
Parameterized Complexity of the Arc-Preserving

Subsequence Problem?

Dániel Marx1 and Ildikó Schlotter2

1 Tel Aviv University, Israel
2 Budapest University of Technology and Economics, Hungary

{dmarx,ildi}@cs.bme.hu

Abstract. We study the Arc-Preserving Subsequence (APS) prob-
lem with unlimited annotations. Given two arc-annotated sequences P
and T , this problem asks if it is possible to delete characters from T to
obtain P . Since even the unary version of APS is NP-hard, we used the
framework of parameterized complexity, focusing on a parameterization
of this problem where the parameter is the number of deletions we can
make. We present a linear-time FPT algorithm for a generalization of
APS, applying techniques originally designed to give an FPT algorithm
for Induced Subgraph Isomorphism on interval graphs [12].

1 Introduction

Many important problems in computational biology are related to pattern match-
ing in strings, since DNA, RNA, or protein molecules can be viewed as sequences
of nucleotides or amino acids. To gain information about such molecules, we often
need to compare two sequences and measure their similarity.

Given two sequences S1 and S2 over some alphabet, the task of the Longest
Common Subsequence (LCS) problem is to find the longest possible sequence
that is the subsequence of both S1 and S2. In other words, we are looking for a
sequence C that can be obtained both from S1 and from S2 by deleting charac-
ters. This problem arises in many applications, like deciding if two species are
biologically related, or whether two proteins are likely to exhibit similar function-
alities related to three-dimensional structure (protein folding). Another classical
problem, Subsequence, asks if a sequence is the subsequence of another.

If we only want to deal with character sequences, LCS can be solved effi-
ciently using dynamic programming. However, recent biological research suggests
that we might loose relevant information if we model DNA, RNA, or protein
molecules simply as sequences. The reason for this is that in such molecules, the
shape and hence the functionality is greatly affected by chemical bonds between
elements that might be far apart from each other in the sequence. Arc-annotated
sequences are widely used to represent such bonds. In this model, any two ele-
ments (or bases) of a sequence can be connected to each other through an arc.

? Supported by ERC Advanced Grant DMMCA and by the Hungarian National Re-
search Fund OTKA 67651.

For two arc-annotated sequences S1 and S2, the Longest Arc-Preserving
Common Subsequence or LAPCS asks for an arc-annotated sequence C of
maximum length that can be obtained both from S1 and from S2 by deleting
bases together with all arcs incident to them. Since LAPCS is NP-complete
even if the arc structures are highly restricted [5, 6, 10], researchers focused on
polynomial-time solvable cases and approximation algorithms [5, 10, 9, 11].

Another direction of research is to use the parameterized complexity frame-
work [4, 7]. This area deals with NP-hard problems by giving algorithms that
have an acceptable running time on many relevant instances. An algorithm is
fixed-parameter tractable (FPT) if its running time is bounded by f(k)nO(1) for
some function f , where n is the input size and k is the parameter associated
with the input. The idea behind this definition is that the running time of an
FPT algorithm remains tractable provided that the parameter has small value.

Parameterized complexity of LAPCS has already been studied, and FPT
algorithms were presented for various parameterizations [1, 6]. An interesting
parameterization is where the parameter is the number of deletions we are al-
lowed to make in order to construct the common subsequence. This models a
situation where we compare two sequences which are similar. An FPT algorithm
was given in [1] with this parameter, but it only applies for a restricted case.

Unlike most previous results, we considered unlimited annotations where any
two bases of a sequence can be connected by arcs. Instead of concentrating on
LAPCS, we dealt with the more simple Arc-Preserving Subsequence prob-
lem (APS), the annotated analog of Subsequence. Given two arc-annotated
sequences P and T , the task of APS is to find out whether the pattern sequence
P can be obtained by deleting some bases of the target sequence T , together
with all the arcs incident to them. We remark that APS on its own is an in-
teresting problem in computation biology, and has been widely studied in the
literature. Its NP-hardness has been proved for numerous restricted cases [2], and
polynomial-time algorithms have been presented [8, 3] for limited arc structures.

Here, we present an FPT algorithm for the unlimited APS, where the pa-
rameter is the number k of deletions allowed. Our algorithm runs in f(k)n time
for some function f depending only on k, where n is the input size. In fact, we
solve a generalization of APS where a few arcs can be deleted additionally. We
mention that APS is W[1]-hard if the parameter is the length of the pattern [5].

The ideas and techniques applied here originate from an FPT algorithm
solving a seemingly unrelated problem on interval graphs [12]. This algorithm
answers the Induced Subgraph Isomorphism in FPT time: given two interval
graphs G and H and a parameter k, is it possible to delete k vertices from G to
obtains a graph isomorphic to H? Our work shows that research connected to
interval graphs can be useful for arc-annotated sequences as well.

2 Problem definition and notation

We denote {1, . . . , n} by [n]. We refer to the elements of a sequence S over an
alphabet Σ as bases. The i-th base of S is S[i], and the length of S is |S|.

2

Let SP and ST be two sequences over Σ. Let |SP | = nP and |ST | = nT ,
assume nP ≤ nT . We say that SP is a subsequence of ST if SP can be obtained
by deleting bases from ST , or equivalently, if there is a bijective mapping ϕ from
[nP] into a subset of [nT] such that ϕ(i1) < ϕ(i2) for each 1 ≤ i1 < i2 ≤ nP , and
SP [i] = ST [ϕ(i)] for each i ∈ [nP]. We call such a ϕ an alignment of (SP ;ST).
We write Sdel(ϕ) to denote the set of bases that have to be deleted from ST
according to ϕ, i.e. Sdel(ϕ) = [nT] \⋃i∈[nP] ϕ(i).

An arc-annotation A of a sequence S of length n is a multiset of pairs of
integers from [n], where each pair (i1, i2) ∈ A satisfies i1 < i2. An arc-annotated
sequence (S,A) is a sequence S together with an arc-annotation A for S. We say
that an arc (i1, i2) starts at i1, ends at i2, and connects the positions i1 and i2
incident to it. We write A(i1, i2) for the multiplicity of the pair (i1, i2) in A, and
we write A+(i) and A−(i) for the set of arcs starting or ending at i, respectively.
Also, we let astart and aend to denote the starting and ending position of an arc
a. We use |(S,A)| to denote the size of (S,A) in binary encoding.

Given two arc-annotated sequences (SP , AP) and (ST , AT), we say that
(SP , AP) is an arc-preserving subsequence of (ST , AT) if it can be obtained from
(ST , AT) by deleting bases from it, i.e. there is an alignment ϕ of (SP ;ST) such
that AP (i, j) = AT (ϕ(i), ϕ(j)) for any 1 ≤ i < j ≤ |SP |. Such an alignment is
an arc-preserving alignment of (SP , AP ;ST , AT). Note that by deleting a base,
we also mean the deletion of the arcs incident to it. Given two arc-annotated
sequence P and T , the Arc-Preserving Subsequence problem (APS) asks
whether P is an arc-preserving subsequence of T .

We will deal with the following generalization of APS, which we call Almost
APS or AAPS: given two arc-annotated sequences (SP , AP) and (ST , AT) and
some ka ∈ Z, we ask if we can delete some bases from ST (together with their
incident arcs) and at most ka arcs in addition to obtain (SP , AP). Formally, we
have to decide if there is a set Adel of at most ka arcs in AT such that (SP , AP)
is an arc-preserving subsequence of (ST , AT \ Adel). We call ϕ a ka-alignment
for (SP , AP ;ST , AT) if ϕ is an arc-preserving alignment of (SP , AP ;ST , AT \A∗)
for some set A∗ with |A∗| ≤ ka. Also, we let Adel(ϕ) to denote such an A∗.

Given a sequence S, let Srev denote the reverse of S. For a position i of S,
we will use irev to denote the position |S| − i+ 1 of Srev corresponding to i. If A
is an arc-annotation of S, then let Arev denote the corresponding arc-annotation
of Srev, meaning Arev(i1, i2) = A(irev

2 , irev
1). We also let Xrev = {irev | i ∈ X}

for any set X of positions in S.
If ϕ is a ka-alignment for (SP , AP ;ST , AT), then ϕrev is the corresponding

ka-alignment for (Srev
P , Arev

P ;Srev
T , Arev

T), i.e. ϕrev(i) = (ϕ(irev))rev for each i.
Due to lack of space, we omit several proofs, see the full paper for them.

3 Fixed-parameter tractability of APS

In this section we present an FPT algorithm for AAPS, a generalization of
APS, with the parameterization where the parameters are the number of bases
to delete and the number of arcs that can be deleted additionally.

3

Almost Arc-Preserving Subsequence

Input: Two arc-annotated sequences (SP , AP) and (ST , AT), and ka ∈ Z.
Parameters: ka and kb = |ST | − |SP |.
Task: decide whether (SP , AP) can be obtained from (ST , AT) by deleting
kb bases (together with their incident arcs) and ka arcs in addition, i.e.
whether there is a ka-alignment ϕ for (SP , AP ;ST , AT).

Our aim is to prove the main result of the paper stated by Theorem 1.

Theorem 1. There is an algorithm that solves any instance (SP , AP ;ST , AT ; ka)
of the Almost Arc-Preserving Subsequence problem and runs in time

k
O(k3

b+kbka)
b |(ST , AT)| where kb = |ST | − |SP |.

3.1 Outline of the algorithm

To prove Theorem 1, we present an algorithm that uses a bounded search tree
technique in order to construct a ka-alignment step by step. In certain situations,
the algorithm might branch on a bounded number of possibilities to proceed
with. Since both the number of such branchings and the possible directions of a
branching will be bounded in terms of ka and kb, the size of the resulting search
tree will be bounded by a function of ka and kb.

Actually, the algorithm described here has the following behavior: given an in-
stance of APS, consisting of the arc-annotated sequences (SP , AP) and (ST , AT),
and an integer ka, it tries to construct a ka-alignment ϕ for (SP , AP ;ST , AT).
To do so, it fixes such a hypothetical solution ϕ, and looks for bases in Sdel(ϕ)
and arcs in Adel(ϕ), which we will call removable bases and removable arcs of ϕ,
resp. More precisely, our algorithm does one of the followings in linear time:

– it produces an arc-preserving alignment ψ for (SP , AP ;ST , AT) (note
that ψ is a ka-alignment for (SP , AP ;ST , AT) as well),

– it correctly rejects the instance, or
– it produces a removable base or a removable arc of ϕ.

In the last case, we can delete the given base or arc, and apply the algorithm to
the obtained instance. Notice that one of the parameters ka and kb = |ST |−|SP |
is decreased in the new instance. The presented algorithm will be shown to run in
f(ka, kb)|(ST , AT)| time for some functions f , which therefore implies Theorem 1
by proving that AAPS can be solved in (ka + kb)f(ka, kb)|(ST , AT)| time.

Our algorithm might branch several times before producing an output as
described above. Each such branch will be caused by guessing the answer to a
question of the following form: given some position p in SP , what is the value
of the position ϕ(p)?3 We interpret these branchings in the usual framework
of bounded search trees: a branching happens when we do not know the exact
value of a certain variable (such as the value of ϕ(p) in the above example),

3 In a few cases we will also need some additional branchings, described later on.

4

and thus we have to investigate every possible value. A certain branch examines
one possible value of the variable, and it produces a correct output if the given
variable indeed has the value associated with this branch. Since the examined
cases always cover every possibilities, this implies that the output will be correct
in at least one of the branches.

Although our algorithm seems to be a straightforward application of the
bounded search tree methodology used frequently in parameterized algorithms,
we had to overcome many difficulties to avoid any possibility of using an un-
bounded number of such guesses. The presented algorithm will apply consider-
ably sophisticated methods to keep the search tree bounded.

3.2 Fragmentations and related concepts.

Fragmentation. To describe our knowledge of the partially constructed ka-
alignment we have, we introduce a data structure called fragmentation. By it-
eratively refining the fragmentation, we can get closer and closer to actually
determine a ka-alignment. We write |SP | = nP and |ST | = nT .

Recall that ϕ is a fixed ka-alignment for (SP , AP ;ST , AT). For some 1 ≤ i1 ≤
i2 ≤ nP , we define the block [i1, i2] in SP to be the set of positions i1, i1+1, . . . , i2,
and we define blocks in ST similarly. Given a set of f disjoint blocks {[ph1 , ph2] |
h ∈ [f]} in SP and a set of f disjoint blocks {[th1 , th2] | h ∈ [f]} in ST , we let
Fh = ([ph1 , p

h
2], [th1 , t

h
2]). We say that {Fh | h ∈ [f]} is a fragmentation for ϕ, if

– th1 ≤ ϕ(ph1) and ϕ(ph2) ≤ th2 for each h ∈ [f], and
– ph+1

1 = ph2 + 1 and th+1
1 = th2 + 1 for each h ∈ [f − 1].

We will call the element Fh for some h ∈ [f] a fragment. We define σ(Fh) =
(th2 − th1)− (ph2 − ph1) and δ(Fh) = th1 − ph1 , which are both clearly non-negative
integers. Note that δ(Fh+1) = δ(Fh) + σ(Fh) holds for each h ∈ [f − 1]. We say
that a position i ∈ [nP] of SP is contained in the fragment Fh, if ph1 ≤ i ≤ ph2 .

We will say that a fragment F is trivial if σ(F) is zero, and non-trivial
otherwise. We also call a position of SP trivial (or non-trivial) in a fragmentation,
if the fragment containing it is trivial (or non-trivial, resp). Given fragmentation
for ϕ and a position i in SP , we will use the notation ileft = i + δ(F) and
iright = i+ δ(F) + σ(F), where F is the fragment containing i. Observe that

ileft ≤ ϕ(i) ≤ iright

always holds. We will classify a position i of SP as follows:

– If ϕ(i) = ileft, then i is left-aligned.
– If ϕ(i) = iright, then i is right-aligned.
– If ϕ(i) = j such that ileft < j < iright, then i is skew.

If i is trivial, then only ϕ(i) = ileft = iright is possible. Thus, each trivial position
must be both left- and right-aligned.

Notice that each fragment F must contain exactly σ(F) positions that are
contained in Sdel(ϕ). This implies the following bounds.

5

Proposition 2. If F is a fragmentation for ϕ, then
∑

F∈F σ(F) = kb. In par-
ticular, F can have at most kb non-trivial fragments.

A marked fragmentation for ϕ is a pair (F ,M) formed by a fragmentation F
for ϕ and a set M of positions in SP such that each m ∈M is a trivial position
in F . We say that the trivial positions contained in M are marked.

For a fragment F = ([p1, p2], [t1, t2]) we let F rev = ([prev
2 , prev

1], [trev
2 , trev

1]),
hence a fragmentation F for ϕ clearly yields a fragmentation F rev = {F rev|F ∈
F} for ϕrev as well. Note that if a position i of SP is left-aligned (right-aligned)
in F , then the position irev is right-aligned (left-aligned, resp.) in F rev.

Pairing arcs. Given a position i in SP , let us order the arcs c in A+
P (i)

increasingly according to their right endpoint cend. Similarly, we order the arcs
in A−P (i) increasingly according their left endpoint. In both cases, we break ties
arbitrarily. Also, we order the arcs in A+

T (j) and A−T (j) in the same way for
each position j in ST . Now, we “pair” arcs in A+

P (i) with arcs in A+
T (ileft),

and also arcs in A−P (i) with arcs in A−T (ileft) according to their ranking in this
ordering. To this end, we construct the sets R+

left(i) ⊆ A+
P (i) × A+

T (ileft) and
R−left(i) ⊆ A−P (i)×A−T (ileft) in the following way. We put a pair (c, d) into R+

left(i),
if c ∈ A+

P (i), d ∈ A+
T (ileft), and c has the same rank (according to the above

ordering) in A+
P (i) as the rank of d in A+

T (ileft). Similarly, we put a pair (c, d) into
R−left(i), if c ∈ A−P (i), d ∈ A−T (ileft), and c has the same rank in A−P (i) as the rank
of d inA−T (ileft). In addition, we define the setsR+

right(i) and R−right(i) analogously,
by substituting iright for ileft in the above definitions. The key properties of these
sets are summarized below.

Lemma 3. We know ϕ(cend) = dend and ϕ(cstart) = dstart in the following
cases:
(1) If (c, d) ∈ R+

left(i) and |A+
P (i)| = |A+

T (ileft)| for some left-aligned i.
(2) If (c, d) ∈ R−left(i) and |A−P (i)| = |A−T (ileft)| for some left-aligned i.
(3) If (c, d) ∈ R+

right(i) and |A+
P (i)| = |A+

T (iright)| for some right-aligned i.

(4) If (c, d) ∈ R−right(i) and |A−P (i)| = |A−T (iright)| for some right-aligned i.

Arcs connecting two non-trivial fragments. Given two non-trivial frag-
ments F and H of a fragmentation with F preceding H , we define three disjoint
subsets of those arcs of AP that start in a position of F and end in a posi-
tion of H . These sets will be denoted by L(F,H), R(F,H), and X (F,H), and
we construct them as follows. Suppose that c = (f, h) ∈ AP for some f and
h contained in F and H , respectively. We put c in exactly one of these three
sets, if (c, d) ∈ R−left(h) for some arc d ∈ AT such that fleft ≤ dstart ≤ fright. If
dstart = fleft then we put c into L(F,H), if dstart = fright then we put c into
R(F,H), and if fleft < dstart < fright then we put c into X (F,H).

By Lemma 3, if the positions in H are left-aligned, then the left endpoints
of the arcs in R(F,H) must be right-aligned. Similarly, the left endpoints of
the arcs in X (F,H) must be skew in such a case. Proposition 4 states these
observations in a precise manner. Since we would like to ensure each position to
be left-aligned, we will try to get rid of the arcs in R(F,H) and X (F,H).

6

Proposition 4. Let i be left-aligned, |A−P (i)| = |A−T (ileft)|, and c ∈ A−P (i).
(1) If c ∈ L(F,H), then cstart is left-aligned.
(2) If c ∈ R(F,H), then cstart is right-aligned.
(3) If c ∈ X (F,H), then cstart is skew.

We say that two positions f1, f2 ∈ [nP] are conflicting for (F,H), if f1 ≤ f2,
A+
P (f1)∩R(F,H) 6= ∅ and A+

P (f2)∩L(F,H) 6= ∅. In such a case, we say that any
h ≥ max{h1, h2} in H is conflict-inducing for (F,H) (and for the conflicting pair
(f1, f2)), where h1 denotes the minimal position for which (f1, h1) ∈ R(F,H),
and h2 denotes the minimal position for which (f2, h2) ∈ L(F,H). Notice that
if such a conflict-inducing h is left-aligned, then both h1 and h2 are left-aligned.
By Proposition 4, this implies that f1 is right-aligned and f2 is left-aligned. But
since f1 precedes f2, this cannot happen. This implies the following observation.

Proposition 5. If a position h is conflict-inducing for (F,H) in a given frag-
mentation, then h cannot be left-aligned.

In addition, if L(F,H) 6= ∅, then let Lmax(F,H) denote the largest position
f in F for which A+

P (f) ∩ L(F,H) 6= ∅. Let the L-critical position for (F,H)
be the smallest position h contained in H for which (Lmax(F,H), h) ∈ L(F,H).
Similarly, if R(F,H) 6= ∅, then let Rmin(F,H) denote the smallest position f in
F for which A+

P (f)∩R(F,H) 6= ∅. Also, let the R-critical position for (F,H) be
the smallest position h in H for which (Rmin(F,H), h) ∈ R(F,H).

Now, a position h in H is LR-critical for (F,H), if either h is the R-critical
position for (F,H) and L(F,H) = ∅, or h = max{hL, hR} where hL is the L-
critical and hR is the R-critical position for (F,H). Note that both cases require
R(F,H) 6= ∅. Moreover, H contains an LR-critical position for (F,H), if and
only if R(F,H) 6= ∅. Intuitively, if an LR-critical position in H is left-aligned,
then this implies that some position in F is right-aligned.

Note that the definitions of the sets L(F,H),R(F,H), and X (F,H) together
with the definitions connected to them as described above depend on the given
fragmentation, so whenever the fragmentation changes, these must be adjusted
appropriately as well. (In particular, arcs in L(F,H),R(F,H), and X (F,H)
must start and end in two different non-trivial fragments.)

Properties 1-9. Let (F ,M) be a marked fragmentation for ϕ. Our aim is
to ensure that the properties given below hold for each position in SP . Intu-
itively, these properties mirror the expectation that every position should be
left-aligned. Note that although we cannot decide whether (F ,M) is a correct
marked fragmentation without knowing the ka-alignment ϕ, we are able to check
whether these properties hold for some position i in (F ,M).

Property 1: SP [i] = ST [ileft].
Property 2: If i is non-trivial, then |A+

P (i)| = |A+
T (ileft)| and |A−P (i)| = |A−T (ileft)|.

Property 3: If i is non-trivial, then AP (y, i) = AT (yleft, ileft) for any y < i
contained in the same fragment as i.

Property 4: If i is non-trivial, then for every (c, d) ∈ R+
left(i) such that cend = y

is non-trivial, yleft ≤ dend ≤ yright holds. Also, for every (c, d) ∈ R−left(i) such
that cstart = y is non-trivial, yleft ≤ dstart ≤ yright holds.

7

Property 5: No arc in X (F,H) for some (F,H) ends at i.

Property 6: i is not conflict-inducing for any (F,H).

Property 7: i is not LR-critical for any (F,H).

Property 8: If i is non-trivial, then for every (c, d) ∈ R+
left(i) such that cend

= y is non-trivial, dend = yleft holds. Also, for every (c, d) ∈ R−left(i) such
that cstart = y is non-trivial, dstart = yleft holds.

Property 9: If i is non-trivial, then for each marked positionm ∈M ,AP (i,m) =
AT (ileft,mleft) holds if m > i, and AP (m, i) = AT (mleft, ileft) holds if m < i.

Observe that each of these properties depend on the fragmentation F , and Prop-
erty 9 depends on the set of marked positions M as well. Also, if some property
holds for a position i in (F ,M), then this does not imply that the property
holds for irev in (F rev,M rev), as most of these properties are not symmetric. For
example, ileft and iright both have a different meaning in the fragmentation F
and in F rev. We say that a position i ∈ [nP] violates Property ` (1 ≤ ` ≤ 9) in
a marked fragmentation (F ,M), if Property ` does not hold for i in (F ,M).

If the first eight properties hold for each position both in (F ,M) and in
(F rev,M rev), then we say that (F ,M) is 8-proper. We say that (F ,M) is proper,
if it is 8-proper and Property 9 holds hold for each position of SP in (F ,M). Note
that we do not care whether Property 9 holds for the positions in the reversed
instance, so (F ,M) is proper even if Property 9 does not hold in (F rev,M rev).

3.3 Description of the algorithm

We start with a marked fragmentation where M = ∅ and the fragmentation con-
tains only the unique fragment ([1, nP], [1, nT]), which is non-trivial if kb > 0.
Given a marked fragmentation (F ,M), we do the following: if one of Proper-
ties 1, 2, . . . , 9 does not hold for some position i in (F ,M) or one of the first
eight properties does not hold for some i in the reversed marked fragmentation
(F rev,M rev), then we will either reject the instance, output a removable base
of ϕ, or modify the given marked fragmentation. If the given marked fragmen-
tation is proper, the algorithm returns an output using Lemmas 9 and 10.

To do this, in each step we choose the first property violated by a position
either in (F ,M) or in (F rev,M rev). Observe that we can assume w.l.o.g. that
there is an ` (1 ≤ ` ≤ 9) such that Properties 1, . . . , `− 1 hold for each position
both in (F ,M) and in (F rev,M rev), but Property ` is violated by a position in
SP in (F ,M), otherwise we simply reverse the instance. (We only reverse it if
this condition is not true.)

Given `, the algorithm takes the first position i violating Property `, and
branches on choosing ϕ(i) according to ileft ≤ ϕ(i) ≤ iright. By Proposition 2,
this results in at most kb + 1 directions. Next, the algorithm handles each of
the cases in a different manner, according to whether i turns out to be left-
aligned, right-aligned, or skew. We consider these cases in a general way that is
essentially independent from `, and mainly relies on the type of i. We suppose
that i is contained in a fragment F i = ([p1, p2], [t1, t2]).

8

Extremal cases. Assume that i = p1 and i is skew or right-aligned, or i = p2

and i is skew or left-aligned. In these cases, we can find at least one removable
base of ϕ. First, if i = p1 and i is skew or right-aligned, then each base ST [j]
must be deleted for each j where t1 ≤ j < ϕ(i). Second, if i = p2 and i is skew
or left-aligned, then ST [j] must be deleted for each j where ϕ(i) < j ≤ t2.

Skew position. Suppose that i > p1 and j is skew, meaning that ϕ(i) = j
for some j with ileft < j < iright. In this case, we can divide the fragment F i,
or more precisely, we can delete F i from the fragmentation F and add the new
fragments ([p1, i−1], [t1, j−1]) and ([i, p2], [j, t2]). Note that the newly introduced
fragments are non-trivial by the bounds on j. We also modify M by declaring
every trivial position of the fragmentation to be marked (no matter whether it
was marked or not before). Observe that the number of non-trivial fragments
increases in this step. By Proposition 2, this can happen at most kb − 1 times.

Left-aligned position. Lemma 6 summarizes our results that show how to
deal with the case when i is left-aligned and i < p2. The proof of this lemma is
essential in the correctness of our algorithm.

Lemma 6. Suppose that Property ` (1 ≤ ` ≤ 9) does not hold for some i ∈ [nP]
in the marked fragmentation (F ,M), but all the previous properties hold for each
position both in (F ,M) and in (F rev,M rev). If i is left-aligned, then depending
on `, we can do one of the followings in linear time (without any branchings):

A) reject correctly,
B) output a removable arc of ϕ,
C) find that i is incident to a removable arc of ϕ (this only happens if ` = 2),
D) produce a skew position i′, or
E) produce a set N of at most 2kb−1 positions in ST such that N∩Sdel(ϕ) 6= ∅.

In Case A or B, we reject or output a removable arc of ϕ.
In Case C, we put the non-trivial position i in a set W , which will only

store positions in ST that are incident to a removable arc of ϕ. (We set W = ∅
initially.) Whenever Case C happens, we examine whether |W | ≤ 2ka. If not,
then we reject the input. This is correct, since there can be at most ka removable
arcs of ϕ, and each such arc is incident to two bases.

If |W | ≤ 2ka holds, then we modify the given fragmentation, replacing F i

by new fragments F1 = ([p1, i], [t1, ileft]) and F2 = ([i + 1, p2], [ileft + 1, t2]). By
ϕ(i) = ileft, this yields a fragmentation for ϕ. Note that F1 is trivial and F2 is
non-trivial. We mark each position of F2, putting them into M . We refer to this
operation as a left split at i. Since i becomes trivial in F1, each position can
be placed into W at most once. Thus, Case C can happen at most 2ka times
without rejecting.

In Cases D and E, we might branch into a bounded number of additional
branches. In Case D, we branch on those choices of ϕ(i′) where i′ is indeed skew,
which means σ(F i)−1 ≤ kb−1 directions, and we handle each branch according
to the way described above (dividing one fragment at the skew position i′). In
Case E, we branch into at most 2kb − 1 directions on choosing a removable
base of ϕ from N and outputting it.

9

Note that Case D or E can happen at most kb times, by our observation that
a skew position can only be found at most kb − 1 times.

We remark that if i is trivial, then we treat it as left-aligned.
Right-aligned position. Suppose that i > p1 and i is right-aligned. In

this case, we replace F i by new fragments F1 = ([p1, i − 1], [t1, iright − 1]) and
F2 = ([i, p2], [iright, t2]). This yields a fragmentation where F1 is non-trivial and
F2 is trivial. We refer to this operation as performing a right split at j. If this
happens because i violated Property ` for some ` ≤ 8, then we mark every trivial
position (including those contained in F2), by putting them into M . If ` = 9,
then we do not modify M , so the trivial positions of F2 will not be marked.

The above process either produces a removable base of ϕ, rejects correctly,
or ends by providing a marked fragmentation that is proper. In the remaining
steps of the algorithm, the set M will never be modified, and the only possible
modification of the actual fragmentation will be to perform a right split.

Given a proper marked fragmentation (F ,M), we make use of Lemma 9
below. This lemma gives sufficient conditions to do one of the followings.

– Find out that some non-trivial position i is right-aligned. In this case, we
perform a right split at i in the actual fragmentation.

– Find a removable arc of ϕ.
– Reject correctly.

Our algorithm applies Lemma 9 repeatedly, until it either stops (by reject-
ing or outputting a removable arc of ϕ), or finds that none of the conditions
of Lemma 9 apply. Before stating this lemma, we need two more important
observations. First, Lemma 7 shows that the repeated application of Lemma 9
results in a proper fragmentation. Second, Lemma 8 states some useful invariants
that hold for each fragmentation obtained by us after a proper fragmentation is
achieved.

Lemma 7. If (F ,M) is proper and F ′ is obtained by applying an arbitrary
number of right splits to F , then (F ′,M) is proper as well.

Lemma 8. Let (F ,M) be a 8-proper marked fragmentation whose trivial posi-
tions are all marked. Suppose that F ′ is obtained by applying an arbitrary number
of right splits to the fragmentation F .
(1) For each i that is not marked (i ∈ [nP] \M), both A+

P (i) = A+
T (iright) and

A−P (i) = A−T (iright) hold in (F ′,M).
(2) Suppose that neither i nor j is marked (i, j ∈ [nP] \M) and c = (i, j) ∈ AP .
If (c, d) ∈ R+

right(i) for some d ∈ A+
T (iright), then dend = jright. Similarly, if

(c, d) ∈ R−right(j) for some d ∈ A−T (jright), then dstart = iright.

Now, we can state Lemma 9.

Lemma 9. Let (F ,M) be a proper marked fragmentation for ϕ obtained by our
algorithm, and let a, b ∈ [nP].
(i) Suppose that a is trivial but not marked and b is non-trivial. If (a, b) ∈ AP

10

or (b, a) ∈ AP , then b is right-aligned.
(ii) If a and b are trivial, a < b and AP (a, b) 6= AT (aleft, bleft), then we can either
reject or output a removable arc of ϕ.

After applying Lemma 9 repeatedly, the algorithm either stops by rejecting or
outputting a removable arc of ϕ, or it finds that neither of the conditions (i) and
(ii) of Lemma 9 holds. Let (F ,M) be the final marked fragmentation obtained.
Note that the algorithm does not modify the set M of marked trivial positions
when applying Lemma 9, and it can only modify the actual fragmentation by
performing a right split. Hence, Lemma 7 yields that (F ,M) is proper.

Using (F ,M), Lemma 10 claims that we can find an arc-preserving align-
ment for (SP , AP ;ST , AT) in linear time. Hence, the final step of our algorithm,
finishing its description, is to output this arc-preserving alignment.

Lemma 10. Let (F ,M) be a proper marked fragmentation for ϕ obtained by
the algorithm. If none of the conditions of Lemma 9 holds, then we can produce
an arc-preserving alignment ψ for (SP , AP ;ST , AT) in linear time.

Proof. We show that defining ψ(i) = ileft for each position i ∈ [nP] fulfills
the requirements. For this, we have to prove SP [i] = ST [ileft] for each position
i ∈ [nP], and AP (i, j) = AT (ileft, jleft) for each two positions i 6= j ∈ [nP].

First, as Property 1 holds for each position in F , we know SP [i] = ST [ileft] for
each i ∈ [nP]. It remains to show AP (i, j) = AT (ileft, jleft) for each i 6= j ∈ [nP].
If both i and j are trivial positions, then this is true because the conditions of
(ii) in Lemma 9 do not apply. If both i and j are non-trivial, then AP (i, j) =
AT (ileft, jleft) again holds, by Properties 2 and 8 for j. Now, if i is non-trivial
but j is trivial and marked (or vice versa), then Property 9 implies the required
equality. Finally, if one of i and j is non-trivial and the other one is trivial but
not marked, then AP (i, j) = 0 holds, since (i) of Lemma 9 is not applicable. ut

3.4 Analysis of the algorithm

In this section, we give some hints how to analyse the running time of the
presented algorithm. The following lemma, stating the key properties of the our
algorithm, proves Theorem 1.

Lemma 11. Let (SP , AP , ST , AT , ka) be the given instance of APS. The pre-
sented algorithm branches into at most f(ka, kb) directions in total for some
function f such that in each branch it does one of the followings (supposing that
the conditions of the given branch do hold):

– it gives an arc-preserving alignment ψ of (SP , AP ;ST , AT),
– it correctly rejects the instance, or
– it outputs a removable base or a removable arc of ϕ.

Moreover, each branch takes linear time in the size of the input.

11

Although we do not prove Lemma 11 due to lack of space, we give the most
important definitions used in the proof.

Given a fragmentation F for ϕ, a fragment F ∈ F , and some ` (1 ≤ ` ≤ 8),
let π(F , F, `) be 1 if Property ` holds for each position i in F , and 0 otherwise.
Let N(F) denote the set of non-trivial fragments in F . We define the measure
µ(F) of a given fragmentation F for ϕ as follows:

µ(F) =
∑

1≤`≤8

(∑

F∈N(F)

π(F , F, `) +
∑

F∈N(Frev)

π(F rev, F, `)

)
.

Note that µ(F) = µ(F rev) is trivial, so reversing a fragmentation does not change
its measure. The importance of this definition is shown by Lemma 12.

Lemma 12. Let F1, . . . ,Ft,Ft+1 be a series a fragmentations such that for each
i ∈ [t] the algorithm obtains Fi+1 from Fi by applying a left or a right split at
a position ji violating Property `i in Fi. Then (1) µ(Fi+1) ≥ µ(Fi) for each
i ∈ [t], and (2) if µ(F1) = µ(Ft), then t ≤ kb holds.

References

1. J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Computing the similarity of two
sequences with nested arc annotations. Theor. Comput. Sci., 312(2-3):337–358,
2004.

2. G. Blin, G. Fertin, R. Rizzi, and S. Vialette. What makes the Arc-Preserving
Subsequence problem hard? In IWBRA’05: Proceedings of the 5th Int. Workshop
on Bioinformatics Research and Applications, volume 3515 of Lecture Notes in
Computer Science, pages 860–868. Springer-Verlag, 2005.

3. P. Damaschke. A remark on the subsequence problem for arc-annotated sequences
with pairwise nested arcs. Inf. Process. Lett., 100(2):64–68, 2006.

4. R. G. Downey and M. R. Fellows. Parameterized complexity. Monographs in
Computer Science. Springer-Verlag, New York, 1999.

5. P. A. Evans. Algorithms and complexity for annotated sequence analysis. PhD
thesis, University of Victoria, Canada, 1999.

6. P. A. Evans. Finding common subsequences with arcs and pseudoknots. In CPM
’99: Proceedings of the 10th Annual Symposium on Combinatorial Pattern Match-
ing, volume 1645 of Lecture Notes in Computer Science, pages 270–280. Springer-
Verlag, 1999.

7. J. Flum and M. Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer-Verlag, New York, 2006.

8. J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated se-
quences. ACM Trans. Algorithms, 2(1):44–65, 2006.

9. T. Jiang, G. Lin, B. Ma, and K. Zhang. The longest common subsequence problem
for arc-annotated sequences. J. Discrete Algorithms, 2(2):257–270, 2004.

10. G. Lin, Z.-Z. Chen, T. Jiang, and J. Wen. The longest common subsequence prob-
lem for sequences with nested arc annotations. J. Comput. Syst. Sci., 65(3):465–
480, 2002.

11. B. Ma, L. Wang, and K. Zhang. Computing similarity between rna structures.
Theor. Comput. Sci., 276(1-2):111–132, 2002.

12. D. Marx and I. Schlotter. Cleaning interval graphs. CoRR, abs/1003.1260, 2010.
arXiv:1003.1260 [cs.DS].

12

