whereT is a tree and(Bt)t∈V(T) is a
family of subsets ofV(G) such that for eache∈ E(G) there is a nodet ∈ V(T) such thate⊆ Bt , and
for eachv ∈ V(G) the set{t ∈ V(T) | v ∈ Bt} is connected inT. The setsBt are called thebagsof
the decomposition. Thewidth of a tree-decomposition(T,(Bt)t∈V(T)) is max

{
|Bt | | t ∈V(t)}−1. The

treewidthtw(G) of a graphG is the minimum of the widths of all tree decompositions ofG. A classG
of graphs is ofbounded treewidthif there is a constantc such that tw(G)≤ c for everyG∈ G. For more
background on treewidth and its applications, the reader is referred to [4, 33, 3].

Minors and embeddingsA graphH is a minor of G if H can be obtained fromG by a sequence
of vertex deletions, edge deletions, and edge contractions. The following alternative definition will be
more relevant to our purposes. Anembeddingof H into G is a mappingψ from V(H) to connected
subsets ofG such that ifu,v ∈ V(H) are adjacent, then eitherψ(u)∩ψ(v) 6= /0 or there is an edge

1It is unfortunate that some communities use the notion “binary CSP” in the sense that each constraint is binary (as this
paper), while other communities use it in the sense that the variables are 0-1, i. e., the domain size is 2.
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connecting a vertex ofψ(u) and a vertex ofψ(v). Thedepthof a vertexv of G is the size of the set
{u∈ V(H) | v∈ ψ(u)} and the depth of the embedding is the maximum of the depths of the vertices.
It is easy to see thatH is a minor ofG if and only if H has an embedding of depth 1 intoG, i. e., the
images are disjoint.

In an equivalent way, we can use minors to define embeddings of a certain depth. Given a graphG
and an integerq, we denote byG(q) the graph obtained by replacing every vertex with a clique of sizeq
and replacing every edge with a complete bipartite graph onq+q vertices. It is easy to see thatH has an
embedding of depthq into G if and only if H is a minor ofG(q). The mappingφ that maps each vertex
of G to the corresponding clique ofG(q) will be called theblow-upmapping fromG to G(q).

3 Embedding in a graph with large treewidth

If H is a graph withn vertices, then obviouslyH has an embedding of depthn into any (nonempty)G. If
G has a clique of sizek, then there is an embedding with depth at mostn/k. Furthermore, even ifG does
not have ak-clique subgraph, but it does have ak-clique minor, then there is such an embedding with
depth at mostn/k. Thus ak-clique minor increases the “embedding power” of a graph by a factor ofk.
The main result of the section is that large treewidth implies a similar increase in embedding power. The
following lemma states this formally:

Theorem 3.1. There are computable functions f1(G), f2(G), and a universal constant c such that for
every k≥ 1, if G is a graph withtw(G)≥ k and H is a graph with|E(H)|= m≥ f1(G) and no isolated
vertices, then H has an embedding into G with depth at mostdcmlogk/ke. Furthermore, such an
embedding can be found in time f2(G)mO(1).

Using the equivalent characterization by minors, the conclusion of Theorem3.1 means thatH is a
minor ofG(q) for q = dcmlogk/ke. In the rest of the paper, we mostly use this notation.

The valuecmlogk/k is optimal up to aO(logk) factor, i. e., it cannot be improved too(m/k). To
see this, observe first that tw(G(q)) = Θ(q · tw(G)) (cf. [29]). We use the fact that the treewidth of a
graphH with medges can beΩ(m) (e. g., bounded-degree expanders). Therefore, if tw(G) = k, then the
treewidth ofG(q) for q = o(m/k) is o(m), making it impossible thatH is a minor ofG(q). Furthermore,
Theorem3.1does not remain true ifm is the number of vertices ofH (instead of the number of edges).
Let H be a clique onm vertices, and letG be a bounded-degree graph onO(k) vertices with treewidth
k. It is easy to see thatG(q) hasO(q2k) edges, henceH can be a minor ofG(q) only if q2k = Ω(m2),
that is,q = Ω(m/

√
k). Note that it makes no sense to state in this form an analog of Theorem3.1where

m is the number of vertices ofH: the worst case happens ifH is anm-clique, and the theorem would
become a statement about embedding cliques. The requirementm≥ f1(G) is a technical detail: some of
the arguments in the embedding technique requiresH to be large.

The graphL(Kk), i. e., the line graph of the complete graph plays a central role in the proof of
Theorem3.1. The proof consists of two parts. In the first part (Section3.1), we show that if tw(G)≥ k,
then a blow-up ofL(Kk) is a minor of an appropriate blow-up ofG. This part of the proof is based
on the characterization of treewidth by balanced separators and uses a result of Feige et al. [16] on the
linear programming formulation of separation problems. Similar ideas were used in [29]; some of the
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arguments are reproduced here for the convenience of the reader. In the second part (Section3.2), we
show that every graph is a minor of an appropriate blow-up ofL(Kk).

3.1 EmbeddingL(Kk) in G

Given a nonempty setW of vertices, we say that a setSof vertices is abalanced separator(with respect
to W) if |W∩C| ≤ |W|/2 for every connected componentC of G\S. A k-separator is a separatorSwith
|S| ≤ k. The treewidth of a graph is closely connected with the existence of balanced separators:

Lemma 3.2 ([39], [18, Section 11.2]).

1. If graph G has treewidth greater than3k, then there is a set W⊆V(G) of size2k+ 1 having no
balanced k-separator.

2. If graph G has treewidth at most k, then every W⊆V(G) has a balanced(k+1)-separator.

A separationis a partition of the vertices into three classes(A,B,S) (S 6= /0) such that there is no edge
betweenA andB. Note that it is possible thatA = /0 or B = /0. Thesparsityof the separation(A,B,S)
(with respect toW) is defined as

α
W(A,B,S) =

|S|
|(A∪S)∩W| · |(B∪S)∩W|

.

We denote byαW(G) the minimum ofαW(A,B,S) taken over every separation(A,B,S). It is easy to see
that for everyG and nonemptyW, 1/|W|2 ≤ αW(G) ≤ 1/|W| (the second inequality follows from the
fact that the separation(V(G)\W, /0,W) has sparsity exactly 1/|W|). For our applications, we need a set
W such thatαW(G) is close to the maximum possible, i. e.,Ω(1/|W|). The following lemma shows that
the non-existence of a balanced separator can guarantee the existence of such a setW. The connection
between balanced separators and sparse separations is well known, see for example [16, Section 6].
However, in our parameter setting a simpler argument is sufficient.

Lemma 3.3. If |W|= 2k+1and W has no balanced k-separator in a graph G, thenαW(G)≥ 1/(4k+1).

Proof. Let (A,B,S) be a separation of sparsityαW(G); without loss generality, we can assume that
|A∩W| ≥ |B∩W|, hence|B∩W| ≤ k. If |S| > k, thenαW(A,B,S) ≥ (k+ 1)/(2k+ 1)2 ≥ 1/(4k+
1). If |S| ≥ |(B∪S)∩W|, thenαW(A,B,S) ≥ 1/|(A∪S)∩W| ≥ 1/(2k+ 1). Assume therefore that
|(B∪S)∩W| ≥ |S|+ 1. Let S′ be a set ofk− |S| ≥ 0 arbitrary vertices ofW \ (S∪B). We claim that
S∪S′ is a balancedk-separator ofW. Suppose that there is a componentC of G\ (S∪S′) that contains
more thank vertices ofW. ComponentC is either a subset ofA or B. However, it cannot be a subset
of B, since|B∩W| ≤ k. On the other hand,|(A\S′)∩W| is at most 2k+ 1− |(B∪S)∩W| − |S′| ≤
2k+1− (|S|+1)− (k−|S|)≤ k.

Remark 3.4. Lemma3.3does not remain true in this form for largerW. For example, letK be a clique
of size 3k+ 1, let us attachk degree one vertices to a distinguished vertexx of K, and let us attach a
degree one vertex to every other vertex ofK. Let W be the set of these 4k degree one vertices. It is
not difficult to see thatW has no balancedk-separator. On the other hand,S= {x} is a separator with
sparsity 1/(k ·3k), henceαW(G) = O(1/k2).

THEORY OFCOMPUTING 8

http://dx.doi.org/10.4086/toc


CAN YOU BEAT TREEWIDTH?

LetW = {w1, . . . ,wr} be a set of vertices. Aconcurrent vertex flow of valueε is a collection of|W|2
flows such that for every ordered pair(u,v) ∈W×W, there is a flow of valueε betweenu andv, and
the total amount of flow going through each vertex is at most 1. Aflow betweenu andv is a weighted
collection ofu−v paths. Au−v path contributes to the load of vertexu, of vertexv, and of every vertex
betweenu andv on the path. In the degenerate case whenu = v, vertexu = v is the only vertex where
the flow betweenu andv goes through, that is, the flow contributes to the load of only this vertex.

The maximum concurrent vertex flow can be expressed as a linear program the following way. For
u,v∈W, let Puv be the set of allu−v paths inG, and for eachp∈ Puv, let variablepuv ≥ 0 denote the
amount of flow that is sent fromu to v alongp. Consider the following linear program:

maximizeε

s. t.

∑
p∈Puv

puv≥ ε ∀u,v∈W

∑
(u,v)∈W×W

∑
p∈Puv:w∈p

puv≤ 1 ∀w∈V (LP1)

puv≥ 0 ∀u,v∈W, p∈ Puv

The dual of this linear program can be written with variables{`uv}u,v∈W and{sv}v∈V the following way:

minimize ∑
v∈V

sv

s. t.

∑
w∈p

sw ≥ `uv ∀u,v∈W, p∈ Puv (∗)

∑
(u,v)∈W×W

`uv≥ 1 (∗∗) (LP2)

`uv≥ 0 ∀u,v∈W

sw ≥ 0 ∀w∈V

We show that, in some sense, (LP2) is the linear programming relaxation of finding a separator with
minimum sparsity. If there is a separation(A,B,S) with sparsityαW(A,B,S), then (LP2) has a solution
with value at mostαW(A,B,S). Setsv = αW(A,B,S)/|S| if v ∈ S andsv = 0 otherwise; the value of
such a solution is clearlyαW(A,B,S). For everyu,v ∈ W, set`uv = minp∈Puv ∑w∈psw to ensure that
inequalities (*) hold. To see that (**) holds, notice first that`uv≥ αW(A,B,S)/|S| if u∈ A∪S, v∈ B∪S,
as everyu− v path has to go through at least one vertex ofS. Furthermore, ifu,v∈ Sandu 6= v, then
`uv ≥ 2αW(A,B,S)/|S| since in this case au− v paths meetsS in at least two vertices. The expression
|(A∪S)∩W| · |(B∪S)∩W| counts the number of ordered pairs(u,v) satisfyingu ∈ (A∪S)∩W and
v∈ (B∪S)∩W, such that pairs withu,v∈ S∩W, u 6= v are counted twice. Therefore,

∑
(u,v)∈W×W

`uv≥ (|(A∪S)∩W| · |(B∪S)∩W|) · αW(A,B,S)
|S|

= 1,
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which means that inequality (**) is satisfied.
The other direction is not true: a solution of (LP2) with valueα does not imply that there is a sepa-

ration with sparsity at mostα. However, Feige et al. [16] proved that it is possible to find a separation
whose sparsity is greater than that by at most aO(log|W|) factor (this result appears implicitly already
in [34]):

Theorem 3.5 (Feige et al. [16], Leighton and Rao [34]). If (LP2) has a solution with valueα, then
there is a separation with sparsity O(α log|W|).

We use (the contrapositive of) Theorem3.5 to obtain a concurrent vertex flow in a graph with large
treewidth. This concurrent vertex flow can be used to find anL(Kk) minor in the blow-up of the graph
in a natural way: the flow paths correspond to the edges ofKk.

Lemma 3.6. Let G be a graph withtw(G) > 3k. There are universal constants c1,c2 > 0 such that
L(Kk)(dc1 logne) is a minor of G(dc2 logn·k logke), where n is the number of vertices of G.

Proof. SinceG has treewidth greater than 3k, by Lemma3.2, there is a subsetW0 of size 2k+ 1 that
has no balancedk-separator. By Lemma3.3, αW0(G) ≥ 1/(4k+1) ≥ 1/(5k). Therefore, Theorem3.5
implies that the dual linear program (LP2) has no solution with value less than 1/(c05k log(2k+ 1)),
wherec0 is the constant hidden by the bigO notation in Theorem3.5. By linear programming duality,
there is a concurrent flow of value at leastα := 1/(c05k log(2k+1)) connecting the vertices ofW0; let
puv be a corresponding solution of (LP1).

Let W ⊆W0 be a subset ofk vertices. For each pair of vertices(u,v) ∈W×W, let us randomly and
independently choosedlnne pathsPu,v,1, . . . , Pu,v,dlnne of Puv (here ln denotes the natural logarithm ofn),
where pathp is chosen with probability

puv

∑p′∈Puv
(p′)uv ≤

puv

α
.

That is, we scale the valuespuv to obtain a probability distribution. The inequality above is true
because the valuespuv satisfy (LP1). The expected number of times a pathp ∈ Puv is selected is
dlnne · (puv/∑p′∈Puv

(p′)uv) ≤ dlnne · puv/α. Thus the expected number of paths selected fromPuv that
go through a vertexw is at mostdlnne ·∑p∈Puv:w∈p puv/α. Considering that we selectdlnne paths
for every pair(u,v) ∈ W ×W, the expected numberµw of selected paths containingw is at most
dlnne ·∑(u,v)∈W×W ∑p∈Puv:w∈p puv/α, which is at mostdlnne/α, since the valuespuv satisfy (LP1). We
use the following standard Chernoff bound: for everyr > µw, the probability that more thanµw+ r of the
k2 lnn paths contain vertexw is at most(µwe/r)r . Thus the probability that more thanµw+10dlnne/α ≤
11dlnne/α of the paths containw is at most(µwe/(10dlnne/α))10dlnne/α ≤ (1/e)10lnn = 1/n10 (in the
exponent, we useddlnne/α ≥ lnn, since it can be assumed thatc0 ≥ 1 and lnn≥ 1). Therefore, with
probability at least 1− 1/n, each vertexw is contained in at mostq := 11dlnn/αe paths. Note that
q≤ dc2 logn·k logke, for an appropriate value ofc2.

Let φ be the blow-up mapping fromG to G(q). For each pathPu,v,i in G, we define a pathP′
u,v,i in G(q).

Let Pu,v,i = p1p2 . . . pr . The pathP′
u,v,i we define consists of one vertex ofφ(p1), followed by one vertex

of φ(p2), . . . , followed by one vertex ofφ(pr). The vertices are selected arbitrarily from these sets, the
only restriction is that we do not select a vertex ofG(q) that was already assigned to some other path
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P′
u′,v′,i′ . Since each vertexw of G is contained in at mostq paths, theq vertices ofφ(w) are sufficient to

satisfy all the paths going throughw. Therefore, we can ensure that thek2dlnne pathsP′
u,v,i are pairwise

disjoint inG(q).
The minor mapping fromL(Kk)(dlnne) to G(q) is defined as follows. Letψ be the blow-up mapping

from L(Kk) to L(Kk)(dlnne), and letv{1,2}, v{1,3} . . . , v{k−1,k} be the
(k

2

)
vertices ofL(Kk), wherev{i1,i2}

andv{ j1, j2} are adjacent if and only if{i1, i2}∩{ j1, j2} 6= /0. LetW = {w1, . . . ,wk}. Thedlnne vertices
of ψ(vi, j) are mapped to thedlnne pathsP′

wi ,w j ,1, . . . , P′
wi ,w j ,dlnne. Clearly, the images of the vertices are

disjoint and connected. We have to show that this minor mapping maps adjacent vertices to adjacent
sets. Ifx∈ ψ(vi1,i2) andx′ ∈ ψ(v j1, j2) are connected inL(Kk)(dlnne), then there is at ∈ {i1, i2}∩{ j1, j2}.
This means that the paths corresponding tox andx′ both contain a vertex of the cliqueφ(wt) in G(q),
which implies that there is an edge connecting the two paths.

With the help of the following proposition, we can make a small improvement on Lemma3.6: the
assumption tw(G) > 3k can be replaced by the assumption tw(G) ≥ k. This will make the result more
convenient to use.

Proposition 3.7. For every k≥ 3, q≥ 1, L(Kqk) is a subgraph of L(Kk)(2q2).

Proof. Let φ be a mapping from{1, . . . ,qk} to {1, . . . ,k} such that exactlyq elements of{1, . . . ,qk} are
mapped to each element of{1, . . . ,k}. Let v{i1,i2} (1≤ i1 < i2 ≤ qk) be the vertices ofL(Kqk) andut

{i1,i2}

(1≤ i1 < i2≤ k, 1≤ t ≤ 2q2) be the vertices ofL(Kk)(2q2), with the usual convention that two vertices are
adjacent if and only if the lower indices are not disjoint. LetU{i1,i2} be the clique{ut

{i1,i2} | 1≤ t ≤ 2q2}.
Let us consider the vertices ofL(Kqk) in some order. Ifφ(i1) 6= φ(i2), then vertexv{i1,i2} is mapped to
a vertex ofU{φ(i1),φ(i2)} that was not already used for a previous vertex. Ifφ(i1) = φ(i2), thenv{i1,i2} is
mapped to a vertexU{φ(i1),φ(i1)+1} (where addition is modulok). It is clear that if two vertices ofL(Kqk)
are adjacent, then the corresponding vertices ofL(Kk)(2q2) are adjacent as well. We have to verify that,
for a given i1, i2, at most 2q2 vertices ofL(Kqk) are mapped to the cliqueU{i1,i2}. As |φ−1(i1)| and
|φ−1(i2)| are bothq, there are at mostq2 verticesv{ j1, j2} with φ( j1) = i1, φ( j2) = i2. Furthermore,
if i2 = i1 + 1, then there are

(q
2

)
≤ q2 additional verticesv{ j1, j2} with φ( j1) = φ( j2) = i1 that are also

mapped toU{i1,i2}. Thus at most 2q2 vertices are mapped to each cliqueU{i1,i2}.

Setk′ := 3k+ 1≤ 4k. Using Prop.3.7 with q = 4, we get thatL(Kk′)(dc1 logne/32) is a subgraph of
L(Kk)(dc1 logne). Thus if tw(G) ≥ k′, then we can not only find a blowup ofL(Kk), but even a blowup of
L(Kk′). By replacingk′ with k, Lemma3.6can be improved the following way:

Lemma 3.8. Let G be a graph withtw(G) ≥ k. There are universal constants c1,c2 > 0 such that
L(Kk)(dc1 logne) is a minor of G(dc2 logn·k logke), where n is the number of vertices of G.

3.2 EmbeddingH in L(Kk)

As the second step of the proof of Theorem3.1, we show that every (sufficiently large) graphH is a
minor ofL(Kk)(q) for q = O(|E(H)|/k2).
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Lemma 3.9. For every k> 1 there is a constant nk = O(k4) such that for every G with|E(G)|> nk and
no isolated vertices, the graph G is a minor of L(Kk)(q) for q = d130|E(G)|/k2e. Furthermore, a minor
mapping can be found in time polynomial in q and the size of G.

Proof. We can assume thatk≥ 5: otherwise the result is trivial, since the graphG has less thanq vertices
andL(Kk)(q) contains a clique of sizeq. First we construct a graphG′ of maximum degree 3 that contains
G as a minor. This can be achieved by replacing every vertexv of G with a path ond(v) vertices (where
d(v) is the degree ofv in G); now we can ensure that the edges incident tov use distinct copies ofv from
the path. The new graphG′ has exactly 2|E(G)| vertices.

We show thatG′, henceG, is a minor ofL(Kk)(q). Take an arbitrary partition ofV(G′) into
(k

2

)
classesV{i, j} (1≤ i < j ≤ k) such that|V{i, j}| ≤ d|V|/

(k
2

)
e for everyi, j. Let v{i, j} (1≤ i < j ≤ k) be the

vertices ofL(Kk), and letφ be the blow-up mapping fromL(Kk) to L(Kk)(q).
The minor mappingψ from G′ to L(Kk)(q) is defined the following way. First, ifu∈V{i, j}, then let

ψ(u) contain a vertex ˆu from φ(v{i, j}). Observe that if edgeeconnects verticesu1 ∈V{i1, j1}, u2 ∈V{i2, j2}
and{i1, j1}∩ {i2, j2} 6= /0 holds, then ˆu1 and û2 are adjacent. In order toψ be a minor mapping, we
extends the setsψ(u) to ensure that the endpoints ofe are mapped to adjacent sets even ifV{i1, j1} and
V{i2, j2} have disjoint indices.

Fix an arbitrary orientation of each edge ofG′. For every quadruple(i1, j1, i2, j2) of distinct values
with i1 < j1, i2 < j2, let Ei1, j1,i2, j2 be the set of edges going from a vertex ofV{i1, j1} to a vertex ofV{i2, j2}.
Let us partition the setEi1, j1,i2, j2 into k−4 classesE`

i1, j1,i2, j2 (` ∈ {1, . . .k}\{i1, j1, i2, j2}) in an arbitrary
way such that|E`

i1, j1,i2, j2| ≤ d|Ei1, j1,i2, j2|/(k− 4)e. For each edge−→uw∈ E`
i1, j1,i2, j2, we add a vertex of

φ(v{i1,`}) to ψ(u) and a vertex ofφ(v{i2,`}) to ψ(w); these two vertices are neighbors with each other
and they are adjacent to ˆu andŵ, respectively. This ensures thatψ(u) andψ(v) remain connected and
there is an edge betweenψ(u) andψ(w). Repeating this step for every edge ensures thatψ is a minor
mapping.

What remains to be shown is that the setsφ(v{x,y}) are large enough so that we can ensure that no
vertex ofL(Kk)(q) is assigned to more than oneψ(u). Let us count how many vertices ofφ(v{x,y}) are
used when the minor mapping is constructed as described above. First, the image of each vertexu in
V{x,y} uses one vertex ˆu of φ(v{x,y}); together these vertices use at most|V{x,y}| ≤ d|V(G′)|/

(k
2

)
e vertices

from φ(v{x,y}). Furthermore, as described in the previous paragraph, for some quadruples(i1, j1, i2, j2)
and integer̀ , each edge ofE`

i1, j1,i2, j2 requires the use of an additional vertex fromφ(v{x,y}). More
precisely, this can happen only if` = x andy∈ {i1, j1, i2, j2} or ` = y andx∈ {i1, j1, i2, j2}. Thus the
total number of vertices used fromφ(v{x,y}) is at most

d|V(G′)|/
(

k
2

)
e+ ∑

x∈{i1, j1,i2, j2}
|Ey

i1, j1,i2, j2
|+ ∑

y∈{i1, j1,i2, j2}
|Ex

i1, j1,i2, j2|

≤ |V(G′)|/
(

k
2

)
+1+ ∑

x∈{i1, j1,i2, j2}
d|Ei1, j1,i2, j2|/(k−4)e+ ∑

y∈{i1, j1,i2, j2}
d|Ei1, j1,i2, j2|/(k−4)e

≤ |V(G′)|/
(

k
2

)
+ ∑

x∈{i1, j1,i2, j2}
|Ei1, j1,i2, j2|/(k−4)+ ∑

y∈{i1, j1,i2, j2}
|Ei1, j1,i2, j2|/(k−4)+2k4.
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(The term 2k4 generously bounds the rounding errors, since it is greater than the number of terms in the
sums.) The first sum counts only edges incident to some vertex ofV{i, j} with x∈ {i, j} and each edge
is counted at most once. Since each vertex has degree at most 3, the number of such edges is at most
3∑x∈{i, j} |V{i, j}|. Thus we can bound the first sum by 3(k−1)d|V(G′)|/

(k
2

)
e/(k−4) ≤ 12d|V(G′)|

(k
2

)
e

(here we usek≥ 5). A similar argument applies for the second sum above, hence the number of vertices
used fromφ(v{x,y}) can be bounded as

|V(G′)|/
(

k
2

)
+24d|V(G′)|/

(
k
2

)
e+2k4 ≤ 25|V(G′)|/

(
k
2

)
+2k4 +24≤ 26|V(G′)|/

(
k
2

)
= 52|V(G′)|/(k(k−1))≤ 65|V(G′)|/k2 = 130|E(G)|/k2 ≤ q,

what we had to show (in the second inequality, we used that|V(G′)|= 2|E| ≥ nk is sufficiently large; in
the third inequality, we used thatk≥ 5 impliesk/(k−1)≤ 5/4).

Putting together Lemma3.8and Lemma3.9, we can prove the main result of the section:

Proof (of Theorem3.1). Let k := tw(G), n := |V(G)|, and f1(G) := nk +k2c1 logn, wherenk is the con-
stant from Lemma3.9 andc1 is the constant from Lemma3.8. Assume that|E(H)| = m≥ f1(G). By
Lemma3.9, H is a minor ofL(Kk)(q) for q := d130m/k2e and a minor mappingψ1 can be found in
polynomial time. Letq′ := dq/dc1 lognee; clearly, H is a minor ofL(Kk)(q′dc1 logne). Observe thatm
is large enough such that 130m/k2 ≥ 1 andq/dc1 logne ≥ 1 holds, henceq′ ≤ c′ ·m/(k2 · logn) for an
appropriate constantc′.

By Lemma3.8, L(Kk)(dc1 logne) is a minor ofG(dc2 logn·k logke) and a minor mappingψ2 can be found
in time f2(G) by brute force, for some functionf2(G). Therefore,L(Kk)(q′dc1 logne) is a minor of
G(q′dc2 logn·k logke) and it is straightforward to obtain the corresponding minor mappingψ3 from ψ2. We
can assumec2 logn·k logk≥ 1, otherwise the theorem automatically holds if we setc sufficiently large.
Sinceq′dc2 logn·k logke ≤ c′ ·m/(k2 · logn) · (2c2 logn·k logk)≤ cmlogk/k for an appropriate constant
c, we have thatH is a minor ofGdcmlogk/ke. The corresponding minor mapping is the composition
ψ3 ◦ψ1. Observe that each step can be done in polynomial time, except the application of Lemma3.8,
which takesf2(G) time. Thus the total running time can be bounded byf2(G)mO(1).

4 Complexity of binary CSP

In this section, we prove our main result for binary CSP (Theorem1.2). The proof relies in an essential
way on the so-called Sparsification Lemma for 3SAT:

Theorem 4.1 (Impagliazzo, Paturi, and Zane [31]). If there is a2o(m) time algorithm for m-clause
3SAT, then there is a2o(n) time algorithm for n-variable 3SAT.

The main strategy of the proof of Theorem1.2is the following. First we show that a 3SAT formulaφ

with mclauses can be turned into a binary CSP instanceI of sizeO(m) (Lemma4.2). By the embedding
result of Theorem3.1, for everyG ∈ G, the primal graph ofI is a minor ofG(q) for an appropriateq.
This implies that we can simulateI with a CSP instanceI ′ whose primal graph isG (Lemma4.3 and
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Lemma4.4). Now we can use the assumed algorithm for CSP(G) to solve instanceI ′, and thus decide
the satisfiability of formulaφ . If the treewidth ofG is sufficiently large, then the assumed algorithm
is much better than the treewidth based algorithm, which translates into a 2o(m) algorithm for the 3SAT
instance. By Theorem4.1, this means thatn-variable 3SAT can be solved in time 2o(n), i. e., ETH fails.

Lemma 4.2. Given an instance of 3SAT with n variables and m clauses, it is possible to construct in
polynomial time an equivalent CSP instance with n+ m variables,3m binary constraints, and domain
size3.

Proof. Let φ be a 3SAT formula withn variables andm clauses. We construct an instance of CSP as
follows. The CSP instance contains a variablexi (1≤ i ≤ n) corresponding to thei-th variable ofφ and a
variabley j (1≤ j ≤m) corresponding to thej-th clause ofφ . Let D = {1,2,3} be the domain. We try to
describe a satisfying assignment ofφ with thesen+mvariables. The intended meaning of the variables
is the following. If the value of variablexi is 1 (resp., 2), then this represents that thei-th variable of
φ is true (resp., false). If the value of variabley j is `, then this represents that thej-th clause ofφ is
satisfied by its̀ -th literal. To ensure consistency, we add 3m constraints. Let 1≤ j ≤ m and 1≤ ` ≤ 3,
and assume that the`-th literal of the j-th clause is a positive occurrence of thei-th variable. In this case,
we add the binary constraint(xi = 1∨y j 6= `): eitherxi is true or some other literal satisfies the clause.
Similarly, if the`-th literal of the j-th clause is a negated occurrence of thei-th variable, then we add the
binary constraint(xi = 2∨y j 6= `). It is easy to verify that ifφ is satisfiable, then we can assign values
to the variables of the CSP instance such that every constraint is satisfied, and conversely, if the CSP
instance has a solution, thenφ is satisfiable.

If G1 is a minor ofG2, then an instance with primal graphG1 can be easily simulated by an instance
with primal graphG2: each variable ofG1 is simulated by a connected set of variables inG2 that are
forced to be equal.

Lemma 4.3. Assume that G1 is a minor of G2. Given a binary CSP instance I1 with primal graph G1

and a minor mappingψ from G1 to G2, it is possible to construct in polynomial time an equivalent
instance I2 with primal graph G2 and the same domain.

Proof. For simplicity, we assume that bothG1 andG2 are connected; the proof can be easily extended
to the general case. IfG2 is connected, then we can assume thatψ is onto. For each pair(x,y) such
thatxy is and edge ofG2, we add a constraint as follows. Ifψ−1(x) = ψ−1(y), then the new constraint
is 〈(x,y),{(t, t) | t ∈ D}〉. If ψ−1(x) 6= ψ−1(y) and there is a constraint〈(ψ−1(x),ψ−1(y)),R〉, then the
new constraint is〈(x,y),R}〉. Otherwise, the new constraint is〈(x,y),D×D}〉. Clearly, the primal graph
of I2 is G2.

Assume thatI1 has a solutionf1 : V1 → D. Then f2(v) = f1(ψ−1(v)) is a solution ofI2. On the
other hand, ifI2 has a solutionf2 : V2 → D, then we claim thatf2(x) = f2(y) holds if ψ−1(x) = ψ−1(y).
This follows from the way we defined the constraints ofI2 and from the fact thatψ(x) is connected.
Therefore, we can definef1 : V1 → D as f1(v) = f2(v′), wherev′ is an arbitrary member ofψ(v). To see
that a constraintci = 〈(u,v),Ri〉 of I1 is satisfied, observe that there is a constraint〈(u′,v′),Ri〉 in I2 for
someu′ ∈ ψ(u), v′ ∈ ψ(v). This means that( f1(u), f1(v)) = ( f2(u′), f2(v′)) ∈Ri , hence the constraint is
satisfied.
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An instance with primal graphG(q) can be simulated by an instance with primal graphG if we set
the domain to be theq-tuples of the original domain.

Lemma 4.4. Given a binary CSP instance I1 = (V1,D1,C1) with primal graph G(q) (where G has no
isolated vertices), it is possible to construct (in time polynomial in the size of theoutput) an equivalent
instance I2 = (V2,D2,C2) with primal graph G and|D2|= |D1|q.

Proof. Let ψ be the blow-up mapping fromG to G(q) and letD2 = Dq
1, i. e., D2 is the set ofq-tuples

of D1. For everyv∈V2, there is a natural bijection between the elements ofD2 and the|D1|q possible
assignmentsf : ψ(v)→D1. For each edgev1v2 of G, we add a constraintcv1,v2 = 〈(v1,v2),Rv1,v2〉 to I2 as
follows. Let(x1,x2) ∈ D2×D2. For i = 1,2, letgi be the assignment ofψ(vi) corresponding toxi ∈ D2.
The two assignment together define an assignmentg : ψ(v1)∪ψ(v2)→D on the union of their domains.
We define the relationRv1,v2 such that(x1,x2) is a member ofRv1,v2 if and only if the corresponding
assignmentg is a solution of the induced instanceI [ψ(v1)∪ψ(v2)].

Assume thatI1 has a solutionf1 : V1 →D1. For everyv∈V2, let us definef2(v) to be the member of
D2 corresponding to the assignmentf1 restricted toψ(v). It is easy to see thatf2 is a solution ofI2: this
follows from the trivial fact that for every edgev1v2 in G, assignmentf1 restricted toψ(v1)∪ψ(v2) is a
solution ofI1[ψ(v1)∪ψ(v2)].

Assume now thatI2 has a solutionf2 : V2 →D2. For everyv∈V2, there is an assignmentfv : ψ(v)→
D1 corresponding tof2(v). These assignments together define an assignmentf1 : V1 → D1. We claim
that f1 is a solution ofI1. Let cu,v = 〈(u,v),R〉 be an arbitrary constraint ofI1. Assume thatu∈ ψ(u′)
andv∈ ψ(v′). If u′ 6= v′, thenu′v′ is an edge ofG, hence there is a corresponding constraintcu′,v′ in I2.
The waycu′,v′ is defined ensures thatf1 restricted toψ(u′)∪ψ(v′) is a solution ofI1[ψ(u′)∪ψ(v′)]. In
particular, this means thatcu,v is satisfied inf1. If u′ = v′, then there is an edgeu′w in G (sinceG has no
isolated vertices), and the corresponding constraintcu′,w ensures thatf1 satisfiescu,v.

Now we are ready to prove the main result:

Proof (of Theorem1.2). Assume that there is an algorithmA with running timef (G)‖I‖tw(G)/(logtw(G)·ι(tw(G))),
whereι is an unbounded function. We can assume thatι is nondecreasing andι(1) ≥ 1. We present
a reduction from 3SAT to CSP(G) such that this reduction, together with the assumed algorithmA for
CSP(G), gives an algorithmB that is able to solvem-clause 3SAT in time 2o(m). Lemma4.2, Theo-
rem3.1, and Lemmas4.3 and4.4 show a way solving 3SAT by reducing it to a CSP instance having a
particular primal graphG. A crucial point of the reduction is how to select an appropriateG from G.
The higher the treewidth ofG, the more we gain in the running time. However,G has to be sufficiently
small such that some additional factors (such as the time spent on findingG) are not too large.

Given anm-clause 3SAT formulaφ and a graphG ∈ G, algorithmA can be used to decide the
satisfiability ofφ the following way. By Lemma4.2, φ can be turned into a binary CSP instanceI1 with
O(m) constraints and domain size 3. LetH be the primal graph ofI1. For simplicity, we assume thatG
has no isolated vertices as they can be handled in a straightforward way. By Theorem3.1, H is a minor
of G(q) for q = O(mlogk/k) and we can find a minor mappingψ in time f2(G)mO(1). Therefore, by
Lemma4.3, I1 can be turned into an instanceI2 with primal graphG(q), which, by Lemma4.4, can be
turned into an instanceI3 with primal graphG and domain size 3q. Now we can use algorithmA to solve
instanceI3.
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We will call “running algorithmA[φ ,G]” this way of solving the 3SAT instanceφ . Let us determine
running time ofA[φ ,G]. The two dominating terms are the time required to find the minor mapping
from H to G(q) and the time required to runA on I3. Note that‖I3‖ = O(|E(G)|32q): there are|E(G)|
constraints and each binary constraint contains at most 3q ·3q pairs. Letk be the treewidth ofG. The
total running time ofA[φ ,G] can be bounded by

f2(G)mO(1) + f (G)‖I3‖k/(logk·ι(k)) = f2(G)mO(1) + f (G)|E(G)|k/(logk·ι(k)) ·32qk/(logk·ι(k))

= f̂ (G)mO(1) ·2O(q·k/(logk·ι(k))) = f̂ (G)mO(1) ·2O(m/ι(k))

for an appropriate function̂f (G).
Let us fix a computable enumerationG1, G2, . . . of the graphs inG. Given anm-clause 3SAT

formulaφ , we first spendmsteps to enumerate graphs fromG; let G` (for somè ≤ m) be the last graph
enumerated (we assume thatm is sufficiently large that̀ ≥ 1). Next we start simulating the algorithms
A[φ ,G1], A[φ ,G2], . . . , A[φ ,G`] in parallel. When one of the simulations stops and returns an answer,
then we stop all the simulations and return the answer. It is clear that this algorithm will correctly decide
the satisfiability ofφ .

We claim that there is a universal constantC such that for everys, there is anms such that for every
m> ms, the running time ofB is (m·2m/s)C on anm-clause formula. Clearly, this means that the running
time ofB is 2o(m).

Let ks be the smallest positive integer such thatι(ks) ≥ s (asι is unbounded, this is well defined).
Let is be the smallest positive integer such that tw(Gis) ≥ ks (asG has unbounded treewidth, this is also
well defined). Setms sufficiently large thatms ≥ f̂ (Gis) and the enumeration ofG reachesGis in less
thenms steps. This means that if we runB on a 3SAT formulaφ with m≥ ms clauses, thenA[φ ,Gis]
will be one of thè simulations started byB. The simulation ofA[φ ,Gis] terminates in

f̂ (Gis)m
O(1) ·2O(m/ι(tw(Gis))) = m·mO(1) ·2O(m/s)

steps. Taking into account that we simulate` ≤ m algorithms in parallel and all the simulations are
stopped not later than the termination ofA[φ ,Gis], the running time ofB can be bounded polynomially
by the running time ofA[φ ,Gis]. Therefore, there is a constantC such that the running time ofB is
(m·2m/s)C, as required.

5 Complexity of homomorphism

The aim of this section is to extend Theorem1.2 in the framework of the homomorphism problem
for relational structures, which is a standard way of studying CSP in the theoretical literature. As we
shall see, in this formulation the complexity of the problem depends on the treewidth of the core of the
left-hand side. Furthermore, as in [27], we state the result only for bounded-arity relational structures.

Let us recall the standard definitions of the homomorphism problem (see [15, 27]). A vocabularyτ

is a finite set of relation symbols of specified arities. Thearity of τ is the maximum of the arities of all
relational symbols it contains. Aτ-structureA consists of a finite setA called the universe ofA and for
each relation symbolR∈ τ, say, of arityk, ak-ary relationRA ⊆ Ak. We say that a classC of structures
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is of bounded arityif there is a constantr such that the arity of the vocabulary of every structure inC

is at mostr. A homomorphismfrom a τ-structureA to a τ-structureB is a mappingh : A→ B from
the universe ofA to the universe ofB that preserves all relations, that is, for allR∈ τ, say, of arityk,
and all tuples(a1, . . . ,ak) ∈ RA it holds that(h(a1), . . . ,h(ak)) ∈ RB. Let ‖A‖ denote the length of the
representation ofA. We assume that‖A‖ = O(|τ|+ |A|+ ∑R∈τ |RA| ·arity(R)) for a τ-structureA with
universeA.

A substructureof a relational structureA is a relational structureB over the same vocabularyτ as
A whereB⊆ A andRB ⊆ RA for all R∈ τ. If B is a substructure ofA, but A 6= B, thenB is aproper
substructureof A.

The notion of treewidth can be defined for relational structures the following way. Atree decom-
positionof a τ-structureA is a pair(T,X), whereT = (I ,F) is a tree, andX = (Xi)i∈I is a family of
subsets of A such that for eachR∈ τ, say, of arityk, and each(a1, . . . ,ak) ∈RA there is a nodei ∈ I such
that{a1, . . . ,ak} ⊆ Xi , and for eacha ∈ A the set{i ∈ I | a ∈ Xi} is connected inT. Thewidth of the
decomposition(T,X) is max{|Xi | | i ∈ I}−1, and thetreewidthof A, denoted by tw(A), is the minimum
of the widths of all tree decompositions ofA.

Theprimal graphof a structureA with vocabularyτ is a graph with vertex setA where two elements
a′,a′′ ∈ A are connected if and only if there is a relational symbolR∈ τ, say, of arityk, such thatR has
a tuple(a1, . . . ,ak) ∈ Rwith a′,a′′ ∈ {a1, . . . ,ak}. It can be shown that the treewidth of the primal graph
of A equals the treewidth ofA.

A coreof a relational structureA is a substructureA′ of A such that there is a homomorphism from
A to A′, but there is no homomorphism fromA to a proper substructure ofA′. We say that a relational
structureA is acore if it is its own core. It is well-known that the every relational structureA has a core
and the cores ofA are isomorphic with each other. Let us denote by ctw(A) the treewidth of the core of
A.

Given a CSP instanceI = (V,D,C), one can construct in polynomial time two relational structures
A andB with universeV andD, respectively, such that the solutions ofI correspond to the homomor-
phisms fromA to B. Thus the homomorphism problem of relational structures generalizes constraint
satisfaction. Formally, in the homomorphism problem the input is a pair(A,B) of relational structures
and the task is to decide whether there is a homomorphism fromA (the left-hand side structure) to B
(the right-hand side structure). If A andB are two classes of relational structures, then we denote by
HOM(A,B) the restriction of the homomorphism problem whereA ∈ A andB ∈ B. We denote by the
symbol− the class of all relational structures. Thus HOM(A,−) restricts the structure of the constraints,
while HOM(−,B) restricts the constraint language.

If ctw(A)≤ k, then the decision version of the homomorphism problem(A,B) can be solved in time
nO(k) [27, 11] (wheren is the length of the input, which isO(‖A‖+‖B‖)). The main result of this section
is that there is no classA of structures such that HOM(A,−) can be solved significantly faster:

Theorem 5.1. LetA be a recursively enumerable class of bounded-arity relational structures such that
the treewidth of the core is unbounded. If HOM(A,−) can be decided in time f(A)‖B‖o(ctw(A)/ logctw(A)),
where f is an arbitrary function, then ETH fails.

Proof. Let A be a class of relational structures of maximum arityrmax. Let G be the class of graphs
containing the primal graph of the core of every structureA ∈ A. Clearly,G has unbounded treewidth
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and it is not difficult to show thatG is recursively enumerable. We use the assumed algorithm for
HOM(A,−) to construct an algorithm for CSP(G) that contradicts Theorem1.2.

SinceA is recursively enumerable, there is an algorithm that, given aG ∈ G, outputs a structure
AG ∈A such thatG is the primal graph of the core ofAG. Letg(G) be the running time of this algorithm
with input G; clearly,‖AG‖ ≤ g(G). Let I = (V,D,C) be an instance of binary CSP with primal graph
G∈ G. Let AG ∈ A be a structure whose coreA0 has primal graphG. (From now on, we useV both
for the set of variables of instanceI and for the universe ofA0.) Let τ be the vocabulary ofAG. We
construct aτ-structureB as follows. The universeB of B is V ×D. Let R∈ τ be a relation symbol of
arity r and letRA0 be the corresponding relation inA0. To construct the relationRB, let us enumerate
the r-tuples ofRA0, and for each(v1, . . . ,vr) ∈ RA0 ⊆Vr , let us enumerate the solutions of the induced
instanceI [{v1, . . . ,vr}]. If (v1, . . . ,vr) ∈ RA0 and f is a solution ofI [(v1, . . . ,vr}], then let us add the
r-tuple ((v1, f (v1)), . . . ,(vr , f (vr)) to RB. This completes the description of the relationRB and the
structureB. Observe that the size ofRB is at mostDrmax times the size ofRA0. Therefore, the size ofB
is (‖A0‖|D|)O(rmax) and can be constructed in time polynomial in its size.

We show thatA0 → B if and only if I has a solution. SinceA0 is the core ofAG, it follows that
AG → B if and only if A0 → B. Therefore, the assumed algorithm for HOM(A,−) can decide the
solvability of I in time

g(G)+ f (AG)‖B‖o(ctw(AG)/ logctw(AG)) = g(G)+ f (AG)‖A0‖o(tw(G)/ logtw(G)) · |D|o(tw(G)/ logtw(G))

≤ f̂ (G)‖I‖o(tw(G)/ logtw(G)),

for an appropriate function̂f (G) (the last step follows from the fact thatf (AG) and‖A0‖ are functions
of G, and that|D| ≤ ‖I‖). By Theorem1.2, this implies that ETH fails.

Assume first thatI has a solutionf : V → D. We claim thatφ(v) = (v, f (v)) is a homomorphism
from A0 to B. Indeed, if(v1, . . . ,vr) ∈ RA0, then f restricted to{v1, . . . ,vr} is obviously a solution of
I [{v1, . . . ,vr}], hence((v1, f (v1)), . . . ,(vr , f (vr))) ∈ RB by the definition ofRB.

Assume now thatφ is a homomorphism fromA0 to B. Let ψ be the projectionψ((v,d)) = v from
V ×D to V. Observe thatψ is a homomorphism fromB to A0. Therefore,ψ ◦ φ is a homomorphism
from A0 to itself. SinceA0 is core,ψ ◦φ is an isomorphism ofA0. Thus we can assume thatψ ◦φ is
identity: otherwise let us replaceφ with φ ◦ (ψ ◦ φ)−1. If ψ ◦ φ is the identity, then for everyv ∈ V,
φ(v) = (v, f (v)) for some f (v) ∈ D. We claim that this functionf : V → D is a solution ofI . Let
ci = 〈(u,v),Ri〉 be an arbitrary constraint ofI . Sinceuv is an edge of the primal graphG, there is an
R∈ τ such thatRA0 has a tuple(v1, . . . ,vr) containing bothu andv. Therefore,(φ(v1), . . . ,φ(vr)) =
((v1, f (v1)), . . . ,(vr , f (vr))) ∈ RB. By the definition ofRB, this means thatf restricted to{v1, . . . ,vr} is
a solution ofI [{v1, . . . ,vr}]. In particular, this means thatf satisfiesci .

6 Complexity of subgraph problems

Subgraph Isomorphism is a basic graph-theoretic problem: given graphsG andH, we have to decide
if G is a subgraph ofH. That is, we have to find a injective mappingφ : V(G) →V(H) such that ifu
andv are adjacent in the smaller graphG, thenφ(u) andφ(v) are adjacent in the larger graphH. In
the Colored Subgraph Isomorphism problem, the input contains a (not necessarily proper) coloring of
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the vertices ofH, with the set of colors being the same as the set of vertices ofG. The task is to find a
subgraph mappingφ that satisfies the additional constraint that for everyv∈V(G), the color ofφ(v) is
v. In other words, the vertices ofH are partitioned into|V(G)| classes, and the image of eachv∈V(G)
is restricted to a distinct class of the partition.

It is not hard to observe that Colored Subgraph Isomorphism is essentially the same as binary CSP.
We can reduce an instanceI = (V,D,C) of binary CSP to Colored Subgraph Isomorphism the following
way. LetG be the primal graph ofI . We construct a graphH, whose vertex set isV(G)×D, and the
color of (v,d) ∈V(G)×D is v. For every constraint〈(u,v),Ruv〉 ∈C and every pair(du,dv) ∈ Ruv, we
add an edge connecting(u,du) and(v,dv) to H. Note that this construction is very similar to the proof
of Theorem5.1.

Suppose thatf : V →D is a satisfying assignment ofI and consider the mappingφ(v) = (v, f (v)) for
everyv∈V(G). It is clear thatφ respects the colors and it is subgraph mapping: ifu andv are adjacent in
G, then there is a corresponding constraint〈(u,v),Ruv〉 ∈C, and the fact that( f (u), f (v)) ∈ Ruv implies
that φ(u) andφ(v) are adjacent. On the other hand, suppose thatφ is a subgraph mapping respecting
the colors. This means the first coordinate ofφ(v) is v; let f (v) be the second coordinate ofφ(v). It is
straightforward to verify thatf is a satisfying assignment: for every constraint〈(u,v),Ruv〉 ∈C, vertices
u andv are adjacent inG by the definition of the primal graph, and hence the fact that(u, f (u)) and
(v, f (v)) are adjacent implies that( f (u), f (v)) ∈ Ruv.

The reduction from binary CSP to Colored Subgraph Isomorphism implies that any lower bound for
the former problem can be transfered to the latter. Thus Theorem1.2 implies the following result:

Corollary 6.1. If there is a recursively enumerable classG of graphs with unbounded treewidth and an
arbitrary function f such that Colored Subgraph Isomorphism with the smaller graph G restricted to
being inG can be solved in time f(G)no(tw(G)/ logtw(G)), then ETH fails.

It is known that there are infinite recursively enumerable classesG of graphs such that for every
G∈ G, both the treewidth and the number of edges areΘ(|V(G)|): for example, explicit constructions
of bounded-degree expanders give such classes (cf. [29]). Using this classG in Corollary6.1, we get

Corollary 6.2. If Colored Subgraph Isomorphism can be solved in time f(G)no(k/ logk), where f is an
arbitrary function and k is the number ofedgesof the smaller graph G, then ETH fails.

Can we prove similar lower bounds for the more natural Subgraph Isomorphism problem (without
colors)? Unfortunately, the situation for Subgraph Isomorphism is much less understood. For example,
it is a major open question of parameterized complexity whether thek-Biclique problem (given a graph
H and an integerk, decide ifH contains aKk,k complete bipartite subgraph) is fixed-parameter tractable,
i. e., can be solved in timef (k) ·nO(1) for some functionf depending only onk. Without answering this
question, we cannot prove the analog of Corollary6.1for Subgraph Isomorphism.

However, there is a special where we can prove lower bounds. Recall that a graphG is acore if it
has no homomorphism to any of its proper induced subgraphs, that is, if a mappingφ : V(G) →V(G)
satisfies thatφ(u) andφ(v) are adjacent for every adjacentu,v ∈ V(G), thenφ is bijective. We show
that if G is a core, then the colored and uncolored versions are equivalent (essentially, we use the same
argument as in the proof of Theorem5.1). Consider an instance of Colored Subgraph Isomorphism with
smaller graphG and larger graphH. We can assume that ifu,v∈V(G) are not adjacent, thenH has no
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edge whose endpoints are coloredu andv, as such an edge could not be used in a solution. We claim
that if G is a core and there is a subgraph mappingφ from G to H, then there is a subgraph mapping that
respects the colors. Letψ(v) be the color ofφ(v). If u,v∈V(G) are adjacent, thenφ(u)φ(v) is an edge
whose endpoints have colorsψ(u) andψ(v), which means by our assumption thatψ(u) andψ(v) are
adjacent inH. As H is a core,ψ is an isomorphism ofH. Now φ(ψ−1(v)) is a subgraph mapping that
respects the colors. Therefore, the lower bounds for Colored Subgraph Isomorphism can be transfered
to the uncolored problem:

Corollary 6.3. Let G be a recursively enumerable class of graphs with unbounded treewidth such that
every graph inG is a core. If there is an arbitrary function f such that Subgraph Isomorphism with the
smaller graph G restricted to being inG can be solved in time f(G)no(tw(G)/ logtw(G)), then ETH fails.

To prove the analog of Corollary6.2for Subgraph Isomorphism, we need a family of graphs that are
cores, sparse, and treewidth is linear in the number of vertices. The following lemma provides such a
family:

Lemma 6.4. There is a recursively enumerable family of graphG such that every G∈ G is a core, and
both the treewidth and the number of edges of G areΘ(|V(G)|).

Proof. Let G0 be a family of bounded-degree expanders, such as the one given by Gabber and Galil
[22]. We will use the known result that the treewidth of such graphs is linear in the number of vertices
(cf. [29]). We can assume that the graphs inG0 are bipartite: subdividing every edge does not decrease
treewidth and increases the number of vertices only by a constant factor (as the graph has bounded
degree).

We will need the following auxiliary graphs. The graphTn hasn+ 2(n−1) verticesvi (1≤ i ≤ n)
andui,1, ui,2 (2≤ i ≤ n), edgesui,1ui,2, viui,1, viui,2, vi+1ui,1, vi+1ui,2 every 1≤ i ≤ n−1, and the edge
v1vn. GraphTn is not 3-colorable: in any 3-coloring, verticesvi andvi+1 would get the same color, which
is impossible, asv1 andvn are adjacent. Furthermore, it is easy to see that deleting any vertex makesTn

3-colorable. This immediately implies thatTn is a core: a homomorphism fromTn to a proper induced
subgraph ofTn would map a non-3-colorable graph to a 3-colorable graph, which is impossible. Thus
every homomorphism ofTn is an isomorphism. Moreover, it can be verified that any such isomorphism
mapsvi to vi for every 1≤ i ≤ n.

For every (bipartite) graphG0∈G0, we construct a graphG as follows. Letw1, . . . , wn be the vertices
of G0. We attach a copy of the graphT2n+1 to G0 by makingwi andv2i adjacent for every 1≤ i ≤ n. It
is clear that the graphG obtained this way is sparse and has treewidth linear in the number of vertices.
Thus the only thing we have to verify is thatG is a core. Note that every vertex ofT2n+1 appears in a
triangle, and no other vertex ofG appears in a triangle (since we assumed thatG is bipartite). Therefore,
any homomorphismφ has to map the vertices ofT2n+1 to vertices ofT2n+1. Therefore,φ induces a
homomorphism ofT2n+1, which means thatφ(vi) = vi for every 1≤ i ≤ 2n. We claim thatφ(wi) = wi

for every 1≤ i ≤ n. Letw j be an arbitrary neighbor ofwi . There is a pathv2iwiw jv2 j of length 3 between
v2i andv2 j in G. Applying φ on this path gives a walk of length 3 betweenv2i andv2 j . As the distance of
v2i andv2 j is greater than 3 inT2n+1, this is only possible if the walk leavesT2n+1, implying φ(wi) = wi

andψ(w j) = w j .
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Putting together Corollary6.3 and Lemma6.4 immediately gives Corollary1.5 stated in the intro-
duction.

7 Conclusions

We have proved that for binary CSP and for the homomorphism problem of bounded-arity relational
structures, the algorithms based on treewidth are almost optimal, in the sense that at most a logarithmic
factor improvement is possible in the exponent of the running time. This improves the main result of
[27] by making it quantitative: [27] explored only whether there exists a polynomial-time algorithm for
a given a class of problems and no effort was made to determine the best possible super-polynomial
running time. The main technical tool in the paper is converting a 3SAT formula to a CSP instance by
embedding a graph into the blowup of another graph. To obtain this embedding, we use characterizations
of treewidth by separators and a dual characterization of separators. We avoid the use of the Excluded
Grid Theorem (the main combinatorial tool in [27]), as it is not suitable for obtaining tight results.

The results in the paper suggest two obvious directions for future work. First, one could try to
make Theorem1.2 tight by removing the logarithmic factor from the exponent. We conjecture that
this is actually possible (Conjecture1.3). An obvious approach for proving Conjecture1.3would be to
prove Theorem3.1 without the logarithmic factor in the exponent: inspection of our proof shows that
if Theorem3.1 is true without the logarithmic factor, then Theorem1.2 is true without the logarithmic
factor. More specifically, if we can get rid of logk in Theorem3.1 for everyG ∈ G for some classG
of graphs, then we can get rid of the logarithmic factor in Theorem1.2 for the problem CSP(G). For
example, Theorem3.1 is certainly true without logk if G is a clique, which implies that Theorem1.2 is
true without the logarithmic factor ifG is the class of all cliques. However, as shown very recently in [1],
Theorem3.1 is tight: there are classes of graphs for which the logarithmic factor is needed. This does
not invalidate Conjecture1.3, but it shows that its proof would require substantially different techniques
than the embedding method of this paper. Moreover, probably one should first settle the question of
whether there is a polynomial-time constant-factor approximation algorithm for treewidth.

The second direction would be to generalize the results to constraints with higher arities. Theo-
rem 1.2 is stated for binary CSP(G), but this means that the negative result also holds for the more
general problem where we do not assume that the instance is binary. However, for higher arity CSPs, we
can define the hypergraph of the instance the obvious way, and try to understand the complexity in terms
of this hypergraph instead of the primal graph. If the arities of the constraints are bounded by a constant,
then Theorem5.1 characterizes the tractable hypergraph classes, as a hypergraph can be expressed by
a relational structure (where there is a distinct relation symbol for each hyperedge, to allow every con-
straint relation to be different). The problem changes considerably if the arities of the constraints are
unbounded [28, 23, 24, 8, 38, 37] due to issues related to the representation of constraints. The notions
of hypertree width and fractional hypertree width were introduced to obtain tractable classes not covered
by bounded treewidth. However, the situation is still far from understood.

THEORY OFCOMPUTING 21

http://dx.doi.org/10.4086/toc
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[15] TOMÁS FEDER AND MOSHE Y. VARDI: The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory.SIAM J. Comput., 28(1):57–
104, 1999. 2, 4, 5, 16

[16] URIEL FEIGE, MOHAMMAD TAGHI HAJIAGHAYI , AND JAMES R. LEE: Improved approximation
algorithms for minimum weight vertex separators.SIAM J. Comput., 38(2):629–657, 2008.7, 8,
10

[17] M ICHAEL R. FELLOWS, DANNY HERMELIN, FRANCES A. ROSAMOND, AND STÉPHANE
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