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Abstract The first type is to restrict theonstraint languagethat is,
the type of constraints that is allowed. This direction was
It is well-known that constraint satisfaction problems initiated by the classical work of Schaefer [19] and was sub-
(CSP) can be solved in im@&% if the treewidth of the pri-  sequently pursued in e.g., [1, 2, 3, 7, 15]. The second type
mal graph of the instance is at most k and n is the size of theis to restrict thestructureinduced by the constraints on the
input. We show that no algorithm can be significantly better variables. Therimal graph(or Gaifman graph of a CSP
than this treewidth-based algorithm, even if we restriet th instance is defined to be a graph on the variables of the in-
problem to some special class of primal graphs. Formally, stance such that there is an edge between two variables if
let ¥ be an arbitrary class of graphs and assume that there and only if they appear together in some constraint. If the
is an algorithm A solving binary CSP for instances whose treewidth of the primal graph ls then CSP can be solved in
primal graph is in&. We prove that if the running time of timen®® [10]. (Heren is the size of the input; in the cases
Ais f(G)nok/1ogk) ‘where k is the treewidth of the primal we are interested in, the input size is polynomially bounded
graph G and f is an arbitrary function, then the Exponen- by the domain size and the number of variables.) The aim
tial Time Hypothesis fails. We prove the result also in the of this paper is to investigate whether there exists anyrothe
more general framework of the homomorphism problem for structural property of the primal graph that can be exptbite
bounded-arity relational structures. For this problemeth  algorithmically to speed up the search for the solution.
treewidth of the core of the left-hand side structure plays For a class/ of graphs, let CSB) be the special case
the same role as the treewidth of the primal graph above. of CSP where the primal graph of the instance is assumed
to be in¥. If ¥ has bounded treewidth, then CSB(is
polynomial-time solvable. The converse is also true:

1 Introduction Theorem 1 ([12]). If ¢ is a recursively enumerable class

of graphs, then CSE) is polynomial-time solvable if and

Constraint satisfaction is a general framework that in- 4y if«< has bounded treewidth (assuming FRTW[]).
cludes many standard algorithmic problems such as satisfi-

ability, graph coloring, database queries, etc. A constrai ~ The assumption FP# W[1] is a standard hypothesis
satisfaction problem (CSP) consists of a\éaif variables, ~ Of parameterized complexity (cf. [6, 9]). Thus bounded
a domainD, and a seC of constraints, where each con- treewidth is the only property of the primal graph that can
straint is a relation on a subset of the variables. The task ismake the problem polynomial-time solvable. However,
to assign a value from to each variable in such away that Theorem 1 does not rule out the possibility that there is
every constraint is satisfied (see Definition 3 for the formal Some structural property that enables us to solve instances
definition). For example, 3SAT can be interpreted as a CSPsignificantly faster than the treewidth-based algorithm of

problem where the domain {©,1} and the constraintsi@ ~ [10]. Conceivably, there can be a clagsof graphs such
correspond to the clauses (thus the arity of each constrainthat CSP¥) can be solved in tima®V¥ or even in time
is 3). nOUogk) if k is the treewidth of the primal graph. The main

Due to its generality, solving constraint satisfaction result of the paper is that this is not possible; 1R€ time
problems is NP-hard if we do not impose any additional algorithm is essentially optimal, up to &{(logk) factor in
restrictions on the possible instances. Therefore, th& mai the exponent. Thus, in our specific setting, there is no other
goal of the research on CSP is to identify tractable classesstructural information beside treewidth that can be exptbi
and special cases of the general problem. The theoretical li algorithmically.
erature on CSP investigates two main types of restrictions. We prove our result under the Exponential Time Hypoth-
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Theorem 2. If there is a recursively enumerable class the notation introduced by Feder and Vardi [7] and formu-
¢ of graphs with unbounded treewidth and a computable lates the problem as a homomorphism between relational
function f such that CSB{) can be solved in time structures. This more general framework allows a clean al-
f(G)||1]|°(W(G)/log®(G)) for instances | with primal graph  gebraic treatment of many issues. In Section 5, we translate
G e ¢, then ETH fails. the lower bound of Theorem 2 into this framework (Theo-
rem 18) to obtain a quantitative version of the main result of

Tlhe main tecﬁ”ica' tocf’_' of the proof in [12] is the 1151 Thatjs, the left-hand side classes of structuresén th
Excluded Grid Theorem of Robertson and Seymour [18], p,y0morphism problem are not only characterized with re-

which states that there Is an unbounded f“ﬁcgd‘) such spect to polynomial-time solvability, but we prove almost-
that every graph with treewidth at ledstontains gy(k) x tight lower bounds on the exponent of the running time.

g(k) grid as minor. The basic idea f)f the proof in [1_2] As observed in [12], the complexity of the homomor-
IS to shqw that CSF‘? IS EOLDOWQomlaI-tlm_]e sol\éable i phism problem does not depend directly on the treewidth of
gi contains every gni | an t an this resu_thls used to arguey,q eft-hand side structure, but rather on the treewiditsof
that C.SP% s no_t polynomial for an)g wit “”Pounde‘?' core. Thus the treewidth of the core appearsin Theorem 18,
treewidth, since in this casé contains every grld as Mi- e analog of Theorem 2. Furthermore, as in [12], our re-
nor. However, this approach does not work if we want a g+ annjies only if the left-hand side structure has bodnde
tighter lower bound, as in Theorem 2. The problem is that arity. In the unbounded-arity case, issues related to the re

the functiong(k) is very slow growipg, e.go(logk), in the resentation of the structures arise, which change the prob-
known proofs of the Excluded Grid Theorem [5]. There- |, considerably. The homomorphism problem with un-

fore, if the O’?'V property of graphs with tr_eew@dth at letast bounded arity is far from understood: very recently, new
that_ we u;_e |s|th|at theyl hfi@m x9(k) grlimlnoLs, th_zn classes of tractable structures were identified [13].

we Imme |atey ose a %t('g(%s) CSP on i) > g(k) gri Section 2 summarizes the notation we use. Section 3
can be ?ﬁg?ﬁ?eg? timgl | , no lower bound stronger presents the new characterization of treewidth. Section 4
than|t]] can be proved with this approach. Thus treats binary CSP and proves Theorem 2. Section 5

v;/]e réee? g cdhgrq(;:t_?rr:zatmn of treewidth that is tighter than overviews the homomorphism problem and presents the
the Excluded Grid Theorem. main result in this context.

The almost-tight bound of Theorem 2 is made possi-
ble by a novel characterization of treewidth that is tight up . .
to a logarithmic factor. This result might be of indepen- 2 Preliminaries
dent interest. We characterize treewidth by the “embedding
power” of the graph in the following sense. L@&andH be Constraint satisfaction problems. We briefly recall
connected graphs, and I6t% be the graph obtained from the most important notions related to CSP. For more back-
G by replacing each vertex with a clique of sigand each ~ ground, see e.g., [11, 7].
edge with a complete bipartite graph. dfis sufficiently
large, therH is a minor ofG(9. For exampleg = 2|E(H)|
is certainly sufficient (ifH has no isolated vertices). How-
ever, we show that if the treewidth & is at leastk, then e V is a set of variables,
H is a minor ofG(@ already forqg = O(|E(H)|logk/k). We _ _
prove this result by using the well-known characterization ~ ® D is @ domain of values,
of treewidth with separators andG(logk) integrality gap
result for the sparsest cut problem. The main idea of the
proof of Theorem 2 is to use the embedding power of a
graph with large treewidth to simulate a 3SAT instance effi- — s is a tuple of variables of lengtim, called the
ciently. constraint scopeand

We conjecture that Theorem 2 holds in a tight way:
the O(logtw(G)) factor can be removed from the expo-
nent. This seemingly minor improvement would be very
important for classifying the complexity of other CSP vari- For each constrainfs,R)) the tuples ofR; indicate the
ants. However, it seems that a much better understandingllowed combinations of simultaneous values for the vari-
of treewidth is required before Theorem 2 can be madeables ins. The lengthm; of the tuples is called thearity of
tight. The very least, it should be settled whether there is the constraint. Asolutionto a constraint satisfaction prob-
a polynomial-time constant-factor approximation aldguonit lem instance is a functiohfrom the set of variableg to the
for treewidth. domain of value® such that for each constraif, R;) with

A large part of the theoretical literature on CSP follows s = (Vi;,Vi,, ..., Vi,,), the tuple(f (vi,), f (Vi,),..., f(Viy)) is

Definition 3. An instance of @onstraint satisfaction prob-
lemis atriple(V,D,C), where:

e Cis a set of constraints{cy,cy,...,cq}. Each con-
straintc; € Cis a pair(s,R), where:

— R is anm-ary relation oveD, called thecon-
straint relation.



a member oR,. We say that an instance lignary if each
constraint relation is binary, i.axy = 2 for each constraint.

tw(G) < cforeveryGe ¥.
Given a graplG, theline graph L(G) has one vertex for

In this paper, we consider only binary instances. It can be each edge o6, and two vertices oE(G) are connected if
assumed that the instance does not contain two constraintand only if the corresponding edgesGrshare an endpoint.

(s,Ri), (sj,Rj) with 5 = sj, since in this case the two con-
straints can be replaced with the constragtR N R;).

The line graph_(Ky) of the complete grapKy will appear
repeatedly in the paper. Usually we denote the vertices of

In the input, the relation in a constraint is represented by L(Kk) with vy j3 (1 <i < j <K), wherevy;, ;.3 andvy, j,

listing all the tuples of the constraint. We denote |3y
the size of the representation of the instahee (V,D,C).

are adjacent if and only ifi1, j1} N {iz, j2} # 0.

For binary constraint satisfaction problems, we can assume3 Embedding in a graph with large treewidth

that||l | = O(V2D?): by the argument in the previous para-
graph, we can assume that there @¥'?) constraints and
each constraint has a representation of lef@(tb?). Fur-
thermore, it can be assumed that < ||I||: elements oD
that do not appear in any relation can be removed.

Letl = (V,D,C) be a CSP instance and ¥t C V be a
nonempty subset of variables. TSP instanceV’] in-
duced by Vis |’ = (V/,D,C’), whereC' is defined the fol-
lowing way: For each constraint= ((v,...,V),R) having
at least one variable iN’, there is a corresponding con-
straintc’ in C'. Suppose that;,,...,v;, are the variables
amongvs, ...,V that are inv’. Then the constrairt is de-
fined as((vi,,...,Vi,),R), where the relatioR’ is the pro-
jection of R to the components, ... ,i,, thatis,R contains
an/-tuple(dy,....d)) € D' if and only if there is &-tuple
(dy,...,dk) € Rsuch thaﬂj =dj, for 1 < j <. Clearly, if
f is a solution ofl, then f restricted tov’ is a solution of
V]

The primal graphof a CSP instancé = (V,D,C) is a
graphG with vertex seV, wherex,y € V form an edge if
and only if there is a constraifis,R;) € C with x,y € §.
For a clas¥/ of graphs, we denote by C8P) the problem
restricted to instances where the primal graph i€in

Graphs. We denote by/(G) andE(G) the set of ver-
tices and the set of edges of the graphrespectively. A
graphH is aminor of G if H can be obtained fror® by a

Given a graplG and an integeg, we denote by the
graph obtained by replacing every vertex with a clique of
sizeq and replacing every edge with a complete bipartite
graph omg+ g vertices. The mapping that maps each ver-
tex of G to the corresponding clique &@ will be called
the blow-upmapping fromG to G\@. It can be shown that
tw(G9) = O(q- tw(G)).

Clearly, if H is a graph withn vertices, therH is a sub-
graph ofG(". Furthermore, if5 has a clique of sizk, then
H is already a subgraph &"¥. Even if G does not have
ak-clique subgraph, but it does havé&-alique minor, then
H is a minor ofG("K. Thus ak-clique minor increases the
“embedding power” of a graph by a factor kf The main
result of the section is that large treewidth implies a samil
increase in embedding power. The following lemma states
this formally:

Lemma 4. There are functions:{G), f»(G), and a uni-
versal constant ¢ such that for everyki, if G is a graph
with tw(G) > k and H is a graph withE(H)| = m> f1(G)
and no isolated vertices, then H is a minor ofGfor

g = [cmlogk/k]. Furthermore, such a minor mapping can
be found in time A(G)m°PW.

The valuecmlogk/k is optimal up to aO(logk) factor.
To see this, observe that the treewidth of a graph wwith

sequence of vertex deletions, edge deletions, and edge coredges can b@(m) (e.g., bounded-degree expanders) and if

tractions. The following alternative definition will be neor
relavant to our purposes: a graghis aminor of G if there
is a mappingy that maps each vertex éf to a connected
subset o (G) such thatp(u) N (v) = 0 foru # v, and if
u,veV(H) are adjacent i, then there is an edge E{G)
connectingp(u) andy(v).

A tree decompositionof a graph G is a tuple
(T, (Bhtev(c)), WhereT is a tree andB)iey (1) @ family
of subsets oV (G) such that for eacle € E(G) there is a
nodet € V(T) such thae C By, and for eaclv € V(G) the
set{t e V(T) | ve Bt} is connected ifT. The sets; are
called thebagsof the decomposition. Theidth of a tree-
decomposition(T, (Bt )iev () is max{|Bt| [t € V(t)} — 1.
The treewidthtw(G) of a graphG is the minimum of the
widths of all tree decompositions . A class¥ of graphs
is of bounded treewidtlif there is a constant such that

tw(G) = k, then the treewidth o6 for q = [cmlogk/K]

is O(mlogk). Furthermore, Lemma 4 does not remain true
if mis the number of vertices dfl (instead of the num-
ber of edges). LeH be a clique orm vertices, and leG

be a bounded-degree graph©(k) vertices with treewidth

k. It is easy to see thaB@ hasO(g?k) edges, hence

H can be a minor of3@ only if g’k = Q(m?), that is,
q=Q(m/vk). The requiremenin > f;(G) is a technical
detail: due to some probabilistic arguments, our embedding
technique works only iH is fairly large.

The graphL(Ky), i.e., the line graph of the complete
graph plays a central role in the proof of Theorem 4. The
proof consists of two parts. In the first part (Section 3.1),
we show that if t§G) > k, then a blow-up of (K) is a mi-
nor of an appropriate blow-up @. This part of the proof
is based on the characterization of treewidth by balanced



separators and uses a result of Feige et al. [8] on the lin-Remark7. Lemma 6 does not remain true in this form for
ear programming formulation of separation problems. In largerW. For example, ifW| = 3k andW has no balanced
the second part (Section 3.2), we show that every graph is &-separator, theaV (G) can be as small a&3(1/k?).

minor of an appropriate blow-up &f(Ky). LetW = {w,...,w} be a set of vertices. Aoncur-
) ) rent vertex flow of value is a collection ofW|? flows such
3.1 Embedding L(Ky) in G that for every ordered paiu,v) € W x W, there is a flow

of value € betweenu andv, and the total amount of flow

A separatoiis a partition of the vertices into three classes going through each vertex is at most 1. A flow between
(A,B,S) (S+# D) such that there is no edge betwéeandB. andv is a weighted collection afi — v paths. Au— v path
A k-separator is a separat@k, B, S) with |§ = k. Given a contributes to the load of vertex of vertexv, and of every
setW of vertices and a separat@k, B, S), we say thaSis a vertex betweem andv on the path. In the degenerate case
balanced separatofwith respect taV) if WNC| < |W|/2 whenu = v, vertexu = v is the only vertex where the flow
for every connected componéhibf G\ S. The treewidth of ~ betweeru andv goes through, that is, the flow contributes
a graph is closely connected with the existence of balanceto the load of only this vertex.

separators: The maximum concurrent vertex flow can be expressed
_ as a linear program the following way. Raiv e W, let 22,
Lemma 5 ([17], [9, Section 11.2]). be the set of alli— v paths inG, and for eactp € 2y, let

variablep” > 0 denote the amount of flow that is sent from

1. If G(V,E) has treewidth greater thagk, then there utovalongp. Consider the following linear program:

is a set WC V of size2k+ 1 having no balanced k-

separator.
2. If G(V,E) has treewidth at mostk 1, then every WC maximizes
V has a balanced k-separator. S. t.
_ Thgsparsityof the separatafA, B, S) (with respect taV) o0, pYze Vuvew
is defined as <1 vwev (LP1)
(u,v) EWXW pe Zyyv:we p
a"(AB,S) = [(AUS) mW||-Sq|(BUS) NnW|° pY>0 VuveV,pe Py

We denote by (G) the minimum ofaV (A, B, S) for every The dual of this linear program can be written with variables
separatof(A,B,S). It is easy to see that for evefy and {luw}uvew and{s,}vev the following way:

W, 1/|W|? < a™W(G) < 1/|W|. For our applications, we o

need a selV such that the sparsity is close to the maximum Mminimize ;S/

possible, i.e.Q(1/|W|). The following lemma shows that ve

the non-existence of a balanced separator can guarantee the s. t

existence of such a sét: Z sw>luw YU veW,pe Py (*)
wep
Lemma 6. If |W| = 2k+1 and W has no balanced k-
>
separator in a graph G, theaV(G) > 1/(4k +1). " V)GWXWKUV =1 () (LP2)
Proof. Let (A, B,S) be a separator of sparsity¥ (G); with- lw>0  VuveWw
out loss generality, we can assume tatW| > [BNW]|, sy>0 VYweV

hence|BNW| < k. If |S >k, thenaW (A B,S) > (k+

1)/(2k+1)? > 1/(4k+1). If |S > |[(BUS)NW|, then

a(A,B,S) > 1/|(AUS)NW| > 1/(2k+1). Assume there-  we show that if there is a separatph, B,S) with spar-
forethat|(BUS)NW| > |S+1. LetSbeasetok—|§ >0  sjity gW(AB,S), then (LP2) has a solution with value at
arbitrary vertices ot \ (SUB). We claim thatSUS is a mostaW (A B,S). Sets, = aV(AB,S)/|9 if ve Sand
balanced separator &¥. Suppose that there is a compo- g, — 0 otherwise; the value of such a solution is clearly
nentC of G\ (SU S) that contains more thakvertices of aV(A,B,S). Foreveryu,ve W, setl,, = MiNpe 74, SwepSv

W. ComponenC is either a subset oA or B. However, g ensure that inequalities (*) hold. To see that (**) holds,
it cannot be a sub_set &, since|BNW| < k. On the other  notice first that,, > o (A,B, S)/|9if ue AUS ve BUS,
hand|(A\S)NW]/is at most R+1—|(BUS)NW| -S| < as everyu— v path has to go through at least one ver-
2k+1-(]94+1)—(k=[9) <k O tex of S Furthermore, ifu,v € Sandu # v, thenty, >



2a(A,B,S)/|S since in this case a— v paths meetS§in
at least two vertices. The expressigAUS) NW|-|(BU
S)NW| counts the number of ordered paftsv) satisfying
ue (AUS NW andv € (BUS)NW, such that pairs with
u,v € SNW, u # v are counted twice. Therefore,

a"(ABS _,

Ly > (J(AUS) NW|-|(BUS)NW]) E ,

(u,v)EWxW

which means that inequality (**) is satisfied.
The other direction is not true: a solution of (LP2) with

g:= [(5Inn)/a | paths. Note thaq < | czlogn - klogk], for
an appropriate value @b.

Let ¢ be the blow-up mapping frois to G@. For each
pathP,y; in G, we define a patl®),; in G¥. LetP,y; =
P1P2...pr. The pathP,,; we define consists of one vertex
of ¢(p1), followed by one vertex ofp(pz), ..., followed
by one vertex ofp(pr ). The vertices are selected arbitrarily
from these sets, the only restriction is that we do not select
vertex ofG9 that was already assigned to some other path
P\ v~ Since each vertex of G is contained in at mosj
paths, they vertices ofp(v) are sufficient to satisfy all the

valuea does not imply that there is a separator with sparsity paths going through. Therefore, we can ensure that the

at mosta. However, Feige et al. [8] proved that it is possible

to find a separator whose sparsity is greater than that by

at most aO(log|W|) factor (this result appears implicitly
already in [16]):

Theorem 8 (Feige et al. [8], Leighton and Rao [16]).If
(LP2) has a solution with value, then there is a separator
with sparsity Ga log|W|).

We use Theorem 8 to obtain a concurrent vertex flow in a

graph with large treewidth. This concurrent vertex flow can
be used to find ah(Ky) minor in the blow-up of the graph

k?[Inn| pathsP,,; are pairwise disjoint.

i
The minor mapping fromL{™™) to G9 is defined

as follows. Lety be the blow-up mapping from(Ky)

to L(Kk)(\-lnnj), and |etV{1’2}, Vi13) -0 Vik-1k be the

(¥) vertices ofL(Ky), wherevy;, i,y andvyj, j,, are con-
nected if and only ifi1,i2} N {j1, j2} # 0. The|lnn| ver-
tices of Y/(v;,j) are mapped to theinn| pathsP; 4, ...,
Pi,,j.[lnnj' Clearly, the images of the vertices are disjoint
and connected. We have to show that this minor mapping
maps adjacent vertices to adjacent sets.x & @(Vi,.i,)

) - i () i
in a natural way: the flow paths correspond to the edges of@ndX € Y(vj, j,) are connected i, **, then there is a

Ky.

Lemma 9. Let G be a graph withw(G) > 3k. There are
universal constants;cc, > 0 such that I(Ky)([¢1!°9n) js a
minor of Glezlognklogk)) ‘\where n is the number of vertices
of G.

Proof. SinceG has treewidth greater thai,3y Lemma 5,
there is a subsef\y of size at most R+ 1 that has no
balancedk-separator. By Lemma 63" (G) > 1/(4k +

1) > 1/(5k). Therefore, Theorem 8 implies that the

t € {i1,i2} N{j1, j2}. This means that the paths correspond-
ing tox andx’ both contain a vertex of the cliqug(w) in
G@, which implies that there is an edge connecting the two
paths. O

With the help of the following proposition, we can make
a smallimprovementon Lemma 9: the assumptiofG>
3k can be replaced by the assumptiori®y > k. This will
make the result more convenient to use.

Proposition 10. For every k> 3, > 1, L(Kq) is a sub-

dual linear program has no solution with value less than graph of uKk)qu).

1/(co5klog(2k + 1)), wherecy is the constant hidden by
the big O notation in Theorem 8. By linear program-
ming duality, there is a concurrent flow of value at least
o :=1/(cp5klog(2k+ 1)) connecting the vertices Wip; let

p*' be a corresponding solution of (LP1).

LetW C Wy be a subset dk vertices. For each pair of
vertices(u,v) € W x W, let us randomly and independently
choose|Inn| pathsR, 1, ..., Pyy|inn] of Zuv (here In de-
notes the natural logarithm), where paths chosen with
probability

pUV
Zp’e,@uv(p,>uv

For each vertex, the expected number of paths that con-
tain v is at most|Inn|/a. By the Chernoff bound, the
probability that more than 5y a of thek?Inn paths con-

tainv is at moste™ & 'nn < 1/n?. Therefore, with probabil-
ity at least 1- 1/n, each vertew is contained in at most

pUV

a

Proof. Let ¢ be a mapping fron{1,...,qk} to {1,...,k}
such that exactly elements of(1,...,gk} are mapped to
each element of1,...,k}. Letvy i, (1 <i1<i2<gK
be the vertices ot (Kg) and ut{il,iz} (1<ii<ip <Kk,
1<t < 2% be the vertices of (Ky)%), with the usual
convention that two vertices are adjacent if and only if the
lower indices are not disjoint. Léd;, ;,, be the clique
ut{il,iz} [1<t< 2q2}. Let us consider the vertices of
L(Kgk) in some order. Vertexy;, i, is mapped to a ver-
tex of Ui, g(i,)) that was not already used for a previous
vertex. If ¢(i1) = @(i2), thenvy, i\ is mapped to a ver-
texUyg(i,).06,)+1) (Where addition is modulk). Itis clear
that if two vertices ofL(Kq) are adjacent, then the corre-
sponding vertices of_(Kk)(Zqz) are adjacent as well. We
have to verify that, for a given,i», at most 27 vertices of
L(Kqk) are mapped to the cliquéyj, ;,,. As |g~1(i1)| and



|g~1(i,)| are bothg, there are at mosy? verticesvyj, j,}
with ¢(j1) = i1, Y(j2) = io. Furthermore, ifi, =i;+ 1,
then there ar¢3) additional vertices/;, j,3 with ¢(j1) =
Y(j2) = iy that are also mapped tdy;, ;,;. Thus at most

207 vertices are mapped to each clidug, ;- O

Using Prop. 10 withg = 3 improves Lemma 9 the fol-
lowing way:

Lemma 11. Let G be a graph withiw(G) > k. There are
universal constants;cc, > 0 such that I(Ky)([¢1!°9n) js a
minor of Gle2lognklogk)) \where n is the number of vertices
of G. O

3.2 Embedding H in L(Ky)

As the second step of the proof of Lemma 4, we show

that every (sufficiently large) grapghis a minor ofL (K )(@
for = O(|E(H)|/K?).

Lemma 12. For every/ > 0 there is a constant,c> 0 such
that for every graph ®/,E) with |E| > ¢, and maximum
degree at most 3, the vertices of G can be partitioneddnto
classesY, ..., V,; such that

1. Vil <2)V|/¢foreveryl <i</{ and

2. There are at most/E|/¢? edges between ¥nd \f for
everyl<i< j<U/.

Furthermore, such a partition can be found in polynomial
time.

Proof. Consider a random partition of the vertices @f
that is, each vertex is independently put into one of ¢he
classes with uniform probability. There afe- (5) possible

bad events: one of théclasses can be too large, or there
can be too many edges between two classes. We show th

the probability of each of these bad events is at mg#t,1
hence with large probability none of these events occur.
The expected size of each clasg\i§/¢ with variance

independent, thus we have to take into account the covari-
ance between the variables to estimate the variance. It is
easy to see that

(2/02)(1—2/¢%) if e andey

share two endpoints

COV(Xey Xe,) = § 2/03—4/04 if &, ande, share
exactly one endpoint,
0 otherwise.

Since the degree of every vertex is at most 3, each variable
Xe is correlated with at most 5 variables (including itself).
Thus the variance dE; j| is at most 5| (2/¢2)(1—2/¢?) <
10[E|/¢2, if |E| is sufficiently large. Therefore, by Cheby-
sev’s Inequality,

10E|/¢? 1007

< <1/03
e/ @ < 2 =Y

Pr(|Ei j| > 4|E| /() <

if |E| is sufficiently large. Thus a random partition satisfies
the requirements of the lemma with high probability. [

Lemma 13. For every k> 1 there is a constantyrt> 0 such
that for every GV, E) with |E| > ny and no isolated vertices,
the graph G is a minor of (Ky)@ for q = [108E|/K?].
Furthermore, a minor mapping can be found in time poly-
nomial in q and the size of G.
Proof. Let ng = C(‘;)’ where C(‘;) is the constant from
Lemma 12. First we construct a gragh(V’,E’) of max-
imum degree 3 that contairG as a minor. This can be
achieved by replacing every vertexof G with a path on
d(v) vertices (wherel(v) is the degree o¥ in G); now we
can ensure that the edges incident tese distinct copies of
v from the path. The new gragh has at most [E| edges.
We show thatG', henceG, is a minor of L(Ky)@.

aL[emma 12 gives a partition of the vertices@finto £ ;= (g)

Classes. Denote BY;; j, (1 <i < j <K) these classes. Let
Vii,jy (L <i < j <K) be the vertices of (Ky), and letp be
the blow-up mapping fronk (Ky) to L(K)@. The minor

V[(1/€)(1—1/¢) (since the size of a class can be expressedmappingy from G’ to LY is defined the following way.
as the sum of independent 0-1 random variables, where thdirst, if u € Vy; j,, then lety(u) contain a vertexu from

probability of 1 is 1/¢). By Chebyshev’s Inequality, the

probability that clas¥ is too large is at most

VIA/H@A-1/0)
(IVI/€)?

Ea
V]

1

Pr(V| > 2V|/0) < =

< <

if |V|is sufficiently large.

Let E j be the set of edges betwegrandV;. For fixed
i, ], let us bound the probability th#; ;| is too large. For
each edge € E(G), let random variablge be 1 ife € E;
and 0 otherwise; clearljE; j| = Y ecp(c) Xe- The expected
value of | j| is 2|E|/¢2. The random variableg are not

@(vgijy)- Let us enumerate the edgew of G'. Assume
thatu e V{ilﬁjl} andw € V{iz,jz}‘ If {i1, j1}N{i2, j2} #0,
thenu'andw are neighbors, since every vertexgf/;, ;,1)
is a neighbor of every vertex ap(vyj,,j,1)- If {i1,j1} N
{i2,j2} = 0 with i1 < j; andiz < jp, then add a vertex of
®(V{izip)) to Y(u) and another vertex ap(vyi, i,y ) to Y(u);
these two vertices are neighbors with each other and they
are adjacent ta &ndv. This ensures thap(u) is connected
for everyu € V, and there is an edge betwegu) and
Y (w) for every edgeiw.

What remains to be shown is that the sefsy; j;) are
large enough such that we can ensure that no vertex of



Ll((q) is assigned to more than oggu). Let us count how
many vertices ofp(vy; j;) are used when the minor map-

ping is constructed as described above. First, the image of

each vertex in Vj; j, uses one vertex of ¢(vy; j,); to-
gether these vertices use at mpsg| < 2|V|/(%) vertices
from ¢(v{i7j}). Furthermore, ifiy < j; andi, < j,, and
{i1, ja} N{i2, j2} = 0, then we use 2 vertices qf(v{ibiz})
for each edge betwefy;, j,, andVy;, j,i. There are at most
4|E’|/('§)2 edges betweevt;, ;,, andVj;, j,), which means

that we use at most|!3’|/('§)2 vertices of (v, i,y ) for
each pair({i1, j1},{i2, j2}) satisfyingis < j1 andiz < ja.
For a giveniy, iy, this can hold for at mostk — 1)2 pairs
({i1, j1},{i2, j2}), hence the total number of vertices we use

from @(vyi, i,1) is

/() + k- 1)2-8|E’|/(';)2

<2Vl () + 321/ < 36E e
< 108E|/K¢ <q

as required. O

4 Complexity of binary CSP

In this section, we prove our main result for binary CSP
(Theorem 2). The proof relies in an essential way on the
Sparsification Lemma:

Theorem 14 (Impagliazzo, Paturi, and Zane [14]).If
there is a2°(™ time algorithm for m-clause 3-SAT, then
there is a2°(" time algorithm for n-variable 3-SAT.

The main strategy of the proof of Theorem 2 is the fol-
lowing. First we show that a 3SAT formudawith mclauses
can be turned into a binary CSP instaricef size O(m)
(Lemma 15). By the embedding result of Lemma 4, for ev-
ery G € ¢, the primal graph of is a minor ofG(@ for an
appropriateg. This implies that we can simulatewith a
CSP instancé’ whose primal graph i& (Lemma 16 and
Lemma 17). Now we can use the assumed algorithm for
CSP) to solve instance’, and thus decide the satisfia-
bility of formula ¢@. If the treewidth ofG is sufficiently
large, then the assumed algorithm is much better than the
treewidth based algorithm, which translates int®@&2al-
gorithm for the 3SAT instance. By Theorem 14, this means
thatn-variable 3SAT can be solved in tim&®, i.e., ETH
fails.

Putting together Lemma 11 and Lemma 13, we can proveLemma 15. Given an instance of 3SAT with n variables

the main result of the section:

Proof (of Lemma 4)Let f1(G) = ng + kécilog|V(G)|,
wherek = tw(G) andny is the constant from Lemma 13.
Assume thatE(H)| = m > f1(G). By Lemma 13H is a
minor of L(Ky)(@ for q:= [108m/k?] and a minor map-
ping Y can be found in polynomial time. Let:= |V (G)|
andq := [q/|cilogn]|] (wherec; is the constant from
Lemma 11); clearlyH is a minor ofL(Ky)(@(ctlogn) e
can assume that logn > 2: for smallern, the lemma au-
tomatically holds if we set sufficiently large. Observe
that m is large enough such that/|cilogn| > 1 holds,
henceq < 2q/|cilogn| < 4q/(cilogn). By Lemma 11,
L(Ky)([e09n)) s a minor of Gllc2lognklogk]) and a mi-
nor mappingy, can be found in timef,(G) by brute
force, for some functiorio(G). Therefore] (K )( czlogn))
is a minor of G(@lc2loanklogk)) and it is straightforward
to obtain the corresponding minor mappings from
Y. Sinced |czlogn-klogk| < (4q/(cilogn)) - cxlogn -
klogk = 4(cy/c1)gklogk < cmlogk/k for an appropriate
constant, we have thaH is a minor of GI6Mo9k/k| - The
corresponding minor mapping is the compositipggio ;.

and m clauses, it is possible to construct in polynomial time
an equivalent CSP instance withHm variables3m binary
constraints, and domain siZ&

Proof. Let ¢ be a 3SAT formula witm-variables andn-
clauses. We construct an instance of CSP as follows. The
CSP instance contains a varialgjé1 <i < n) correspond-
ing to thei-th variable ofg and a variableg; (1 < j <m)
corresponding to thg-th clause ofp. LetD = {1,2,3} be

the domain. We try to describe a satisfying assignment of
¢ with thesen+ mvariables. The intended meaning of the
variables is the following. If the value of variabg is 1
(resp., 2), then this represents that itk variable ofg is
true (resp., false). If the value of variablgis ¢, then this
represents that thgth clause ofgp is satisfied by it/-th
literal. To ensure consistency, we adah 8onstraints. Let
1< j<mand 1</ < 3, and assume that tHeth literal of

the j-th clause is a positive occurrence of fhih variable.

In this case, we add the binary constraint= 1Vy;j # ¢):
eitherx; is true or some other literal satisfies the clause.
Similarly, if the ¢-th literal of the j-th clause is a negated
occurrence of theth variable, then we add the binary con-
straint (x, = 2Vyj # £). It is easy to verify that ifg is

Observe that each step can be done in polynomial time,satisfiable, then we can assign values to the variables of the

except the application of Lemma 11, which takE$G)

CSP instance such that every constraint is satisfied, ard con

time. Thus the total running time can be bounded by yersely, if the CSP instance has a solution, tipés satisfi-

fo(G)mP(), O

able. O



If G1 is a minor ofG,, then an instance with primal graph

We define the relatioRy, v, such that(x;,xz) is a member

G, can be easily simulated by an instance with primal graph of Ry, v, if and only if the corresponding assignmenis a
Gy: each variable 06; is simulated by a connected set of solution of the induced instan¢g/ (v1) U ¢(v2)].

variables inG, that are forced to be equal.

Lemma 16. Assume that Gis a minor of G. Given a
binary CSP instance; lwith primal graph G and a minor
mappingy from G to G, itis possible to constructin poly-
nomial time an equivalent instancgwith primal graph G
and the same domain.

Proof. For simplicity, we assume that bo®y andG, are

connected; the proof can be easily extended to the generarl

case. IfG; is connected, then we can assume tijrais
onto. For each constraint = (s,R;) of |1, we construct
a constraint of; as follows. Lets = (u,v). Sincey is a
minor mapping, there has to be at least one egligeu'v’
in Gz such thaty’ € Y(u) andV € Y(v). Select such an
edge and add the constraifft/,v'),R;) to the constructed
instancd,. Furthermore, for each edgg of G,, we add a
constraint: ifg~1(x) = ¢~(y), then the new constraint is
(xY).{(t,t) [t € D}); if y~1(x) # Y=X(y), then the new
constraintis/(x,y), D x D}). Clearly, the primal graph d§
is Go.

Assume that; has a solutiorf; : Vi — D. Thenf,(v) =
f1(¢~1(v)) is a solution ofl,. On the other hand, i, has
a solutionf; : Vo — D, then we claim thaff,(x) = fa(y)
holds if y=1(x) = ¢~(y). This follows from the way we
defined the constraints df and from the fact thaty(x)
is connected. Therefore, we can defife: Vi — D as
fi(v) = f»(V), whereV is an arbitrary member ofs(v).
To see that a constraint= ((u,v),R;) of I1 is satisfied, ob-
serve that there is a constraif{t/,v'),R;) in I, for some
u € g(u), v € ¢(v). This means thatfi(u), f1(v)) =
(f2(U), f2(V')) € R;, hence the constraint is satisfied. T

An instance with primal grapB(® can be simulated by
an instance with primal grap@ if we set the domain to be
theg-tuples of the original domain.

Lemma 17. Given a binary CSP instance + (V1,D1,C1)
with primal graph G% (where G has no isolated vertices), it
is possible to construct (in time polynomial in the size ef th
outpu) an equivalentinstance k= (V»,D2,Cy) with primal
graph G andD3| = |D4|".

Proof. Let  be the blow-up mapping froré to G(@ and
let Dy = D?, i.e., Dy is the set ofg-tuples ofD;. For ev-

eryv € Vp, there is a natural bijection between the elements

of D, and the|D|% possible assignments: (v) — D.
For each edgenv, of G, we add a constrainty, v, =
((v1,v2),Ry,.v,) to |2 as follows. Let(xq,X2) € D2 x Dy.
Fori =1,2, letg; be the assignment gf(v;) corresponding

Assume thal; has a solutiorf; : V; — D1. Forevery €
V,, let us definef,(v) to be the member d; corresponding
to the assignment; restricted to(v). It is easy to see
that fo is a solution ofl,: this follows from the trivial fact
that for every edgesvs in G, assignmenft, restricted to
Y(v1) UP(vy) is a solution of [ (v1) U (v2)].

Assume now that, has a solutionf, : Vo, — D,. For
everyv € Vo, there is an assignmeti : ¢(v) — D1 cor-
esponding tof,(v). These assignments together define an
assignmenf; : V; — D1. We claim thatf; is a solution of
l1. Letcyy = ((u,v),R) be an arbitrary constraint &f. As-
sume thati € (') andv e (V). If U #V, thenu'V is an
edge ofG, hence there is a corresponding constrajpy
in I2. The waycy v is defined ensures thd{ restricted to
Y(Uu)U (V) is a solution ofl1 [ (u') U g(V)]. In particu-
lar, this means thay, y is satisfied inf;. If U =V, then there
is an edgas/w in G (sinceG has no isolated vertices), and
the corresponding constrainy ,, ensures thaf; satisfies
Cu,v- O

Now we are ready to prove the main result:

Proof (of Theorem 2)Assume that there is an algorithm
with running time f (G)||1||(G)/(l0gW(G)1 (W (G)) " \wherei

is an unbounded function. We can assume thit non-
decreasing. We present a reduction from 3SAT to @5P
such that this reduction, together with the assumed algo-
rithm for CSR¥), is able to solve 3SAT in subexponential
time. The crucial point of the reduction is how to select an
appropriateG from ¢. The higher the treewidth d&, the
more we gain in the running time. Howev&, has to be
sufficiently small such that some additional factors (such a
the time spent on findin@) are not too large.

Since¥ is recursively enumerable and has unbounded
treewidth, there is an algorithm A that, given an integer
finds a graphG € ¢ with tw(G) > k in time g(k), for some
functiong. Using algorithm A, it is not difficult to construct
an algorithm B that, given an integer> my (wheremy is
a constant), constructs a gra@hn time O(m) such that

1. f(G)|E(G)|W(©)/1(1) = O(m), wheref is the function
in the statement of the theorem,

2. f1(G) < m, wheref; is the function in Lemma 4.

3. f2(G) = O(m), wheref; is the function in Lemma 4,
and

4. tw(G) = h(m) for some unbounded functidn

Algorithm B simulates algorithm A fok =1,2,... and af-

to x; € D,. The two assignment together define an assign-ter producing the graph for a givéq it checks whether it

mentg : Y(v1) U Y(v2) — D on the union of their domains.

satisfies requirements 1-3 above. Algorithm B stops after



O(m) steps and outputs the last graph that satisfies the rein ¢ is at mostr. A homomorphisnfrom a 7-structure
guirements. Any grapls satisfies requirements 1-3 above A to a 1-structureB is a mappingh : A — B from the
if mis sufficiently large. Thus there is no bound on the universe ofA to the universe oB that preserves all rela-

treewidth of the graphs produced by Algorithm B, i.e., if

h(m) is defined to be the treewidth of the graph found with (ay,...,ax) € R? it holds that(h(ay),...

inputm, thenh(m) is unbounded. If the constamy, is suf-
ficiently large, then algorithnB can find in timeO(m) at

tions, that is, for allR € 1, say, of arityk, and all tuples
,h(ax)) € RB. Let
||A]| denote the length of the representationfof We as-
sume that|A|| = O(|1] + |A| + Sre; |RY| - arity(R)) for a

least one graph satisfying the requirements above for anyt-structureA with universeA.

m> mp.

We use the assumed algorithm for C$pto solvem-
clause 3SAT in time 2™. Let ¢ be a 3SAT formula with
m clauses; by Lemma 15 can be turned into a binary
CSP instancé; with O(m) constraints and domain size 3.
Let H be the primal graph of;. Let us run algorithm B
with inputmto obtain a grapls € ¢ and letk := tw(G) =
h(m). For simplicity, we assume th& has no isolated ver-

A substructureof a relational structurd is a relational
structureB over the same vocabularyasA whereB C A
andRB® C R? for all Re 1. If B is a substructure oA, but
A # B, thenB is aproper substructuref A.

The notion of treewidth can be defined for relational
structures the following way. Aree decompositionf a 7-
structureA is a pair(T, X), whereT = (I,F) is a tree, and
X = (Xi)iel is a family of subsets of A such that for each

tices as they can be handled in a Straightforward way. ByR € T, say, of arityk, and eadr(al7 . ,ak) c RA there is a

Lemma 4H is a minor ofG for = O(mlogk/k) and we
can find a minor mapping in time f,(G)m°® = m°1)
(sincefy(G) = O(m) by Property 2 above). Therefore, by
Lemma 16); can be turned into an instantewith primal
graphG(@, which, by Lemma 17, can be turned into an in-
stancd3 with primal graphG and domain size® Clearly,
|l13]| = O(|E(G)|3%9). The assumed algorithm can solge

in time

f(G)H|3||k/(Iogk-l(k))
= f(G)|E(G)|k/<'09k-l(k>> . 329K/ (logk-1 (k)
< f(G)|E(G)|k/l(l) .3O(m)/1(k) — O(m) .3O(m)/1(k) — 20(m)7
contradicting ETH (the last equality follows from the fact

that 1 (k) = 1(h(m)) is unbounded as tends to infinity).
O

5 Complexity of homomorphism

nodei € | such that{as,...,a} C X, and for eacta € A
the set{i €| | a€ X} is connected inT. The width of
the decompositioriT,X) is max|X;| | i € 1} —1, and the
treewidthof A, denoted by tWA), is the minimum of the
widths of all tree decompositions &f.

The primal graphof a structureA with vocabularyr is
a graph with vertex sek where two elementg, a”’ € A are
connected if and only if there is a relational symBot T,
say, of arityk, such thaR has a tupléay, ...,ax) € Rwith
a,a’ € {ay,...,a}. It can be shown that the treewidth of
the primal graph ofA equals the treewidth dX.

A core of a relational structurd is a substructuré’
of A such that there is a homomorphism fréto A’, but
there is no homomorphism frod to a proper substructure
of A’. We say that a relational structufeis acoreif it
is its own core. It is well-known that the every relational
structureA has a core and the cores Afare isomorphic
with each other. Let us denote by ¢#) the treewidth of
the core ofA.

Given a CSP instanck= (V,D,C), one can construct

The aim of this section is to extend Theorem 2 in the in polynomial time two relational structurés andB with

framework of the homomorphism problem for relational

universeV andD, respectively, such that the solutionslof

structures, which is the standard way of studying CSP in correspond to the homomorphisms freéxito B. Thus the

the theoretical literature. As we shall see, in this formula

tion the complexity of the problem depends on the treewidth constraint satisfaction.

homomorphism problem of relational structures generalize
Formally, in the homomorphism

of the core of the left-hand side. Furthermore, as in [12], we problemthe inputis a paiA, B) of relational structures and

state the result only for bounded-arity relational struetu

the task is to decide whether there is a homomorphism form

Let us recall the standard definitions of the homomor- A (the left-hand side structudeto B (the right-hand side

phism problem (see [7, 12]). AocabularyT is a finite
set of relation symbols of specified arities. Téugty of T

is the maximum of the arities of all relational symbols it
contains. Ar-structureA consists of a finite seA called
the universe ofA and for each relation symb# € 1, say,
of arity k, a k-ary relationR* C Ak, We say that a class
% of structures is obounded arityif there is a constant

structure. If o and4 are two classes of relational struc-
tures, then we denote by HQMW , ) the restriction of the
homomorphism problem where e o7 andB € %4. We de-
note by the symbol- the class of all relational structures.
Thus HOM </, —) restricts the structure of the constraints,
while HOM(—, %) restricts the constraint language.

If ctw(A) <k, then the homomorphism problefA, B)

r such that the arity of the vocabulary of every structure can be solved in tima®® [12, 4] (wheren is the length of



the input, which iO(]|A|| + ||BJ|)). The main result of this
section is that there is no clasg of structures such that
HOM(«/, —) can be solved significantly faster:

Theorem 18. Let &7 be a recursively enumerable class of
bounded-arity relational structures such that the treetwid
of the core is unbounded. If HOM/,—) can be solved
in time f(A)]||B||°(€W(A)/loget(A)) 'where f is an arbitrary
computable function, then ETH fails.

Proof. Let & be a class of relational structures of maxi-

mum arityrmax. Let ¢ be the class of graphs containing
the primal graph of the core of every structukec <.
Clearly, ¢ has unbounded treewidth and it is not difficult

to show that? is recursively enumerable. We use the as-

sumed algorithm for HONle#, —) to construct an algorithm
for CSR¥) that contradicts Theorem 2.

Sinces is recursively enumerable, there is an algorithm

that, given &G € ¢, outputs a structur@g € o7 such thatc

is the primal graph of the core &(. Letg(G) be the run-
ning time of this algorithm with inpu6; clearly, |Ag|| <
g(G). Letl = (V,D,C) be an instance of binary CSP with
primal graphG € ¢4. LetAg € </ be a structure whose core
Ao has primal grapl&. (From now on, we us¥ both for
the set of variables of instan¢eand for the universéy.)
Let 1 be the vocabulary ofg. We construct a-structureB
as follows. The universBof BisV x D. LetRe T be arela-
tion symbol and leR*° be the corresponding relationAp.
To construct the relatioR?, let us enumerate thetuples
of R, and for eachjvy,...,v) € RA C V', let us enumer-
ate the solutions of{(vy,...,vr)]. If (vi,...,v) € R and

f is a solution ofl [(vy,...,v )], then let us add thetuple
(v, f(v)),..., (W, f(v)) to RB. This completes the de-
scription of the relatiorRE and the structur®. Observe
that the size oRP is at mostD"™a times the size oR"0.
Therefore, the size @ is (||Ao||D])°"m>) and can be con-
structed in time polynomial in its size.

We show thatA; — B if and only if | has a solution.
Since Ag is the core ofAg, it follows that Ag — B if
and only ifAg — B. Therefore, the assumed algorithm for
HOM(«7,—) can decide the solvability dfin time

9(G)+ f(Ag) B Ao/ tosctiac)
_ g(G) + f(AG)HAOHO(tW(G)/IogtW(G)) . |D|0(tW(G)/IogtW(G))
< f/(G)”l Ho(tW(G)/IogtW(G)),

for an appropriate functioff (G) (the last step follows from
the fact thatf (Ag) and||Ag|| are functions ofG, and that
ID| < ||1]]). By Theorem 2, this implies that ETH fails.
Assume first that has a solutionf : V — D. We
claim thate(v) = (v, f(v)) is a homomorphism from\g
to B. Indeed, if (vy,...,v) € RA, then f restricted to
{v1,...,Vr} is obviously a solution of[{vy,...,v;}], hence
((vi, f(v1)),..., (v, f(w))) € RB by the definition ofR®.

Assume now thatp is a homomorphism frondg to B.
Let ¢ be the projectiony(v,d) =v fromV x D to V. Ob-
serve thaty is a homomorphism frorB to Ag. Therefore,
Y o @ is a homomorphism frond\g to itself. SinceAg is
core, P o @ is an isomorphism of\p. Thus we can assume
thaty o @is identity: otherwise let us replagewith @o (o
@)L If Yo @is the identity, then for everyc V, @(v) =
(v, f(v)) for somef(v) € D. We claim that this function
f:V — Disasolutionofl. Letc; = ((u,v),R) be an arbi-
trary constraint of. Sinceuvis an edge of the primal graph
G, there is arR € 1 such thatR*® has a tuplgvy,...,v)
containing bothu andv. Therefore,(@(v1),...,0(%)) =
((va, f(V1)),-.., (v, f(w))) € RB. By the definition ofR?,
this means thaf restricted to{vy,...,v;} is a solution of
[[{v1,...,%}]. In particular, this means thdt satisfies
G. O
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