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Abstract

In the precoloring extension problem (PrExt) a graph is given with some of the
vertices having preassigned colors and it has to be decided whether this coloring can
be extended to a proper coloring of the graph with the given number of colors. Two
parameterized versions of the problem are studied in the paper: either the number of
precolored vertices or the number of colors used in the precoloring is restricted to be at
most k. We show that for chordal graphs these problems are polynomial-time solvable
for every fixed k, but W[1]-hard if k is the parameter. For a graph class F , let F + ke

(resp., F + kv) denote those graphs that can be made to be a member of F by deleting
at most k edges (resp., vertices). We investigate the connection between PrExt in F

(with the two parameters defined above) and the coloring of F + ke, F + kv graphs
(with k being the parameter). Answering an open question of Leizhen Cai [5], we show
that coloring chordal+ke graphs is fixed-parameter tractable.

1 Introduction

In graph vertex coloring we have to assign colors to the vertices such that neighboring vertices
receive different colors. In the precoloring extension (PrExt) problem a subset W of the
vertices have preassigned colors and we have to extend this precoloring to a proper k-coloring
of the whole graph. Since vertex coloring is the special case when W = ∅, the precoloring
extension problem is NP-complete in every class of graphs where ordinary vertex coloring
is NP-complete. However, there are classes of graphs where coloring is polynomial-time
solvable, but the more general precoloring extension problem is NP-complete, see [2, 11, 12]
for more background and results on PrExt.

In this paper we study the precoloring extension problem restricted to interval and chordal
graphs. PrExt is NP-complete for interval graphs [2] (even for unit interval graphs [17]),
hence it is NP-complete for chordal graphs as well. On the other hand, if every color is used
only once in the precoloring (this special case is called 1-PrExt), then the problem becomes
polynomial-time solvable for interval graphs [2], and more generally, for chordal graphs [16].
Here we introduce two new restricted versions of PrExt: we investigate the complexity of
the problem when either there are only k precolored vertices, or there are only k colors used
in the precoloring. Clearly, the former is a special case of the latter. By giving an algorithm
that runs in O(knk+2) time on an n vertex graph, we show that for fixed k both problems
are polynomial-time solvable on chordal graphs.
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An algorithm with running time O(knk+2) is not practical even for, say, k = 10. There-
fore, we study the precoloring extension problem also in the framework of parameterized
complexity. Our aim is to investigate whether there is an algorithm where k does not appear
in the exponent of n. The central notion of parameterized complexity is uniformly polynomial
time: we say that an algorithm solves a problem in uniformly polynomial time if the running
time is f(k)p(n) for some arbitrary function f and polynomial p. If a problem has such an
algorithm, then the problem is said to be fixed-parameter tractable (FPT). Parameterized
complexity gives us a wide range of tools to design uniformly polynomial algorithms. On the
negative side, the theory of W[1]-hardness gives us a method to show that a problem is not
fixed-parameter tractable (under some plausible complexity-theoretic assumptions).

The parameterized complexity analysis shows that we cannot expect to improve the
O(knk+2) time algorithm for PrExt to a uniformly polynomial algorithm, since the problem
is W[1]-hard even for interval graphs. To establish W[1]-hardness, we use the recent result
of Slivkins [23] that the edge-disjoint paths problem is W[1]-hard.

Leizhen Cai [5] introduced a whole new family of parameterized problems. If F is an
arbitrary class of graphs, then denote by F − kv (resp., F − ke) the class of those graphs
that can be obtained from a member of F by deleting at most k vertices (resp., k edges).
Similarly, let F + kv (resp., F + ke) be the class of those graphs that can be made to be a
member of F by deleting at most k vertices (resp., k edges). For any class of graphs F and
for any graph problem, we can ask what is the complexity of the problem restricted to these
“almost F” graphs. This question is investigated in [5] for the vertex coloring problem.

Although there is a large amount of work in the literature on the complexity of coloring
for various classes of graphs, there are relatively few results concerning these modified classes.
It seems that graph coloring is a particularly interesting problem that is worth studying on
these classes. In the case of problems such as Maximum Clique, Maximum Independent
Set, and Minimum Vertex Cover, a polynomial-time algorithm for F graphs immediately
gives a uniformly polynomial time algorithm for F + kv graphs. There are 2k possibilities
for including the k extra vertices in the solution, and if we fix one possibility, then we have to
solve the problem for an F graph. On the other hand, coloring F +kv or F +ke graphs can
be very different from coloring graphs in F , and might involve significantly new approaches.
For example, bipartite graphs are easy to color, but coloring bipartite+2v graphs is NP-
complete [5]. Edge coloring bipartite graph is also easy: a classical result of Kőnig [15] states
that number of colors required to edge color a bipartite graph equals the maximum degree.
However, edge coloring bipartite+1v graphs [20] requires new techniques and insight into the
problem.

We investigate the relations between PrExt and the coloring of the modified graph
classes. We show that for several reasonable graph classes, reductions are possible between
PrExt for graphs in F and the coloring of F + kv or F + ke graphs. Based on this corre-
spondence between the problems, we show that both chordal+ke and chordal+kv graphs can
be colored in polynomial time for fixed k, but chordal+kv graph coloring is W[1]-hard. More-
over, answering an open question of Cai [5], we develop a uniformly polynomial algorithm
for coloring chordal+ke graphs. A key idea in the analysis of the algorithm is to bound the
running time using the celebrated inequality of Bollobás. Table ?? summarizes the results of
the paper.

The paper is organized as follows. Section 2 briefly reviews the most important notions
of parameterized complexity. Section 3 contains preliminary notions. Section 4 reviews tree
decomposition, which will be our main tool when dealing with chordal graphs. In Section 5,
we investigate the parameterized PrExt problems for chordal graphs. The connections
between PrExt and coloring F + ke, F + kv graphs are investigated in Section 6. Finally,
in Section 7, we show that coloring chordal+ke graphs is fixed-parameter tractable.
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Table 1: Results of the paper on interval and chordal graphs

Problem Interval graphs Chordal graphs

PrExt with W[1]-hard, W[1]-hard,
k precolored vertices in P for fixed k in P for fixed k

PrExt with k colors W[1]-hard, W[1]-hard
in the precoloring in P for fixed k in P for fixed k

Coloring
FPT FPT

F + ke graphs

Coloring W[1]-hard, W[1]-hard,
F + kv graphs in P for fixed k in P for fixed k

2 Parameterized Complexity

In parameterized complexity we are dealing with parameterized problems, where every input
instance (x, k) has a distinguished part k called the parameter. For example, in the Maximum
Clique problem the parameter k is the size of the clique to be found. In problems such
as Maximum Clique, Minimum Vertex Cover, and Longest Path the problem can
be solved trivially by trying all the O(nk) possibilities for the solution. However, such an
algorithm is not really practical: nk can be huge even for moderate values of n and small
values of k. Therefore, we are interested in the question whether there is an algorithm where
k does not appear in the exponent of n. We say that a parameterized problem is fixed-
parameter tractable (FPT) if it has an algorithm with running time f(k)nc, where c is a
constant independent of k and n, and f depends only on k. Such an algorithm can be useful
even for large values of n, provided that f(k) is relatively small and c is a small constant. It
turns out that several NP-hard problems, e.g., Minimum Vertex Cover, Longest Path,
k-Disjoint Triangles, etc. are fixed-parameter tractable. There is a standard toolbox of
techniques for designing FPT algorithms: kernelization, bounded search trees, color coding,
well-quasi ordering, just to name some of the more important ones (see [7] and [19]).

The theory of NP-completeness can be used to show that certain problems are unlikely to
be polynomial-time solvable. In parameterized complexity, W[1]-hardness plays an analogous
role: by showing that a problem is W[1]-hard, we can give strong evidence that the problem is
not fixed-parameter tractable. We omit the somewhat technical definition of the complexity
class W[1], see [7] for details. Here it will be sufficient to know that there are several problems,
including Maximum Clique, that were proved to be W[1]-hard. Furthermore, we also expect
that there is no O(no(k)) algorithm for Maximum Clique: recently it was shown that there
exists an O(no(k)) algorithm for Maximum Clique if and only if there are subexponential-
time algorithms for 3-Sat (see [6] and [9]).

To prove that a parameterized problem Q′ is W[1]-hard, we have to present a parameter-
ized reduction from a known W[1]-hard problem Q to Q′. A parameterized reduction from
problem Q to problem Q′ is a function that transforms a problem instance (x, k) of Q into a
problem instance (x′, k′) of Q′ such that

• (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q,

• k′ is a function of k independent of x, and
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• the transformation can be computed in time f(k) · |x|c for some constant c and function
f(k).

It is easy to see that if there is a parameterized reduction from Q to Q′, and Q′ is fixed-
parameter tractable, then it follows that Q is fixed-parameter tractable as well.

We remark that there can be many different parameterizations of the same problem.
For example, in the Maximum Clique problem, the required solution size seems to be the
most natural choice for the parameter. However, there are several other possibilities: the
parameter can be the maximum degree of the graph, the treewidth of the graph, or some
other graph parameter. In [5] and [10], some new types of parameters are investigated, for
example the parameter can be the distance of the input instance from some (defined) easy
class.

3 Preliminaries

Given a color set C, a C-coloring of graph G(V,E) is an assignment ψ: V → C such that
ψ(u) 6= ψ(v) whenever u ∈ V and v ∈ V are connected by an edge. We introduce two
different parameterizations of the precoloring extension problem. Formally, the problem is
defined as follows:

Precoloring Extension (PrExt)

Input: A graph G(V,E), a set of colors C, and a precoloring
ψ: W → C for a set of vertices W ⊆ V .

Parameter 1: |W |, the number of precolored vertices.

Parameter 2: |{ψ(w) : w ∈W}| = |CW |, the number of colors used in
the precoloring.

Question: Is there a proper C-coloring ψ′ of G that extends ψ (i.e.,
ψ′(w) = ψ(w) for every w ∈W )?

Note that CW ⊆ C is the set of colors appearing on the precolored vertices, and can be
much smaller than the set of available colors C. When we consider parameter 1, then the
problem will be called PrExt with fixed number of precolored vertices, while considering
parameter 2 corresponds to PrExt with fixed number of colors in the precoloring. The first
problem is obviously easier than the latter.

For every class F and every fixed k, one can ask what is the complexity of vertex coloring
on the four classes F +ke, F +kv, F −ke, F −kv. The first question is whether the problem
is NP-complete for some fixed k (for example, coloring bipartite+2v graphs is NP-complete
[5]). If the problem is solvable in polynomial time for every fixed k, then the next question
is whether the problem is fixed-parameter tractable, that is, whether there is a uniformly
polynomial-time algorithm for the given classes.

If F is hereditary with respect to taking induced subgraphs, then F − kv is the same as
F , hence coloring F − kv graphs is the same as coloring in F . Moreover, it is shown in [5]
that if F is closed under edge contraction and has a polynomial time algorithm for coloring,
then coloring F − ke graphs is fixed parameter tractable. Therefore, we can conclude that
coloring chordal−kv and coloring chordal−ke graphs are in FPT. In this paper we show that
coloring chordal+ke graphs is in FPT, but coloring chordal+kv graphs is W[1]-hard.

The modulator of an F + ke graph G is a set of at most k edges whose removal makes
G a member of F . Similar definitions apply for the other classes. We will call the edges
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and vertices of the modulator special edges and vertices. In the case of F + ke and F − ke

graphs, the vertices incident to the special edges will be called the special vertices.
When considering the complexity of coloring in a given parameterized class, then we can

assume either that only the graph is given in the input, or that a modulator is also given. In
the case of coloring chordal−ke graphs, this makes no difference as finding the modulator of
such a graph (i.e., the at most k edges that can make the graph chordal) is in FPT [4, 13].
On the other hand, the parameterized complexity of finding the modulator of a chordal+ke
graph is open. Thus in our algorithm for coloring chordal+ke graphs, we assume that the
modulator is given in the input.

4 Tree decomposition

A graph is chordal if it does not contain a cycle of length greater than 3 as an induced
subgraph. Equivalently, a graph is chordal if and only if every cycle of size greater than
3 contains a chord, that is, an edge between two vertices not neighbors in the cycle. This
section summarizes some well-known properties of chordal graphs. First, chordal graphs can
be also characterized as the intersection graphs of subtrees in a tree (see e.g., [8]):

Theorem 4.1. The following two statements are equivalent:

1. G(V,E) is chordal.

2. There exists a tree T (U,F ) and a subtree Tv ⊆ T for each v ∈ V such that u, v ∈ V are
neighbors in G(V,E) if and only if Tu ∩ Tv 6= ∅.

The tree T together with the subtrees Tv is called the tree decomposition of G.1 A tree
decomposition of a chordal graph G can be found in polynomial time (see [8, 22]).

We assume that T is a rooted tree with some root r ∈ U . For clarity, we will use the
word “vertex” when we refer to the chordal graph G(V,E), and “node” when referring to the
tree T (U,F ). For a node x ∈ U , denote by Vx those vertices whose subtree contains x or a
descendant of x. The subgraph of G induced by Vx will be denoted by Gx = G[Vx]. For a
node x ∈ U of T , denote by Kx the union of v’s where x ∈ V (Tv). Clearly, the vertices of
Kx are in Vx, and they form a clique in Gx, since the corresponding trees intersect in T at
node x. An important property of the tree decomposition is the following: for every node
x ∈ U , the clique Kx separates Vx \Kx and V \ Vx. That is, among the vertices of Vx, only
the vertices in Kx can be adjacent to V \ Vx.

A tree decomposition will be called nice [14], if it satisfies the following additional re-
quirements (see Figure 1):

• Every node x ∈ U has at most two children.

• If x ∈ U has two children y, z ∈ U , then Kx = Ky = Kz (x is a join node).

• If x ∈ U has only one child y ∈ U , then either Kx = Ky ∪ {v} (x is an introduce node)
or Kx = Ky \ {v} (x is a forget node) for some v ∈ V .

• If x ∈ U has no children, then Kx contains exactly one vertex (x is a leaf node).

1A note on terminology: what we call here “tree decomposition” is sometimes called “clique tree.” More-
over, here we are defining a special type of tree decomposition: usually, when dealing with non-chordal graphs,
it is not required that u and v are neighbors whenever Tu ∩ Tv 6= ∅.
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Figure 1: Nice tree decomposition of a chordal graph.

By splitting the nodes of the tree in an appropriate way, a tree decomposition of G can be
transformed into a nice tree decomposition in polynomial time.

A vertex v can have multiple introduce nodes, but at most one forget node (the vertices
in clique Kr of the root r have no forget nodes, but every other vertex has exactly one). For
a vertex v, its subtree Tv is the subtree rooted at the forget node of v (if it exists, otherwise
at the root) and whose leaves are exactly the introduce nodes and leaf nodes of v.

5 PrExt on chordal graphs

In this section we show that PrExt can be solved in polynomial time for chordal graphs if
the number of colors used in the precoloring is bounded by a constant k. In general, PrExt
is NP-hard for interval graphs, even if every color is used at most twice in the precoloring
[2].

The algorithm presented below is a straightforward application of the tree decomposition
described in Section 4. The running time of the algorithm is O(knk+2), hence it is not
uniformly polynomial. In Theorem 5.2 we show that the problem is W[1]-hard, hence we
cannot hope to find a uniformly polynomial algorithm.

Theorem 5.1. The PrExt problem can be solved in O(knk+2) time for chordal graphs if
the number of colors in the precoloring is at most k.

Proof. It can be assumed that the colors used in the precoloring are the colors 1, 2, . . . , k.
For each node x of the nice tree decomposition of the graph, we solve O(nk) subproblems
using dynamic programming. A subproblem is described by a vector [α1, . . . , αk], where each
αi is either a vertex of Kx, or the symbol ⋆. We say that such a vector is feasible for node x,
if there is a precoloring extension for Gx with the following properties:

• If αi (1 ≤ i ≤ k) is ⋆, then color i does not appear on the clique Kx.

• If αi is some vertex in Kx, then color i appears on this vertex.

Notice that in a feasible vector a vertex can appear at most once (but the star can appear
several times), thus in the following we consider only such vectors.

Clearly, the precoloring can be extended to the whole graph if and only if the root node r
has at least one feasible vector. The algorithm finds the feasible vectors for each node of T .
We construct the feasible vectors for the nodes in a bottom-up fashion. First, they are easy
to determine for the leaves. Moreover, we show that they can be constructed for an arbitrary
node if the feasible vectors for its children are already available. For each such node x, we
create a table that contains one bit for every possible vector saying whether this vector is
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feasible for x. The table is organized in such a way that the bit corresponding to a given
vector can be found in O(k) time.

In the rest of the proof, we consider the different type of nodes separately. At each node,
we spend O(knk) time to fill the tables. Since the nice tree decomposition has O(n2) nodes,
it follows that the total running time is O(knk+2).

Leaf nodes. If leaf node x contains a vertex v precolored to color i, then x has only one
feasible vector: αi = v, and αj = ⋆ for i 6= j. If v is not precolored, then x has k or k + 1
feasible vectors. For every 1 ≤ i ≤ k, the vector with αi = v and αj = ⋆ for j 6= i is feasible.
Moreover, if |C| > k, then the vector containing only stars is also feasible (as v can receive
a color not in CW ).

Introduce node of v. Let y be the child of x. The feasible vectors for x can be determined
as follows. Assume first that v is not a precolored vertex. We consider two cases. A vector
containing v is feasible for x if and only if it becomes feasible for y after replacing v with
⋆. On the other hand, if the vector does not contain v, then it is feasible for x if and only
if it is feasible for y and the following additional constraint holds: the number of non-star
components contained in the vector has to be at least |Kx| − (|C| − |CW |). The reason why
this has to hold is that we have to extend a coloring of Gy to v using a color not in CW , and
this is only possible if not all such colors are used on Ky. Therefore, there has to be at least
|Ky| − (|C| − |CW | − 1) = |Kx| − (|C| − |CW |) vertices in Ky that receive colors from CW ,
and each such vertex corresponds to a non-star component of the vector.

Considering every possible vector, we can create a table that determines for each vector
whether it is feasible for y. Assuming that we have a look up table that allows us to check in
O(k) time whether a vector is feasible for y, the table for x can be calculated in O(k) time
per entry, which is O(knk) time in total.

If v is precolored to color i, then αi = v in every feasible vector for x. Therefore, the
feasible vectors for x can be determined as above, but we have to throw away those vectors
where the i-th component is not v.

Forget node of v. Let y be the child of x. A vector is feasible for x if and only if it is
feasible for y, or it can be made feasible for y by replacing some star with v. The table can
be constructed in O(knk) time, as in the previous case.

Join node. Let y and z be the children of x. We claim that a vector is feasible for x if
and only if it is feasible for both y and z. The only if part is obvious. Now assume that a
vector is feasible for y and z, let ψy and ψz be the corresponding precoloring extensions of
Gy and Gz , respectively. Colorings ψy and ψz might be different on Kx, but they use the
colors of CW the same way: if a vertex of Kx receives a color from CW in ψy, then it receives
the same color in ψz , and vice versa. Therefore, by permuting in ψy the colors of C \ CW ,
we can make ψy agree with ψz on Kx (notice that Kx is a clique, thus every color is used at
most once on Kx). There is no precolored vertex with color from C \CW , hence ψy remains
a valid precoloring extension of Gy after the permutation. Now ψy and ψz can be merged
to obtain a precoloring extension of Gx, and it shows that the vector is indeed feasible for
x. �

To prove that PrExt with fixed number of precolored vertices is W[1]-hard for interval
graphs, we present a parameterized reduction from the Edge Disjoint Paths problem,
which is the following:
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Edge Disjoint Paths

Input: A directed graph G(V,E), with k pairs of vertices (si, ti).

Parameter: The number of pairs k.

Question: Is there a set of k pairwise edge disjoint directed paths
P1, . . . , Pk such that path Pi goes from si to ti?

Recently, Slivkins [23] proved that the Edge Disjoint Paths problem is W[1]-hard for
directed acyclic graphs.

Theorem 5.2. PrExt with fixed number of precolored vertices is W[1]-hard for interval
graphs.

Proof. The proof is by a parameterized reduction from Edge Disjoint Paths restricted
to directed acyclic graphs. Given a directed acyclic graph G(V,E) and terminal pairs si, ti
(1 ≤ i ≤ k), we construct an interval graph with k′ = 2k precolored vertices in such a way
that the interval graph has a precoloring extension if and only if the disjoint paths problem
can be solved. Let 1, 2, . . . , n be the vertices of G in a topological ordering. For each edge
−→xy of G we add an interval [x, y). For each terminal pair si, ti we add two intervals [0, si)
and [ti, n+ 1), and precolor these intervals with color i.

Denote by ℓ(x) the number of intervals whose right end point is x (i.e., the intervals that
arrive to x from the left), and by r(x) the number of intervals whose left end point is x. By
construction, ℓ(x) is the number of edges entering x plus the number of demands starting
in x. If ℓ(x) < r(x), then add r(x) − ℓ(x) new intervals [0, x) to the graph; if ℓ(x) > r(x),
then add ℓ(x) − r(x) new intervals [x, n+ 1). These new intervals ensure that each point of
[0, n + 1) is contained in the same number (denote it by c) of intervals: for each point the
number of intervals ending there equals the number of intervals starting there. We claim
that the constructed interval graph has a precoloring extension with c colors if and only if
the disjoint paths problem has a solution.

Assume first that there are k disjoint paths joining the terminal pairs. For each edge −→xy,
if it is used by the i-th terminal pair, then color the interval [x, y) with color i. Notice that
the intervals we colored with color i do not intersect each other, and their union is exactly
[si, ti). Therefore, considering also the two intervals [0, si) and [si, n + 1) precolored with
color i, each point of [0, n + 1) is covered by exactly one interval with color i. This means
that each point is contained in exactly c−k intervals that do not have a color yet. Hence the
uncolored intervals induce an interval graph where every point is in exactly c − k intervals,
and it is well-known that such an interval graph has clique number c− k and can be colored
with c− k colors. Therefore, the precoloring can be extended using c− k colors in addition
to the k colors used in the precoloring.

Now assume that the precoloring can be extended using c colors. Each point in the
interval [0, n+ 1) is covered by exactly c intervals, thus each point is covered by an interval
of color i. Hence if an interval with color i ends at point x, then an interval with color i has
to start at x. The interval [0, si) has color i, thus there has to be an interval [si, si,1) with
color i. Similarly, there has to be an interval [si,1, si,2) with color i, etc. Continuing this way,
we will eventually arrive to an interval [si,p, ti). By the way the intervals were constructed,

the edges −−−→sisi,1,
−−−−→si,1si,2, . . . ,

−−−→
si,pti form a directed path Pi from si to ti. It is clear that the

paths for different values of i are disjoint, since each interval has only one color. Thus we
constructed a solution to the disjoint paths problem, as required. �
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6 Reductions

In this section we give reductions between PrExt on F and ordinary vertex coloring of
F + kv, F + ke graphs. It turns out that if F is closed under disjoint union and attaching
pendant vertices, then

coloring F + ke graphs � PrExt on F with fixed |W | �

coloring F + kv graphs � PrExt on F with fixed |CW |

When coloring F +ke or F +kv graphs, we assume that the modulator of the graph is given
in the input.

The reductions presented in this section do not follow exactly the definition of Section 2,
as they are not many-to-one reductions. This means that here the reduction from Q to Q′ is
not a function that maps each instance of Q to an instance of Q′, but an algorithm that solves
an instance of Q by making repeated calls to an oracle for Q′. Using this more general notion
of reduction (“Turing-reduction”) does not affect the consequence that if Q is reducible to
Q′ then Q is easier than Q′ in the sense that Q′ ∈ FPT implies Q ∈ FPT.

When reducing the coloring of F +ke or F +kv graphs to PrExt, the idea is to consider
each possible coloring of the special vertices and solve each possibility as a PrExt problem.
In the other direction, we use the k additional edges or vertices to build gadgets that force
the precolored vertices to the required colors.

First we show that F + ke and F + kv coloring can be reduced to PrExt:

Theorem 6.1. For every class F of graphs, coloring F +ke graphs can be reduced to PrExt
with fixed number of precolored vertices, if the modulator of the graph is given in the input.

Proof. For a graph G ∈ F + ke, the k special edges span at most k′ := 2k special vertices,
denote this set by W . We have to determine whether G has a C-coloring. It can be assumed
that in the C-coloring the vertices in W receive colors only from 1, 2, . . . , 2k. Therefore, the
set W has at most (2k)2k different colorings, for each such coloring we check whether it can
be extended to the whole graph G. Clearly, G is C-colorable if and only if at least one such
coloring can be extended. If the colors of the vertices in W are set, then the special edges
can be removed, since for each such edge the end vertices already have a color. Deleting
the special edges of G results in a graph in F , hence we can use the assumed algorithm for
PrExt: we have to check whether the precoloring on the at most k′ vertices of W can be
extended to the whole graph. �

To reduce the coloring of F + kv graphs to precoloring extension, we need that the class
F is closed under attaching pendant vertices. That is, if G ∈ F , and v is an arbitrary vertex
of G, then the graph G′ obtained by adding a new vertex v′ and a new edge vv′ is also in F .
Chordal graphs are closed for this operation, but interval graphs are not.

Theorem 6.2. Let F be a class of graphs closed under attaching pendant vertices. Coloring
F + kv graphs can be reduced to PrExt with fixed number of colors in the precoloring, if
the modulator of the graph is given in the input.

Proof. Given a graph G ∈ F + kv and a set C of colors, we have to decide whether G is
C-colorable. It can be assumed that the at most k special vertices of G receive colors from
1, 2, . . . , k in the coloring. This means that there are at most kk different possibilities for
coloring the special vertices. For each such possibility, we check whether the coloring can be
extended to the rest of the graph. Clearly, G is C-colorable if and only if at least one such
coloring is extendible.
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We want to use the assumed PrExt algorithm to check whether the coloring of the
special vertices can be extended to G, but G is not in F . Therefore, we modify the graph
as follows. Let w be a special vertex. We attach a new pendant vertex to each non-special
neighbor of w, and assign the color of w to these new vertices. Now vertex w can be safely
removed, since the new degree 1 vertices ensure that the neighbors of w do not use the color
of w. Repeating this for every special vertex results in a graph in F where at most k colors
are used in the precoloring. Now the assumed algorithm can be used to test whether the
precoloring can be extended, completing the reduction. �

Next we show that if F has some additional properties, then parameterized PrExt on
F can be reduced to coloring F + kv graphs. In the reductions we need to find a graph in
F with a given chromatic number, this graph will be used as a gadget. The proof could be
made simpler if we assumed that F contains every clique or that it is easy to find a graph
in F with a given chromatic number. However, we do not want to restrict the generality of
the proof with these assumptions. Therefore, we use the trick that the input graph itself is
used to construct the gadget we need.

Theorem 6.3. If F is a hereditary graph class closed under disjoint union, then PrExt in
F with fixed number of precolored vertices can be reduced to the coloring of F + kv graphs.

Proof. We are given a graph G ∈ F with a set W of at most k precolored vertices and a set
C of colors. The idea is that we consider G as an F + kv graph, where G \W ∈ F , and W
is the set of special vertices. We add additional edges to ensure that the set W is colored as
prescribed by the precoloring. Since these new edges are attached to the special vertices, the
new graph will remain a F + kv graph.

Let ℓ = |CW | be the number of distinct colors appearing on the k precolored vertices. Set
k′ := k. First we construct a graph H ∈ F that has chromatic number χ(H) = |C| − ℓ. The
chromatic number of G \W can be determined by calling an appropriate number of times
the assumed algorithm for coloring F + k′v graphs (in fact, since G \W ∈ F , an algorithm
for coloring graphs in F would be enough). Clearly, if χ(G \W ) > |C|, then there is no
solution. On the other hand, if χ(G \W ) ≤ |C| − ℓ, then the precoloring extension trivially
exists: the precolored vertices use ℓ colors, hence the remaining |C| − ℓ ≥ χ(G \W ) colors
are sufficient to color G \W . Therefore, we can assume that |C| − ℓ < χ(G \W ) ≤ |C|. To
decrease the chromatic number, we start to delete the vertices of G \W one by one. Since
F is hereditary, the graph remains in F , and its chromatic number can be determined with
the assumed algorithm. Deleting a vertex can decrease the chromatic number by at most
one. When the chromatic number eventually drops to |C| − ℓ, we get the required graph H .

The reduction will be done as follows. Add a copy of H to the graph, and connect each
vertex of H with each vertex of W . Connect wi ∈W and wj ∈W if they are two precolored
vertices having different colors. It is clear that the resulting graph G′ is in F + k′v: deleting
the k′ vertices of W leaves a graph that is the disjoint union of G \W ∈ F and H ∈ F .

We claim that G′ is C-colorable if and only if there is a precoloring extension in G. First,
any C-coloring ψ of G′ can be turned into a precoloring extension of G with a permutation of
colors. If wi, wj ∈W have different colors in the precoloring, then ψ(wi) 6= ψ(wj), since they
are connected in G′. Since W induces a complete ℓ-partite graph in G′, coloring ψ′ assigns
at least ℓ colors to the vertices in W . Moreover, χ(H) = |C| − ℓ implies that there are at
least |C|−ℓ colors on H . A color cannot appear on both of H and W , hence we can conclude
that exactly ℓ color appears on W . This means that those vertices of W that belong to the
same class receive the same color. However, in W exactly those vertices belong to the same
class that have the same color in the precoloring; therefore, the colors in ψ can be renamed
to match the precoloring.
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The other direction is also easy to see. To extend a precoloring extension of G to a C-
coloring of G′, one has to assign colors to H . There are exactly ℓ colors appearing on the
neighbors of H (i.e., on W ), hence the remaining |C| − ℓ colors are sufficient to color H . �

Let G1(V1, E1) and G2(V2, E2) be two graphs with v1 ∈ V1 and v2 ∈ V2. The operation of
joining G1 and G2 at v1 and v2 means that we construct a new |V1|+ |V2|−1 vertex graph by
identifying v1 and v2. We say that F is closed under joining graphs at a vertex if for every
G1, G2 ∈ F , the graph formed by joining G1 and G2 is in F . The class of chordal graphs is
closed under joining graphs at a vertex, but interval graphs are not.

Theorem 6.4. If F is a hereditary graph class closed under joining graphs at a vertex, then
PrExt on F with fixed number of colors in the precoloring can be reduced to the coloring of
F + kv graphs.

Proof. We are given a graph G ∈ F where only k colors are used on the precolored vertices.
The main idea of the reduction is the following. We add a clique of k special vertices to the
graph. Without loss of generality, it can be assumed that the i-th special vertex receives
color i in every coloring. If there is a vertex v in G that is precolored with color i, then v is
connected to the i-th special vertex via a gadget that ensures that the two vertices receive
the same color.

Let C be the set of all colors. First we construct a graph F that satisfies the following
properties:

• χ(F ) = c for some |C|−k < c ≤ |C|, and in every c-coloring of F the two distinguished
vertices x and y receive the same color,

• F \ x ∈ F .

We start by determining the chromatic number of G, let c = χ(G). As in the proof of
Theorem 6.3, we have that |C| − k < c ≤ |C|. Add a new vertex x to the graph, and connect
it with every vertex of G, the resulting graph has chromatic number c + 1. Now we start
deleting the edges incident to x, and stop when the chromatic number drops to c (this will
eventually happen, the chromatic number is c when all the edges incident to x are deleted).
Let F be the resulting graph, and edge xy be the last edge deleted. In every c-coloring of F
the vertices x and y have to receive the same color, otherwise it would be a proper c-coloring
of F + xy, but F was not c-colorable before deleting xy. Moreover, F \ x = G ∈ F , hence F
satisfies the required properties.

The reduction is done as follows. We add a clique of size k to the graph containing the
vertices v1, . . . , vk (these vertices will be the special vertices of the constructed F + kv

graph). If v is a precolored vertex with color i, then we join a new copy of F to the graph by
identifying vertex x of the copy with vi, and vertex y with v. Moreover, we connect vertices
vi+1, . . . , vi+|C|−c (we use the convention that vi+k = vi) to each vertex of this copy of F
(including vertex v). Notice that the resulting graph G′ is in F + kv: after deleting the
vertices v1, . . . , vk, what remains is the graph G ∈ F with copies of F \ x ∈ F joined to
some vertices.

We claim that the precoloring can be extended in G if and only if G′ is C-colorable. Let
ψ be a C-coloring of G′. The vertices v1, . . . , vk form a clique in G′, they have different
colors in ψ, hence without loss of generality it can be assumed that ψ(vi) = i for 1 ≤ i ≤ k.
We show that if v is a precolored vertex with color i, then ψ(v) = i. Consider the copy of
F that connects v and vi. Each vertex of this copy is connected to the vertices vi+1, . . . ,
vi+|C|−c. Since exactly |C| − c colors appear on the vertices vi+1, . . . , vi+|C|−c, this copy of
F is colored with c colors. We know that in every c-coloring of F the colors of vertices x = vi
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and y = v are the same, hence ψ(v) = i, as required. Therefore, ψ induces a precoloring
extension of G, which completes this direction of the reduction.

The other direction is easy to see: given a precoloring extension on G, it can be extended
to G′ as follows. Set vertex vi to color i. Now the coloring can be extended to each copy
of F : there are |C| − c colors used on the neighbors, hence c colors are still available for F .
Furthermore, it is also true that the distinguished vertices x and y are assigned the same
color. �

Concerning chordal graphs, putting together Theorem 5.1 and Theorems 6.1–6.3 gives

Corollary 6.5. Coloring chordal+ke and chordal+kv graphs can be done in polynomial
time for fixed k, if the modulator is given in the input. However, coloring interval+kv (hence
chordal+kv) graphs is W[1]-hard. �

In Section 7, we improve on this result by showing that coloring chordal+ke graphs is
fixed-parameter tractable.

7 Coloring chordal+ke graphs

In Theorem 6.1 we have seen that coloring a chordal+ke graph can be reduced to the solution
of at most (2k)2k PrExt problems on a chordal graph, and by Theorem 5.1, each such
problem can be solved in polynomial time. Therefore, chordal+ke graphs can be colored in
polynomial time for every fixed k. However, this algorithm is not uniformly polynomial: in
the running time the exponent of n depends on k. In this section, we prove that coloring
chordal+ke graphs is fixed-parameter tractable by presenting a uniformly polynomial time
algorithm for the problem.

Let H be a chordal+ke graph, and denote by G the chordal graph obtained by deleting
the special edges of G (it is assumed that the special edges are given in the input). We
proceed similarly as in Theorem 5.1. First we construct a nice tree decomposition of G. A
subgraph Gx of G corresponds to each node x of the nice tree decomposition (as defined
in Section 4). Let Hx be the graph Gx plus the special edges induced by the vertex set of
Gx. For each subgraph Hx, we try to find a proper coloring. In fact, for every node x we
solve several subproblems: each subproblem corresponds to finding a coloring of Hx with a
given property (to be defined later). The main idea of the algorithm is that the number of
subproblems considered at a node can be reduced to a function of k.

Before presenting the algorithm, we introduce some technical tools that will be useful.
For each node x of the nice tree decomposition, the graph H∗

x is defined by adding a clique
of |C| − |Kx| vertices u1, u2, . . . , u|C|−|Kx| to the graph Hx, and connecting each new vertex
with each vertex of Kx. The clique Kx together with the new vertices form a clique of
size |C|, this clique will be called K∗

x. Instead of the colorings of Hx, we will consider the
colorings of H∗

x . Although H∗
x is a supergraph of Hx, it is C-colorable if and only if Hx is

C-colorable: the new vertices are only connected to Kx, hence in every coloring of Hx there
remains |C| − |Kx| colors from C to color these vertices. However, considering the colorings
of H∗

x instead of the colorings of Hx will make the arguments cleaner. The reason for this
is that in every C-coloring of H∗

x every color of C appears on the clique K∗
x exactly once,

which makes the description of the colorings more uniform.
Another technical trick is that we will assume that every special vertex is contained in

exactly one special edge (recall that a vertex is called special if it is the end point of a special
edge.) We show how the problem can be converted to a form where this assumption holds. If
w is a special vertex with more than one special edges incident to it, then add a new vertex
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w′ to the graph. Add also a clique K of |C| − 1 vertices to the graph, and connect w and w′

with every vertex of K. Let vw be one of the special edges, delete this edge, and add the edge
vw′ to the graph instead. It is easy to see that this does not change the C-colorability of the
graph, as in every C-coloring vertices w and w′ receive the same color (they are adjacent to
the same size |C|−1 clique). Moreover, the modified graph is also in chordal+ke. Repeating
the transformation an appropriate number of times, we can ensure, with only a polynomial
increase in the size of the graph, that the special edges are independent.

Each special vertex is contained in only one special edge, thus each special vertex w has
a unique pair w′, which is the other vertex of the special edge incident to w.

7.1 Set systems

Now we define the subproblems associated with a node x of the tree decomposition. A set
system is defined where each set corresponds to a type of coloring that is possible on H∗

x . Let
W be the set of special vertices, we have |W | ≤ 2k. Let Wx be the special vertices contained
in the subgraph H∗

x . In the following, we consider sets over K∗
x ×W : each element of the set

is a pair (v, w) with v ∈ K∗
x, w ∈ W .

Definition 7.1. To each C-coloring ψ of H∗
x, we associate a set Sx(ψ) ⊆ K∗

x ×W such that
(v, w) ∈ Sx(ψ) (v ∈ K∗

x, w ∈ Wx) if and only if ψ(v) = ψ(w). The set system Sx over
K∗

x ×W contains a set S if and only if there is a coloring ψ of H∗
x such that S = Sx(ψ).

The set Sx(ψ) describes ψ on H∗
x as it is seen from the “outside,” i.e., from H \H∗

x . In
H∗

x only K∗
x and Wx are connected to the outside. Since K∗

x is a clique of size |C|, every color
appears on exactly one vertex, this is the same for every coloring. Seen from the outside, the
only difference between the colorings is how the colors are assigned to Wx. The set Sx(ψ)
captures this information.

Subgraph H∗
x (hence Hx) is C-colorable if and only if the set system Sx is not empty.

Therefore, to decide the C-colorability of H , we have to check whether Sr is empty, where
r is the root of the nice tree decomposition.

Let us demonstrate Definition 7.1 with the graph shown in Figure 2. Assume that x is
a join node in the tree decomposition and nodes y and z are the children of x. Figures 2b
and 2c show the subgraphs Hy and Hz (the special edges incident to w1, w2, w5, w6 are
not present in these subgraphs, they appear in the figure only for illustrative purposes). If
these two graphs are joined at the clique Ky = Kz, then we obtain the graph Hx shown in
Figure 2a. Let |C| = 3, in this case Hx = H∗

x (since |C| = |Kx|).
The graph Hy has four essentially different colorings. Special vertex w1 has to receive

the same color as either v2 or v3, while vertex w2 has to receive the same color as either v1
or v2. Vertices w1 and w2 are not neighbors, hence any of the four combinations is possible.
Therefore, the set system Sy contains the following 4 sets:

Sy(ψy,1) = {(v2, w1), (v1, w2)}

Sy(ψy,2) = {(v3, w1), (v1, w2)}

Sy(ψy,3) = {(v2, w1), (v2, w2)}

Sy(ψy,4) = {(v3, w1), (v2, w2)}

In graph Hz , the special vertices w5 and w6 are neighbors, hence either w5 receives the
color of v3 and w6 receives the color of v1, or vice versa. Vertices w3 and w4 has to receive
different colors (recall that Definition 7.1 considers the coloring of Hx and not the chordal
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Figure 2: Example graph for defining the set systems.

graph Gx), thus there are three different possibilities for coloring them. This means that
there are 6 sets in Sx:

Sz(ψz,1) = {(v1, w3), (v3, w4), (v3, w5), (v1, w6)}

Sz(ψz,2) = {(v1, w3), (v3, w4), (v1, w5), (v3, w6)}

Sz(ψz,3) = {(v2, w3), (v1, w4), (v3, w5), (v1, w6)}

Sz(ψz,4) = {(v2, w3), (v1, w4), (v1, w5), (v3, w6)}

Sz(ψz,5) = {(v2, w3), (v3, w4), (v3, w5), (v1, w6)}

Sz(ψz,6) = {(v2, w3), (v3, w4), (v1, w5), (v3, w6)}

The set Sx(ψ) in Definition 7.1 cannot be an arbitrary subset of K∗
x×W , there are certain

trivial properties that Sx(ψ) should satisfy:

Definition 7.2. A set S ⊆ K∗
x ×W is regular, if for every w ∈ W , there is at most one

element of the form (v, w) in S. Moreover, we also require that if v ∈ K∗
x∩W then (v, v) ∈ S.

The set S contains special vertex w, if there is an element (v, w) in S for some v ∈ K∗
x.

Note that for a coloring ψ of H∗
x , the set Sx(ψ) is regular and contains exactly the vertices

in Wx. In Sx(ψ), it is possible that the pairs (v, w1) and (v, w2) appear with w1 6= w2 (this
means that special vertices w1 and w2 have the same color as v ∈ K∗

x), but it is not possible
that (v1, w) and (v2, w) appear with v1 6= v2 (that would mean that v1 and v2 both have the
same color as special vertex w).

The definition of Sx might seem somewhat technical, but it precisely captures all the
information we need from subgraph Hx. It turns out that the set system for a node can be
constructed based on the set systems of its children. In Lemma 7.5, we will prove this in the
case of join nodes. But before that we need some further definitions.

Definition 7.3. For a set S ∈ K∗
x ×W , its blocker B(S) is a subset of K∗

x ×W such that
(v, w) ∈ B(S) if and only if (v, w′) ∈ S for the pair w′ of w. We say that sets S1 and S2

form a non-blocking pair if B(S1) ∩ S2 = ∅ and S1 ∩B(S2) = ∅.

If ψ is a coloring of H∗
x, then the set B(Sx(ψ)) describes the requirements that have to be

satisfied if we want to extend ψ to the whole graph. For example, let w be a special vertex in
H∗

x , whose pair is outside H∗
x . If (v, w) ∈ Sx(ψ), then this means that v ∈ K∗

x has the same
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color as special vertex w. Now (v, w′) ∈ B(Sx(ψ)) for the pair w′ of w. This tells us that we
should not color w′ with the same color as v, because in this case the pairs w and w′ would
have the same color.

For the set system Sy, the blockers of the 4 sets are the following:

B( {(v2, w1), (v1, w2)} ) = {(v2, w5), (v1, w6)}

B( {(v3, w1), (v1, w2)} ) = {(v3, w5), (v1, w6)}

B( {(v2, w1), (v2, w2)} ) = {(v2, w5), (v2, w6)}

B( {(v3, w1), (v2, w2)} ) = {(v3, w5), (v2, w6)}

Similarly, the blockers of the sets in Sz are

B( {(v1, w3), (v3, w4), (v3, w5), (v1, w6)} ) = {(v1, w4), (v3, w3), (v3, w1), (v1, w2)}

B( {(v1, w3), (v3, w4), (v1, w5), (v3, w6)} ) = {(v1, w4), (v3, w3), (v1, w1), (v3, w2)}

B( {(v2, w3), (v1, w4), (v3, w5), (v1, w6)} ) = {(v2, w4), (v1, w3), (v3, w1), (v1, w2)}

B( {(v2, w3), (v1, w4), (v1, w5), (v3, w6)} ) = {(v2, w4), (v1, w3), (v1, w1), (v3, w2)}

B( {(v2, w3), (v3, w4), (v3, w5), (v1, w6)} ) = {(v2, w4), (v3, w3), (v3, w1), (v1, w2)}

B( {(v2, w3), (v3, w4), (v1, w5), (v3, w6)} ) = {(v2, w4), (v3, w3), (v1, w1), (v3, w2)}

We can see that sets Sy(ψy,1) ∈ Sy and Sz(ψz,1) ∈ Sz block each other. This means
that the colorings ψy,1 and ψz,1 are not compatible: ψy,1 assigns the same color to v1 and
w2, while ψz,1 assigns the same color v1 and w6, which means that the same color appears
on both ends of the special edge w1w6. The incompatibility of ψy,1 and ψz,1 is reflected by
the fact that (v1, w2) ∈ Sy(ψy,1) ∩B(Sz(ψz,1)) and (v1, w6) ∈ B(Sy(ψy,1)) ∩ Sz(ψz,1).

The sets Sy(ψy,1) and Sz(ψz,2) form a non-blocking pair in the example. To be a non-
blocking pair, it is sufficient that one of B(S1) ∩ S2 and S1 ∩B(S2) is empty:

Lemma 7.4. For two sets S1, S2 ∈ Kx ×W , we have that B(S1) ∩ S2 = ∅ if and only if
S1 ∩B(S2) = ∅.

Proof. Suppose that B(S1)∩ S2 = ∅, but (v, w) ∈ S1 ∩B(S2) (the other direction follows by
symmetry). Since (v, w) ∈ B(S2), this means that (v, w′) ∈ S2 where w′ is the pair of w.
But in this case (v, w) ∈ S1 implies that (v, w′) ∈ B(S1), contradicting B(S1) ∩ S2 = ∅. �

The following lemma motivates the definition of the non-blocking pair. It turns out
to be very relevant to our problem: two sets form a non-blocking pair if and only if the
corresponding two colorings are compatible. If x is a join node, then this observation allows
us to give a new characterization of Sx, based on the set systems of its children.

Lemma 7.5. If x is a join node with children y and z, then

Sx = {Sy ∪ Sz : Sy ∈ Sy and Sz ∈ Sz form a non-blocking pair}.

Proof. If S ∈ Sx, then there is a corresponding coloring ψ of H∗
x . Coloring ψ induces a

coloring ψy (resp., ψz) of H∗
y (resp., H∗

z ). Let Sy (resp., Sz) be the set that corresponds to
coloring ψy (resp., ψz). We show that Sy and Sz form a non-blocking pair, and S = Sy ∪Sz.
By Lemma 7.4, it is enough to show that Sy ∩B(Sz) = ∅. Suppose that Sy ∩B(Sz) contains
the element (v, w) for some v ∈ K∗

y = K∗
z and w ∈ Wy. By the definition of Sy, this means

that ψy(v) = ψy(w). Since (v, w) ∈ B(Sz), thus (v, w′) ∈ Sz for the pair w′ ∈ W of w.
Therefore, ψz(v) = ψz(w

′) follows. However, ψy(v) = ψz(v), hence ψy(w) = ψz(w
′), which
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is a contradiction, since w and w′ are neighbors, and ψ is a proper coloring of H∗
x. Now we

show that S = Sy ∪ Sz . It is clear that (v, w) ∈ Sy implies (v, w) ∈ S, hence Sy ∪ Sz ⊆ S.
Moreover, suppose that (v, w) ∈ S. Without loss of generality, it can be assumed that w is
contained in H∗

y . This implies that (v, w) ∈ Sy, as required.
Now let Sy ∈ Sy and Sz ∈ Sz be a non-blocking pair, it has to be shown that S = Sy∪Sz

is in Sx. Let ψy (resp., ψz) be the coloring corresponding to Sy (resp., Sz). In general, ψy

and ψz might assign different colors to the vertices of K∗
x = K∗

y = K∗
z . However, since K∗

x is
a clique and every color appears exactly once on it, by permuting the colors in ψy, we can
ensure that ψy and ψz agree on K∗

x. We claim that if we merge ψy and ψz, then the resulting
coloring ψ is a proper coloring of H∗

x . The only thing that has to be verified is whether ψ
assigns different colors to the end vertices of those special edges that are contained completely
neither in H∗

y nor H∗
z . Suppose that special vertices w ∈Wy \Wz and w′ ∈ Wz \Wy are pairs,

but ψ(w) = ψ(w′). We know that (v, w) ∈ Sy for some v ∈ K∗
y , and similarly (v′, w′) ∈ Sz

for some v′ ∈ K∗
z . By definition, this means that ψy(v) = ψy(w) and ψz(v

′) = ψ(w′). Since
ψy and ψz assign the same colors to the vertices of the clique K∗

x, this is only possible if
v = v′, implying (v, w′) ∈ Sz. However, from (v, w) ∈ Sy it follows that B(Sy) also contains
(v, w′) contradicting the assumption that B(Sy)∩Sz = ∅. Now it is straightforward to verify
that the set corresponding to ψ is S = Sy ∪ Sz, proving that S ∈ Sx. �

Lemma 7.5 gives us a way to obtain the system Sx if x is a join node and the systems for
the children are known. It can be shown for introduce nodes and forget nodes as well that
their set systems can be constructed if the set systems for their children are given. However,
this observation does not lead to a uniformly polynomial algorithm. The problem is that
the size of Sx can be O(nk), therefore it cannot be represented explicitly. In the following
we show that it is not necessary to represent the whole set system, most of the sets can be
thrown away, and it is enough to retain only a subsystem whose size can be bounded by a
function of k.

7.2 Representative systems

We will replace Sx with a system S ∗
x representative for Sx that has size bounded by a

function of k. Representative systems and their use in finding disjoint sets were introduced
by Monien [18] (and subsequently used also in [1]).

Definition 7.6. A set system S ′ ⊆ S is q-representative for S if the following holds: for
every set B of size at most q, there is a set A ∈ S with A ∩ B = ∅ if and only if there is a
set A′ ∈ S ′ with A′ ∩ B = ∅. The set system S ′ is minimally representative for S if it is
representative for S , but it is not representative after deleting any of the sets from S ′.

For example, if we have the following sets:

{a1, b1, c1} {a1, b2, c2} {a1, b3, c3} {a1, b4, c4}
{a2, b1, d1} {a2, b2, d2} {a2, b3, d3} {a2, b4, d4}

then the subsystem

{a1, b1, c1} {a2, b2, d2}

is 1-representative. The following subsystem is 2-representative:

A1 = {a1, b1, c1} A2 = {a1, b2, c2} A3 = {a2, b3, d3} A4 = {a2, b4, d4}
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Furthermore, this is a minimally 2-representative subsystem. Set Ai cannot be thrown away,
since there is a set Bi such that only Ai is disjoint from Bi:

B1 = {a2, b2} B2 = {a2, b1} B3 = {a1, b4} B4 = {a1, b3}

The crucial idea is that the size of a minimally q-representative system can be bounded
by a function of q and the maximum size of the sets S . This is a consequence of the following
version of Bollobás’ inequality:

Theorem 7.7 (Bollobás [3]). Let (A1, B1), (A2, B2), . . . , (Am, Bm) be a sequence of pairs
of sets over a common ground set X such that Ai ∩Bj = ∅ if and only if i = j. Then

m
∑

i=1

(

|Ai| + |Bi|

|Ai|

)−1

≤ 1.

Lemma 7.8. If S contains sets of size at most p, and S ′ ⊆ S is minimally q-representative
for S , then |S ′| ≤ 2p+q.

Proof. Let S ′ = {A1, A2, . . . , Am}. Subsystem S ′ is minimally representative for S , thus
for every 1 ≤ i ≤ m, there is a set Bi of size at most q such that Ai is the only set in
S ′ disjoint from Bi (otherwise Ai could be safely removed from S ′). This means that
Ai ∩ Bi = ∅ for every 1 ≤ i ≤ m, and Aj ∩ Bi 6= ∅ for every i 6= j. Therefore, (A1, B1),
(A2, B2), . . . , (Am, Bm) satisfy the requirements of Theorem 7.7, hence

1 ≥
m

∑

i=1

(

|Ai| + |Bi|

|Ai|

)−1

≥
m

∑

i=1

2−(|Ai|+|Bi|) ≥ m2−(p+q).

Thus m ≤ 2−(p+q), and the lemma follows. �

Lemma 7.8 shows that a representative system of size bounded by k can be obtained by
throwing away sets until the system becomes a minimally representative system. However,
it is not completely trivial how to check whether a set can be thrown away.

Lemma 7.9. Given a set system S containing n sets of size at most p, a minimally q-
representative subsystem of S ′ can be found in O(pq · n2) time.

Proof. In the beginning, set S ′ := S . For each set S ∈ S ′, we check whether S ′ remains
q-representative for S if S is removed. If yes, then we remove S from S ′. We repeat this
until there is no set in S that can be removed, in this case S ′ is minimally q-representative.

Set S cannot be removed if there is a set B of size at most q such that S ∩ B = ∅,
but B intersects every other set in S ′. This question is exactly the Hitting Set problem,
which is to find a set of size s that intersects every set in the given collection of sets. In
the parameterized version of the problem the parameter is the size s of the required set.
In general, the Hitting Set problem is W[2]-complete, but fixed-parameter tractable if we
have a bound on the size of the sets in the collection. To solve the Hitting Set problem
in the case when every set has size at most d, we use the method of bounded search trees.
Let the sets in the collection be ordered in an arbitrary order. At each step of the algorithm,
we select the first set that is not already hit by the selected elements. We try to hit this set
by adding a new element to the selected elements. Since the set has size at most d, there
are at most d different possibilities for hitting this set. The algorithm branches off into at
most d directions, by trying all the possibilities. The algorithm has to stop after selecting s
elements, hence the search tree has depth at most s. At each step we branch off into at most

17



d directions, therefore the search tree has size O(ds), which is independent of the size of the
input. The work to be done at each node of the search tree is linear in the size of the input,
hence the Hitting Set problem can be solved in O(dsn) time.

In our case, when we check whether the set S can be thrown away, the size of each
set is at most p and we look for a set of size at most q. Hence the algorithm described
above determines in O(pq|S ′|) time whether S can be removed. To obtain the minimally
q-representative system S ′ for S , we have to repeat this procedure at most as many times
as the number of sets in the initial set system S . �

Another way of obtaining a small representative system is to use the data structure of
Monien [18] for finding and storing representative systems. Here the size of the resulting set
system is somewhat larger, but the running time is linear:

Lemma 7.10 ([18]). Given a set system S containing n sets of size at most p, a q-
representative subsystem S ′ ⊆ S of size at most

∑q

i=0 p
i can be found in O(pq ·

∑q

i=0 p
i ·n)

time.

In our algorithm we adapt the definition of representative systems to our problem:

Definition 7.11. A subsystem S ∗
x ⊆ Sx is representative for Sx if the following holds: for

each regular set U ⊆ Kx ×W that does not contain vertices from Wx \K∗
x, if Sx contains a

set S disjoint from B(U), then S ∗
x also contains a set S′ disjoint from B(U).

A pair (v, w) in B(U) can be interpreted as a requirement that vertex v should not receive
the same color as w. Therefore, if S ∗

x is representative for Sx, and Sx can present a member
satisfying all the requirements in B(U), then S ∗

x can present such a member as well. For
technical reasons, we are interested only in requirements B(U) with U as described above.
Since B(U) has size at most 2k, if S ∗

x is a 2k-representative for S , then it is representative
for S in the sense of Definition 7.11. Therefore, the algorithms of Lemma 7.9 and 7.10 can
be used to find a representative S ∗

x for a set system Sx.
Let us return to our example based on Figure 2. The set system Sy is minimally repre-

sentative of itself. For example, to see that Sy(ψy,1) = {(v2, w1), (v1, w2)} cannot be thrown
away, consider the set U = {(v3, w5), (v2, w6)}. Set U satisfies the requirements of Defini-
tion 7.11, and Sy(ψy,1) is the only set in Sy that is disjoint from B(U) = {(v3, w1}, (v2, w2)}.
As another example, consider the set Sy(ψy,3) = {(v2, w1), (v2, w2)} form Sy. To see that
it cannot be thrown away, let U be Sz(ψz,1) = {(v1, w3), (v3, w4), (v3, w5), (v1, w6)}. Now
Sy(ψy,3) is the only set in Sy disjoint from B(Sz(ψz,1)). Intuitively, this means that if we
want to extend coloring ψz,1 of Hz to the whole Hx, then ψy,3 is the only coloring of Hy that
is compatible with ψz,1. Therefore, when we consider the possible colorings of Hy, then ψy,3

cannot be thrown away, since it can be essential in some cases.
The set system Sz is not minimally representative, the following two sets are represen-

tative of Sz:

Sz(ψz,1) = {(v1, w3), (v3, w4), (v3, w5), (v1, w6)}

Sz(ψz,2) = {(v1, w3), (v3, w4), (v1, w5), (v3, w6)}

If the set U satisfies the requirements of Definition 7.11, then B(U) cannot contain w3 or
w4. Therefore, there is no use of adding another set from Sz to the two sets above: if we
disregard w3 and w4, then every other set in Sz is equivalent to Sz(ψz,1) and Sz(ψz,1).

We show that instead of determining the set system Sx for each node, it is sufficient to
find a set system S ∗

x representative for Sx. That is, if for each child y of x we are given a
system S ∗

y representative for Sy, then we can construct a system S ∗
x representative for Sx.
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For a join node x, one can find a set system S ∗
x representative for Sx by a characterization

analogous to Lemma 7.5:

Lemma 7.12. Let x be a join node with children y and z, and let S ∗
y be representative for

Sy, and S ∗
z representative for Sz. Then the system

S
∗
x = {Sy ∪ Sz : Sy ∈ S

∗
y and Sz ∈ S

∗
z form a non-blocking pair}

is representative for Sx.

Proof. Since S ∗
y ⊆ Sy and S ∗

z ⊆ Sz, by Lemma 7.5 it follows that S ∗
x ⊆ Sx. Therefore,

we have to show that for every regular set U not containing vertices from Wx \K∗
x, if there

is a set S ∈ Sx disjoint from B(U), then there is a set S′ ∈ S ∗
x also disjoint from B(U).

Let ψ be the coloring of H∗
x corresponding to set S, and let ψy (resp., ψz) be the coloring of

H∗
y (resp., H∗

z ) induced by ψ. Let Sy ∈ Sy and Sz ∈ Sz be the sets corresponding to ψy

and ψz. We have seen in the proof of Lemma 7.5 that Sy and Sz form a non-blocking pair
and S = Sy ∪ Sz, hence Sy is disjoint from B(U) ∪ B(Sz) = B(U ∪ Sz). Note that U does
not contain vertices from Wx \ K∗

x, and Sz contains vertices only from Wz, hence U ∪ Sz

is regular, and does not contain vertices from Wy \K∗
y . Since S ∗

y is representative for Sy,
there is a set S′

y ∈ S ∗
y that is also disjoint from B(U ∪ Sz). By Lemma 7.4, S′

y ∩B(Sz) = ∅
implies that B(S′

y) ∩ Sz = ∅, hence Sz is disjoint from U ∪B(S′
y) = B(U ∪ S′

y). Since S ∗
z is

representative for Sz , there is a set S′
z ∈ S ∗

z that is also disjoint from B(U ∪ S′
y). Applying

again Lemma 7.4, we get that S′
y and S′

z form a non-blocking pair, hence S′ = S′
y ∪ S′

z is in
S ∗

x . The set S′ is disjoint from B(U), thus S ∗
x contains a set disjoint from B(U). �

7.3 The algorithm

Now we are ready to prove the main result of the section. In Theorem 7.13 we put the pieces
together to obtain a uniformly polynomial algorithm for coloring chordal+ke graphs.

Theorem 7.13. Coloring chordal+ke graphs is in FPT if the modulator of the graph is given
in the input.

Proof. The first step of the algorithm is to find a nice tree decomposition of the chordal graph
G, where G is the input graph H minus the special edges. For each node x of the nice tree
decomposition, we construct a set system S ∗

x over K∗
x ×W that is minimally representative

for Sx. Clearly, H is C-colorable if and only if S ∗
r is non-empty for the root r (note that if

Sr is non-empty, then S ∗
r cannot be empty).

The systems S ∗
x are constructed using bottom-up dynamic programming. First we con-

struct the systems for the leaves. For every non-leaf node x, we assume that the children of
x are ready when we construct S ∗

x . Below we describe what has to be done for the different
types of nodes. For join nodes the construction follows easily from Lemma 7.12. The case
of introduce nodes and forget nodes are conceptually not difficult, but requires a tedious
discussion.

Leaf node x. If x is a leaf node, then Hx has only one vertex, and H∗
x is a complete graph.

Therefore, H∗
x has only one coloring (up to permutation of colors), and Sx has only one set.

More precisely, if vertex v of Hx is special vertex, then Sx contains only the set (v, v); if v
is not a special vertex, then Sx contains only the empty set.
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Introduce node x of vertex v. Let y be the child of x. The only difference between the
set K∗

x and K∗
y is that K∗

x contains v, but does not contain u|C|−|Ky|. Therefore, a subset
S ⊆ K∗

y ×W can be mapped to a subset S′ ⊆ K∗
x ×W by mapping u|C|−|Ky| to v. That is,

let (v, w) ∈ S′ if and only if (u|C|−|Ky|, w) ∈ S. In the following, when mapping sets between
K∗

y ×W and K∗
x ×W , then we will mean this mapping.

We consider three cases:
Case 1. If v 6= W , then Sx and Sy are essentially the same, Sy can be obtained by

mapping u|C|−|Ky| to v in each set of Sy. To see this, notice that H∗
x and H∗

y are in fact
the same graph: Hx contains one vertex more than Hy, but we attach to Hx one vertex less
than to Hy, since Kx is greater than Ky by one. Thus the colorings of H∗

x and H∗
y are in

one-to-one correspondence, vertex v in H∗
x corresponds to vertex u|C|−|Ky| in H∗

y . Therefore,
each set in Sx corresponds to a set in Sy, via the mapping described above. Moreover, this
also means that S ∗

x can be obtained in a similar way, by mapping each set in S ∗
y .

Case 2. If v ∈ W and the pair of v is not in Wx, then H∗
x and H∗

y are still the same,
but Sx cannot be obtained from Sy as in the previous case. The reason for this is that
Wx = Wy ∪ {v}, hence different sets correspond to the same coloring in Sx and Sy. More
precisely, each set in Sx contains (v, v). The set system Sx can be obtained from Sy by
mapping each set of Sy to K∗

x ×W , and by adding the pair (v, v) to each set. It is easy to
show that S ∗

x can be obtained from S ∗
y the same way.

Case 3. If v ∈ W , and the pair v′ of the special vertex v is in Wx, then H∗
x and H∗

y are
not the same: H∗

x contains one edge more, namely the special edge vv′. This means that only
those colorings ofH∗

y yield a coloring a ofH∗
x that assign different colors to u|C|−|Ky| ∈ K∗

y and
v′ ∈ W . Therefore, first we throw away those sets of S ∗

y that contain (u|C|−|Ky|, v
′), and we

proceed with the remaining sets as in the previous case. To see that the resulting system S ∗
x is

indeed representative of Sx, consider a set U as in Definition 7.11, and let S ∈ Sx be disjoint
from B(U). Let ψ be the coloring of H∗

x corresponding to S, clearly ψ(v) 6= ψ(v′). Coloring
ψ can be used to define a coloring ψ′ of H∗

y by setting ψ′(u|C|−|Ky|) = ψ(v). If R is the set
corresponding to ψ′, then R does not contain the pair (u|C|−|Ky|, v

′) since ψ′(u|C|−|Ky|) 6=
ψ′(v′). Therefore, R ∈ Sy is disjoint from B(U ′) where U ′ := U ∪ {(u|C|−|Ky|, v)}. Set
system S ∗

y is assumed to be representative for Sy, hence S ∗
y contains a set R′ disjoint from

B(U ′) (notice the U ′ satisfies the requirements of Definition 7.11: v 6∈Wy \K∗
y). This implies

that during the construction of S ∗
x , the set R′ ∈ S ∗

y contributes a set to S ∗
x that is disjoint

from B(U), as required.

Forget node x of vertex v. Let ψ be a coloring of H∗
x and let ui (1 ≤ i ≤ |C| − |Kx|) be

a vertex of K∗
x \Kx. Define ψ[ui] to be the coloring where the colors of ui and u|C|−|Kx| are

exchanged. Notice that ψ[ui] is a proper coloring since the neighborhoods of ui and u|C|−|Kx|

are the same (the clique K∗
x). If S ⊆ K∗

x ×W is the set corresponding to ψ, then the set
S[ui] corresponding to ψ[ui] can be obtained by interchanging the role of ui and u|C|−|Kx|,
that is, (ui, w) ∈ S[ui] if and only if (u|C|−|Kx|, w) ∈ S; and (u|C|−|Kx|, w) ∈ S[ui] if and only
if (ui, w) ∈ S.

Given a set system S ∗
y representative for Sy, we construct S ∗

x as follows. The only
difference between the set K∗

x and K∗
y is that K∗

x contains u|C|−|Kx|, but it does not contain
v. As in the case of introduce nodes, we give a mapping from K∗

y ×W to K∗
x ×W , but

now we map v ∈ K∗
y to u|C|−|Kx| ∈ K∗

x. The set system S ∗
x is constructed as follows: for

each S ∈ S ∗
y , take the corresponding set S′ ⊆ K∗

x ×W , and add to S ∗
x the sets S′[ui] for

1 ≤ i ≤ |C| − |Kx|.
To prove that the resulting system S ∗

x is representative for Sx, we show first that S ∗
x ⊆

Sx. Let S[ui] be a set from S ∗
x , where S ⊆ Ky ×W is obtained from some set S′ ∈ S ∗

y .
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Therefore, there is a coloring ψ of H∗
y that corresponds to S′. Coloring ψ can be extended

to a coloring ψ′ of H∗
x by setting ψ′(u|C|−|Kx|) = ψ(v). Now the set S[ui] corresponds to

coloring ψ′[ui] of H∗
x, hence S[ui] ∈ Sx.

Assume that for some U ⊆ K∗
x ×W satisfying Definition 7.11, there is a set S ∈ Sx that

is disjoint from B(U). It has to be shown that S ∗
x also has such a set. Let ψ be the coloring

corresponding to set S. In coloring ψ, one of the vertices u1, . . . , u|C|−|Kx| has the same color
as v (the vertices in Kx cannot have this color, since they are adjacent to v), assume that
ψ(ui) = ψ(v). Consider the coloring ψ[ui], clearly the set corresponding to it is S[ui], which
is disjoint from B(U [ui]). Moreover, ψ[ui] induces a proper coloring of H∗

y (since the color
of v does not appear on K∗

x \ {u|C|−|Kx|}). The set corresponding to this coloring is S′[ui]
(which is obtained by mapping S[ui] from K∗

x ×W to K∗
y ×W ), and this set is disjoint from

B(U ′[ui]) (where U ′[ui] is obtained by mapping U [ui]). Therefore, Sy has a set disjoint from
B(U ′[ui]). By assumption, S ∗

y is representative for Sy, hence there is a set R′ ∈ S ∗
y also

disjoint from B(U ′[ui]). Mapping R′ from K∗
y ×W to K∗

x ×W yields a set R disjoint from
B(U [ui]), hence the set R[ui] is disjoint from B(U). When S ∗

x is constructed, we add the
set R[ui] to the system, thus S ∗

x also has a set disjoint from B(U), what we had to prove.

Join node x. Let y and z be the children of x. By Lemma 7.12, the set system

S
∗
x = {Sy ∪ Sz : Sy ∈ S

∗
y and Sz ∈ S

∗
z form a non-blocking pair}

is representative for Sx. This set system can be easily constructed if we consider each pair
Sy ∈ S ∗

y and Sz ∈ S∗
z , and add their union into S ∗

x only if they form a non-blocking pair.

Running time. For each type of node x, we have shown how to obtain a set system S ∗
x

representative for Sx. After constructing S ∗
x , the algorithm of Lemma 7.9 or Lemma 7.10

can be used to reduce the size of the set system to a function of k. This will ensure that
we have to work with small set systems at each step. Therefore, the algorithm takes uni-
formly polynomial time at each node, and it follows that coloring chordal+ke graphs is
fixed-parameter tractable. �

8 Conclusions

We have considered two different types of coloring problems in this paper. Precoloring ex-
tension already received a lot of attention in the literature. Here we investigated two possible
parameterizations of the problem. Following Cai [5], we also investigated the parameterized
complexity of coloring if the parameter is the distance of the graph from some “nice” class of
graphs. The paper demonstrated that these two types problems are intimately related and
should be studied together.

Besides presenting general connections between the different problems, we obtained con-
crete results for chordal and interval graphs. We have determined the complexity of the two
parameterizations of PrExt on chordal and interval graphs, and the parameterized complex-
ity of coloring chordal+ke, chordal+kv, interval+ke, interval+kv graphs. It would be inter-
esting to study the analogous problems for proper interval, comparability, co-comparability,
and permutation graphs.

The problem of finding modulators also seems to be worth studying. The “iterative
compression” technique, introduced recently in [21], could be very useful for designing such
algorithms.
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