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Abstract

It is well-known that constraint satisfaction problems
(CSP) can be solved in time nO(k) if the treewidth of the pri-
mal graph of the instance is at most k and n is the size of the
input. We show that no algorithm can be significantly better
than this treewidth-based algorithm, even if we restrict the
problem to some special class of primal graphs. Formally,
let G be an arbitrary class of graphs and assume that there
is an algorithm A solving binary CSP for instances whose
primal graph is inG . We prove that if the running time of
A is f(G)no(k/ logk), where k is the treewidth of the primal
graph G and f is an arbitrary function, then the Exponen-
tial Time Hypothesis fails. We prove the result also in the
more general framework of the homomorphism problem for
bounded-arity relational structures. For this problem, the
treewidth of the core of the left-hand side structure plays
the same role as the treewidth of the primal graph above.

1 Introduction

Constraint satisfaction is a general framework that in-
cludes many standard algorithmic problems such as satisfi-
ability, graph coloring, database queries, etc. A constraint
satisfaction problem (CSP) consists of a setV of variables,
a domainD, and a setC of constraints, where each con-
straint is a relation on a subset of the variables. The task is
to assign a value fromD to each variable in such a way that
every constraint is satisfied (see Definition 3 for the formal
definition). For example, 3SAT can be interpreted as a CSP
problem where the domain is{0,1} and the constraints inC
correspond to the clauses (thus the arity of each constraint
is 3).

Due to its generality, solving constraint satisfaction
problems is NP-hard if we do not impose any additional
restrictions on the possible instances. Therefore, the main
goal of the research on CSP is to identify tractable classes
and special cases of the general problem. The theoretical lit-
erature on CSP investigates two main types of restrictions.
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The first type is to restrict theconstraint language,that is,
the type of constraints that is allowed. This direction was
initiated by the classical work of Schaefer [19] and was sub-
sequently pursued in e.g., [1, 2, 3, 7, 15]. The second type
is to restrict thestructureinduced by the constraints on the
variables. Theprimal graph(or Gaifman graph) of a CSP
instance is defined to be a graph on the variables of the in-
stance such that there is an edge between two variables if
and only if they appear together in some constraint. If the
treewidth of the primal graph isk, then CSP can be solved in
timenO(k) [10]. (Heren is the size of the input; in the cases
we are interested in, the input size is polynomially bounded
by the domain size and the number of variables.) The aim
of this paper is to investigate whether there exists any other
structural property of the primal graph that can be exploited
algorithmically to speed up the search for the solution.

For a classG of graphs, let CSP(G ) be the special case
of CSP where the primal graph of the instance is assumed
to be inG . If G has bounded treewidth, then CSP(G ) is
polynomial-time solvable. The converse is also true:

Theorem 1 ([12]). If G is a recursively enumerable class
of graphs, then CSP(G ) is polynomial-time solvable if and
only if G has bounded treewidth (assuming FPT6= W[1]).

The assumption FPT6= W[1] is a standard hypothesis
of parameterized complexity (cf. [6, 9]). Thus bounded
treewidth is the only property of the primal graph that can
make the problem polynomial-time solvable. However,
Theorem 1 does not rule out the possibility that there is
some structural property that enables us to solve instances
significantly faster than the treewidth-based algorithm of
[10]. Conceivably, there can be a classG of graphs such
that CSP(G ) can be solved in timenO(

√
k) or even in time

nO(logk), if k is the treewidth of the primal graph. The main
result of the paper is that this is not possible; thenO(k) time
algorithm is essentially optimal, up to anO(logk) factor in
the exponent. Thus, in our specific setting, there is no other
structural information beside treewidth that can be exploited
algorithmically.

We prove our result under the Exponential Time Hypoth-
esis (ETH) [14]: we assume that there is no 2o(n) time algo-
rithm for n-variable 3SAT. This assumption is stronger than
FPT 6= W[1]. The main result is the following:
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Theorem 2. If there is a recursively enumerable class
G of graphs with unbounded treewidth and a computable
function f such that CSP(G ) can be solved in time
f (G)‖I‖o(tw(G)/ logtw(G)) for instances I with primal graph
G∈ G , then ETH fails.

The main technical tool of the proof in [12] is the
Excluded Grid Theorem of Robertson and Seymour [18],
which states that there is an unbounded functiong(k) such
that every graph with treewidth at leastk contains ag(k)×
g(k) grid as minor. The basic idea of the proof in [12]
is to show that CSP(G ) is not polynomial-time solvable if
G contains every grid and then this result is used to argue
that CSP(G ) is not polynomial for anyG with unbounded
treewidth, since in this caseG contains every grid as mi-
nor. However, this approach does not work if we want a
tighter lower bound, as in Theorem 2. The problem is that
the functiong(k) is very slow growing, e.g.,o(logk), in the
known proofs of the Excluded Grid Theorem [5]. There-
fore, if the only property of graphs with treewidth at leastk
that we use is that they haveg(k)×g(k) grid minors, then
we immediately lose a lot: as CSP on theg(k)×g(k) grid
can be solved in time‖I‖O(g(k)), no lower bound stronger
than‖I‖o(logtw(G)) can be proved with this approach. Thus
we need a characterization of treewidth that is tighter than
the Excluded Grid Theorem.

The almost-tight bound of Theorem 2 is made possi-
ble by a novel characterization of treewidth that is tight up
to a logarithmic factor. This result might be of indepen-
dent interest. We characterize treewidth by the “embedding
power” of the graph in the following sense. LetG andH be
connected graphs, and letG(q) be the graph obtained from
G by replacing each vertex with a clique of sizeq and each
edge with a complete bipartite graph. Ifq is sufficiently
large, thenH is a minor ofG(q). For example,q = 2|E(H)|
is certainly sufficient (ifH has no isolated vertices). How-
ever, we show that if the treewidth ofG is at leastk, then
H is a minor ofG(q) already forq = O(|E(H)| logk/k). We
prove this result by using the well-known characterizations
of treewidth with separators and aO(logk) integrality gap
result for the sparsest cut problem. The main idea of the
proof of Theorem 2 is to use the embedding power of a
graph with large treewidth to simulate a 3SAT instance effi-
ciently.

We conjecture that Theorem 2 holds in a tight way:
the O(logtw(G)) factor can be removed from the expo-
nent. This seemingly minor improvement would be very
important for classifying the complexity of other CSP vari-
ants. However, it seems that a much better understanding
of treewidth is required before Theorem 2 can be made
tight. The very least, it should be settled whether there is
a polynomial-time constant-factor approximation algorithm
for treewidth.

A large part of the theoretical literature on CSP follows

the notation introduced by Feder and Vardi [7] and formu-
lates the problem as a homomorphism between relational
structures. This more general framework allows a clean al-
gebraic treatment of many issues. In Section 5, we translate
the lower bound of Theorem 2 into this framework (Theo-
rem 18) to obtain a quantitative version of the main result of
[12]. That is, the left-hand side classes of structures in the
homomorphism problem are not only characterized with re-
spect to polynomial-time solvability, but we prove almost-
tight lower bounds on the exponent of the running time.

As observed in [12], the complexity of the homomor-
phism problem does not depend directly on the treewidth of
the left-hand side structure, but rather on the treewidth ofits
core. Thus the treewidth of the core appears in Theorem 18,
the analog of Theorem 2. Furthermore, as in [12], our re-
sult applies only if the left-hand side structure has bounded
arity. In the unbounded-arity case, issues related to the rep-
resentation of the structures arise, which change the prob-
lem considerably. The homomorphism problem with un-
bounded arity is far from understood: very recently, new
classes of tractable structures were identified [13].

Section 2 summarizes the notation we use. Section 3
presents the new characterization of treewidth. Section 4
treats binary CSP and proves Theorem 2. Section 5
overviews the homomorphism problem and presents the
main result in this context.

2 Preliminaries

Constraint satisfaction problems. We briefly recall
the most important notions related to CSP. For more back-
ground, see e.g., [11, 7].

Definition 3. An instance of aconstraint satisfaction prob-
lem is a triple(V,D,C), where:

• V is a set of variables,

• D is a domain of values,

• C is a set of constraints,{c1,c2, . . . ,cq}. Each con-
straintci ∈C is a pair〈si ,Ri〉, where:

– si is a tuple of variables of lengthmi , called the
constraint scope,and

– Ri is anmi -ary relation overD, called thecon-
straint relation.

For each constraint〈si ,Ri〉 the tuples ofRi indicate the
allowed combinations of simultaneous values for the vari-
ables insi . The lengthmi of the tuplesi is called thearity of
the constraint. Asolutionto a constraint satisfaction prob-
lem instance is a functionf from the set of variablesV to the
domain of valuesD such that for each constraint〈si ,Ri〉with
si = 〈vi1,vi2, . . . ,vim〉, the tuple〈 f (vi1), f (vi2), . . . , f (vim)〉 is



a member ofRi . We say that an instance isbinary if each
constraint relation is binary, i.e.,mi = 2 for each constraint.
In this paper, we consider only binary instances. It can be
assumed that the instance does not contain two constraints
〈si ,Ri〉, 〈sj ,Rj〉 with si = sj , since in this case the two con-
straints can be replaced with the constraint〈si ,Ri ∩Rj〉.

In the input, the relation in a constraint is represented by
listing all the tuples of the constraint. We denote by‖I‖
the size of the representation of the instanceI = (V,D,C).
For binary constraint satisfaction problems, we can assume
that‖I‖ = O(V2D2): by the argument in the previous para-
graph, we can assume that there areO(V2) constraints and
each constraint has a representation of lengthO(D2). Fur-
thermore, it can be assumed that|D| ≤ ‖I‖: elements ofD
that do not appear in any relation can be removed.

Let I = (V,D,C) be a CSP instance and letV ′ ⊆ V be a
nonempty subset of variables. TheCSP instance I[V ′] in-
duced by V′ is I ′ = (V ′,D,C′), whereC′ is defined the fol-
lowing way: For each constraintc= 〈(v1, . . . ,vk),R〉 having
at least one variable inV ′, there is a corresponding con-
straintc′ in C′. Suppose thatvi1, . . . ,viℓ are the variables
amongv1, . . . ,vk that are inV ′. Then the constraintc′ is de-
fined as〈(vi1, . . . ,viℓ),R

′〉, where the relationR′ is the pro-
jection ofR to the componentsi1, . . . , iℓ, that is,R′ contains
anℓ-tuple(d′

1, . . . ,d
′
ℓ) ∈ Dℓ if and only if there is ak-tuple

(d1, . . . ,dk) ∈ R such thatd′
j = di j for 1≤ j ≤ ℓ. Clearly, if

f is a solution ofI , then f restricted toV ′ is a solution of
I [V ′].

The primal graphof a CSP instanceI = (V,D,C) is a
graphG with vertex setV, wherex,y ∈ V form an edge if
and only if there is a constraint〈si ,Ri〉 ∈ C with x,y ∈ si .
For a classG of graphs, we denote by CSP(G ) the problem
restricted to instances where the primal graph is inG .

Graphs. We denote byV(G) andE(G) the set of ver-
tices and the set of edges of the graphG, respectively. A
graphH is aminor of G if H can be obtained fromG by a
sequence of vertex deletions, edge deletions, and edge con-
tractions. The following alternative definition will be more
relavant to our purposes: a graphH is aminorof G if there
is a mappingψ that maps each vertex ofH to a connected
subset ofV(G) such thatψ(u)∩ψ(v) = /0 for u 6= v, and if
u,v∈V(H) are adjacent inH, then there is an edge inE(G)
connectingψ(u) andψ(v).

A tree decompositionof a graph G is a tuple
(T,(Bt)t∈V(G)), whereT is a tree and(Bt)t∈V(T) a family
of subsets ofV(G) such that for eache∈ E(G) there is a
nodet ∈V(T) such thate⊆ Bt , and for eachv∈V(G) the
set{t ∈ V(T) | v ∈ Bt} is connected inT. The setsBt are
called thebagsof the decomposition. Thewidth of a tree-
decomposition(T,(Bt)t∈V(T)) is max

{

|Bt | | t ∈ V(t)}−1.
The treewidthtw(G) of a graphG is the minimum of the
widths of all tree decompositions ofG. A classG of graphs
is of bounded treewidthif there is a constantc such that

tw(G) ≤ c for everyG∈ G .
Given a graphG, theline graph L(G) has one vertex for

each edge ofG, and two vertices ofL(G) are connected if
and only if the corresponding edges inG share an endpoint.
The line graphL(Kk) of the complete graphKk will appear
repeatedly in the paper. Usually we denote the vertices of
L(Kk) with v{i, j} (1≤ i < j ≤ k), wherev{i1, j1} andv{i2, j2}
are adjacent if and only if{i1, j1}∩{i2, j2} 6= /0.

3 Embedding in a graph with large treewidth

Given a graphG and an integerq, we denote byG(q) the
graph obtained by replacing every vertex with a clique of
size q and replacing every edge with a complete bipartite
graph onq+q vertices. The mappingφ that maps each ver-
tex of G to the corresponding clique ofG(q) will be called
theblow-upmapping fromG to G(q). It can be shown that
tw(G(q)) = Θ(q · tw(G)).

Clearly, if H is a graph withn vertices, thenH is a sub-
graph ofG(n). Furthermore, ifG has a clique of sizek, then
H is already a subgraph ofG(n/k). Even ifG does not have
a k-clique subgraph, but it does have ak-clique minor, then
H is a minor ofG(n/k). Thus ak-clique minor increases the
“embedding power” of a graph by a factor ofk. The main
result of the section is that large treewidth implies a similar
increase in embedding power. The following lemma states
this formally:

Lemma 4. There are functions f1(G), f2(G), and a uni-
versal constant c such that for every k≥ 1, if G is a graph
with tw(G) ≥ k and H is a graph with|E(H)| = m≥ f1(G)
and no isolated vertices, then H is a minor of G(q) for
q = ⌈cmlogk/k⌉. Furthermore, such a minor mapping can
be found in time f2(G)mO(1).

The valuecmlogk/k is optimal up to aO(logk) factor.
To see this, observe that the treewidth of a graph withm
edges can beΩ(m) (e.g., bounded-degree expanders) and if
tw(G) = k, then the treewidth ofG(q) for q = ⌈cmlogk/k⌉
is O(mlogk). Furthermore, Lemma 4 does not remain true
if m is the number of vertices ofH (instead of the num-
ber of edges). LetH be a clique onm vertices, and letG
be a bounded-degree graph onO(k) vertices with treewidth
k. It is easy to see thatG(q) has O(q2k) edges, hence
H can be a minor ofG(q) only if q2k = Ω(m2), that is,
q = Ω(m/

√
k). The requirementm≥ f1(G) is a technical

detail: due to some probabilistic arguments, our embedding
technique works only ifH is fairly large.

The graphL(Kk), i.e., the line graph of the complete
graph plays a central role in the proof of Theorem 4. The
proof consists of two parts. In the first part (Section 3.1),
we show that if tw(G)≥ k, then a blow-up ofL(Kk) is a mi-
nor of an appropriate blow-up ofG. This part of the proof
is based on the characterization of treewidth by balanced



separators and uses a result of Feige et al. [8] on the lin-
ear programming formulation of separation problems. In
the second part (Section 3.2), we show that every graph is a
minor of an appropriate blow-up ofL(Kk).

3.1 Embedding L(Kk) in G

A separatoris a partition of the vertices into three classes
(A,B,S) (S 6= /0) such that there is no edge betweenA andB.
A k-separator is a separator(A,B,S) with |S| = k. Given a
setW of vertices and a separator(A,B,S), we say thatS is a
balanced separator(with respect toW) if |W∩C| ≤ |W|/2
for every connected componentC of G\S. The treewidth of
a graph is closely connected with the existence of balance
separators:

Lemma 5 ([17], [9, Section 11.2]).

1. If G(V,E) has treewidth greater than3k, then there
is a set W⊆ V of size2k+ 1 having no balanced k-
separator.

2. If G(V,E) has treewidth at most k+1, then every W⊆
V has a balanced k-separator.

Thesparsityof the separator(A,B,S) (with respect toW)
is defined as

αW(A,B,S) =
|S|

|(A∪S)∩W| · |(B∪S)∩W| .

We denote byαW(G) the minimum ofαW(A,B,S) for every
separator(A,B,S). It is easy to see that for everyG and
W, 1/|W|2 ≤ αW(G) ≤ 1/|W|. For our applications, we
need a setW such that the sparsity is close to the maximum
possible, i.e.,Ω(1/|W|). The following lemma shows that
the non-existence of a balanced separator can guarantee the
existence of such a setW:

Lemma 6. If |W| = 2k + 1 and W has no balanced k-
separator in a graph G, thenαW(G) ≥ 1/(4k+1).

Proof. Let (A,B,S) be a separator of sparsityαW(G); with-
out loss generality, we can assume that|A∩W| ≥ |B∩W|,
hence|B∩W| ≤ k. If |S| > k, then αW(A,B,S) ≥ (k +
1)/(2k+ 1)2 ≥ 1/(4k+ 1). If |S| ≥ |(B∪ S) ∩W|, then
αW(A,B,S)≥ 1/|(A∪S)∩W| ≥ 1/(2k+1). Assume there-
fore that|(B∪S)∩W| ≥ |S|+1. LetS′ be a set ofk−|S| ≥ 0
arbitrary vertices ofW \ (S∪B). We claim thatS∪S′ is a
balanced separator ofW. Suppose that there is a compo-
nentC of G\ (S∪S′) that contains more thank vertices of
W. ComponentC is either a subset ofA or B. However,
it cannot be a subset ofB, since|B∩W| ≤ k. On the other
hand,|(A\S′)∩W| is at most 2k+1−|(B∪S)∩W|−|S′| ≤
2k+1− (|S|+1)− (k−|S|)≤ k.

Remark7. Lemma 6 does not remain true in this form for
largerW. For example, if|W| = 3k andW has no balanced
k-separator, thenαW(G) can be as small asO(1/k2).

Let W = {w1, . . . ,wr} be a set of vertices. Aconcur-
rent vertex flow of valueε is a collection of|W|2 flows such
that for every ordered pair(u,v) ∈ W×W, there is a flow
of valueε betweenu andv, and the total amount of flow
going through each vertex is at most 1. A flow betweenu
andv is a weighted collection ofu− v paths. Au− v path
contributes to the load of vertexu, of vertexv, and of every
vertex betweenu andv on the path. In the degenerate case
whenu = v, vertexu = v is the only vertex where the flow
betweenu andv goes through, that is, the flow contributes
to the load of only this vertex.

The maximum concurrent vertex flow can be expressed
as a linear program the following way. Foru,v∈W, letPuv

be the set of allu−v paths inG, and for eachp∈ Puv, let
variablepuv≥ 0 denote the amount of flow that is sent from
u to v alongp. Consider the following linear program:

maximizeε
s. t.

∑
p∈Puv

puv ≥ ε ∀u,v∈W

∑
(u,v)∈W×W

∑
p∈Puv:w∈p

puv ≤ 1 ∀w∈V (LP1)

puv ≥ 0 ∀u,v∈V, p∈ Puv

The dual of this linear program can be written with variables
{ℓuv}u,v∈W and{sv}v∈V the following way:

minimize ∑
v∈V

sv

s. t.

∑
w∈p

sw ≥ ℓuv ∀u,v∈W, p∈ Puv (∗)

∑
(u,v)∈W×W

ℓuv ≥ 1 (∗∗) (LP2)

ℓuv ≥ 0 ∀u,v∈W

sw ≥ 0 ∀w∈V

We show that if there is a separator(A,B,S) with spar-
sity αW(A,B,S), then (LP2) has a solution with value at
most αW(A,B,S). Set sv = αW(A,B,S)/|S| if v ∈ S and
sv = 0 otherwise; the value of such a solution is clearly
αW(A,B,S). For everyu,v∈W, setℓuv = minp∈Puv ∑w∈psv

to ensure that inequalities (*) hold. To see that (**) holds,
notice first thatℓuv≥ αW(A,B,S)/|S| if u∈ A∪S, v∈ B∪S,
as everyu− v path has to go through at least one ver-
tex of S. Furthermore, ifu,v ∈ S and u 6= v, then ℓuv ≥



2αW(A,B,S)/|S| since in this case au−v paths meetsS in
at least two vertices. The expression|(A∪S)∩W| · |(B∪
S)∩W| counts the number of ordered pairs(u,v) satisfying
u ∈ (A∪S)∩W andv ∈ (B∪S)∩W, such that pairs with
u,v∈ S∩W, u 6= v are counted twice. Therefore,

∑
(u,v)∈W×W

ℓuv≥ (|(A∪S)∩W| · |(B∪S)∩W|)· αW(A,B,S)

|S| = 1,

which means that inequality (**) is satisfied.
The other direction is not true: a solution of (LP2) with

valueα does not imply that there is a separator with sparsity
at mostα. However, Feige et al. [8] proved that it is possible
to find a separator whose sparsity is greater than that by
at most aO(log|W|) factor (this result appears implicitly
already in [16]):

Theorem 8 (Feige et al. [8], Leighton and Rao [16]).If
(LP2) has a solution with valueα, then there is a separator
with sparsity O(α log|W|).

We use Theorem 8 to obtain a concurrent vertex flow in a
graph with large treewidth. This concurrent vertex flow can
be used to find anL(Kk) minor in the blow-up of the graph
in a natural way: the flow paths correspond to the edges of
Kk.

Lemma 9. Let G be a graph withtw(G) > 3k. There are
universal constants c1,c2 > 0 such that L(Kk)

(⌊c1 logn⌋) is a
minor of G(⌊c2 logn·k logk⌋), where n is the number of vertices
of G.

Proof. SinceG has treewidth greater than 3k, by Lemma 5,
there is a subsetW0 of size at most 2k + 1 that has no
balancedk-separator. By Lemma 6,αW0(G) ≥ 1/(4k+
1) ≥ 1/(5k). Therefore, Theorem 8 implies that the
dual linear program has no solution with value less than
1/(c05k log(2k+ 1)), wherec0 is the constant hidden by
the big O notation in Theorem 8. By linear program-
ming duality, there is a concurrent flow of value at least
α := 1/(c05k log(2k+1)) connecting the vertices ofW0; let
puv be a corresponding solution of (LP1).

Let W ⊆ W0 be a subset ofk vertices. For each pair of
vertices(u,v) ∈W×W, let us randomly and independently
choose⌊lnn⌋ pathsPu,v,1, . . . , Pu,v,⌊lnn⌋ of Puv (here ln de-
notes the natural logarithm), where pathp is chosen with
probability

puv

∑p′∈Puv(p′)uv ≤
puv

α
.

For each vertexv, the expected number of paths that con-
tain v is at most⌊lnn⌋/α. By the Chernoff bound, the
probability that more than 5lnn/α of thek2 lnn paths con-

tain v is at moste−
16
6 lnn ≤ 1/n2. Therefore, with probabil-

ity at least 1− 1/n, each vertexv is contained in at most

q := ⌊(5lnn)/α⌋ paths. Note thatq≤ ⌊c2 logn ·k logk⌋, for
an appropriate value ofc2.

Let φ be the blow-up mapping fromG to G(q). For each
pathPu,v,i in G, we define a pathP′

u,v,i in G(q). Let Pu,v,i =
p1p2 . . . pr . The pathP′

u,v,i we define consists of one vertex
of φ(p1), followed by one vertex ofφ(p2), . . . , followed
by one vertex ofφ(pr). The vertices are selected arbitrarily
from these sets, the only restriction is that we do not selecta
vertex ofG(q) that was already assigned to some other path
P′

u′,v′,i′ . Since each vertexv of G is contained in at mostq
paths, theq vertices ofφ(v) are sufficient to satisfy all the
paths going throughv. Therefore, we can ensure that the
k2⌊lnn⌋ pathsP′

u,v,i are pairwise disjoint.

The minor mapping fromL(⌊lnn⌋)
k to G(q)

k is defined
as follows. Letψ be the blow-up mapping fromL(Kk)
to L(Kk)

(⌊lnn⌋), and let v{1,2}, v{1,3} . . . , v{k−1,k} be the
(k

2

)

vertices ofL(Kk), wherev{i1,i2} and v{ j1, j2} are con-
nected if and only if{i1, i2}∩{ j1, j2} 6= /0. The⌊lnn⌋ ver-
tices of ψ(vi, j) are mapped to the⌊lnn⌋ pathsP′

i, j ,1, . . . ,
P′

i, j ,⌊lnn⌋. Clearly, the images of the vertices are disjoint
and connected. We have to show that this minor mapping
maps adjacent vertices to adjacent sets. Ifx ∈ ψ(vi1,i2)

and x′ ∈ ψ(v j1, j2) are connected inL(q′)
k , then there is a

t ∈ {i1, i2}∩{ j1, j2}. This means that the paths correspond-
ing to x andx′ both contain a vertex of the cliqueψ(wt) in
G(q), which implies that there is an edge connecting the two
paths.

With the help of the following proposition, we can make
a small improvement on Lemma 9: the assumption tw(G)≥
3k can be replaced by the assumption tw(G) ≥ k. This will
make the result more convenient to use.

Proposition 10. For every k≥ 3, q≥ 1, L(Kqk) is a sub-

graph of L(Kk)
(2q2).

Proof. Let φ be a mapping from{1, . . . ,qk} to {1, . . . ,k}
such that exactlyq elements of{1, . . . ,qk} are mapped to
each element of{1, . . . ,k}. Let v{i1,i2} (1 ≤ i1 < i2 ≤ qk)
be the vertices ofL(Kqk) and ut

{i1,i2} (1 ≤ i1 < i2 ≤ k,

1 ≤ t ≤ 2q2) be the vertices ofL(Kk)
(2q2), with the usual

convention that two vertices are adjacent if and only if the
lower indices are not disjoint. LetU{i1,i2} be the clique
{ut

{i1,i2} | 1 ≤ t ≤ 2q2}. Let us consider the vertices of

L(Kqk) in some order. Vertexv{i1,i2} is mapped to a ver-
tex ofU{φ(i1),φ(i2)} that was not already used for a previous
vertex. If φ(i1) = φ(i2), thenv{i1,i2} is mapped to a ver-
texU{φ(i1),φ(i1)+1} (where addition is modulok). It is clear
that if two vertices ofL(Kqk) are adjacent, then the corre-

sponding vertices ofL(Kk)
(2q2) are adjacent as well. We

have to verify that, for a giveni1, i2, at most 2q2 vertices of
L(Kqk) are mapped to the cliqueU{i1,i2}. As |ψ−1(i1)| and



|ψ−1(i2)| are bothq, there are at mostq2 verticesv{ j1, j2}
with ψ( j1) = i1, ψ( j2) = i2. Furthermore, ifi2 = i1 + 1,
then there are

(q
2

)

additional verticesv{ j1, j2} with ψ( j1) =
ψ( j2) = i1 that are also mapped toU{i1,i2}. Thus at most
2q2 vertices are mapped to each cliqueU{i1,i2}.

Using Prop. 10 withq = 3 improves Lemma 9 the fol-
lowing way:

Lemma 11. Let G be a graph withtw(G) ≥ k. There are
universal constants c1,c2 > 0 such that L(Kk)

(⌊c1 logn⌋) is a
minor of G(⌊c2 logn·k logk⌋), where n is the number of vertices
of G.

3.2 Embedding H in L(Kk)

As the second step of the proof of Lemma 4, we show
that every (sufficiently large) graphG is a minor ofL(Kk)

(q)

for q = O(|E(H)|/k2).

Lemma 12. For everyℓ > 0 there is a constant cℓ > 0 such
that for every graph G(V,E) with |E| > cℓ and maximum
degree at most 3, the vertices of G can be partitioned intoℓ
classes V1, . . . , Vℓ such that

1. |Vi| ≤ 2|V|/ℓ for every1≤ i ≤ ℓ, and

2. There are at most4|E|/ℓ2 edges between Vi and Vj for
every1≤ i < j ≤ ℓ.

Furthermore, such a partition can be found in polynomial
time.

Proof. Consider a random partition of the vertices ofG,
that is, each vertex is independently put into one of theℓ
classes with uniform probability. There areℓ+

(

ℓ
2

)

possible
bad events: one of theℓ classes can be too large, or there
can be too many edges between two classes. We show that
the probability of each of these bad events is at most 1/ℓ3,
hence with large probability none of these events occur.

The expected size of each class is|V|/ℓ with variance
|V|(1/ℓ)(1−1/ℓ) (since the size of a class can be expressed
as the sum of independent 0-1 random variables, where the
probability of 1 is 1/ℓ). By Chebyshev’s Inequality, the
probability that classVi is too large is at most

Pr(|Vi | > 2|V|/ℓ) ≤ |V|(1/ℓ)(1−1/ℓ)

(|V|/ℓ)2 ≤ ℓ

|V| ≤
1
ℓ3 ,

if |V| is sufficiently large.
Let Ei, j be the set of edges betweenVi andVj . For fixed

i, j, let us bound the probability that|Ei, j | is too large. For
each edgee∈ E(G), let random variablexe be 1 if e∈ Ei, j

and 0 otherwise; clearly|Ei, j | = ∑e∈E(G) xe. The expected
value of|Ei, j | is 2|E|/ℓ2. The random variablesxe are not

independent, thus we have to take into account the covari-
ance between the variables to estimate the variance. It is
easy to see that

cov(xe1,xe2) =































(2/ℓ2)(1−2/ℓ2) if e1 ande2

share two endpoints

2/ℓ3−4/ℓ4 if e1 ande2 share

exactly one endpoint,

0 otherwise.

Since the degree of every vertex is at most 3, each variable
xe is correlated with at most 5 variables (including itself).
Thus the variance of|Ei, j | is at most 5|E|(2/ℓ2)(1−2/ℓ2)≤
10|E|/ℓ2, if |E| is sufficiently large. Therefore, by Cheby-
sev’s Inequality,

Pr(|Ei, j | > 4|E|/ℓ2) ≤ 10|E|/ℓ2

(2|E|/ℓ2)2 ≤ 10ℓ2

2|E| ≤ 1/ℓ3,

if |E| is sufficiently large. Thus a random partition satisfies
the requirements of the lemma with high probability.

Lemma 13. For every k> 1 there is a constant nk > 0 such
that for every G(V,E) with |E|> nk and no isolated vertices,
the graph G is a minor of L(Kk)

(q) for q = ⌈108|E|/k2⌉.
Furthermore, a minor mapping can be found in time poly-
nomial in q and the size of G.

Proof. Let nk = c(k
2)

, where c(k
2)

is the constant from

Lemma 12. First we construct a graphG′(V ′,E′) of max-
imum degree 3 that containsG as a minor. This can be
achieved by replacing every vertexv of G with a path on
d(v) vertices (whered(v) is the degree ofv in G); now we
can ensure that the edges incident tov use distinct copies of
v from the path. The new graphG′ has at most 3|E| edges.

We show thatG′, henceG, is a minor of L(Kk)
(q).

Lemma 12 gives a partition of the vertices ofG′ into ℓ :=
(k

2

)

classes. Denote byV{i, j} (1≤ i < j ≤ k) these classes. Let
v{i, j} (1≤ i < j ≤ k) be the vertices ofL(Kk), and letφ be

the blow-up mapping fromL(Kk) to L(Kk)
(q). The minor

mappingψ from G′ to L(q)
k is defined the following way.

First, if u ∈ V{i, j}, then letψ(u) contain a vertex ˆu from
φ(v{i, j}). Let us enumerate the edgesuw of G′. Assume
that u ∈ V{i1, j1} andw ∈ V{i2, j2}. If {i1, j1}∩ {i2, j2} 6= /0,
thenû andŵ are neighbors, since every vertex ofφ(v{i1, j1})
is a neighbor of every vertex ofφ(v{i2, j2}). If {i1, j1} ∩
{i2, j2} = /0 with i1 < j1 and i2 < j2, then add a vertex of
φ(v{i1,i2}) to ψ(u) and another vertex ofφ(v{i1,i2}) to ψ(u);
these two vertices are neighbors with each other and they
are adjacent to ˆu andv̂. This ensures thatψ(u) is connected
for every u ∈ V, and there is an edge betweenψ(u) and
ψ(w) for every edgeuw.

What remains to be shown is that the setsφ(v{i, j}) are
large enough such that we can ensure that no vertex of



L(q)
k is assigned to more than oneψ(u). Let us count how

many vertices ofφ(v{i, j}) are used when the minor map-
ping is constructed as described above. First, the image of
each vertexv in V{i, j} uses one vertex ˆv of φ(v{i, j}); to-

gether these vertices use at most|Vi, j | ≤ 2|V|/
(k

2

)

vertices
from φ(v{i, j}). Furthermore, ifi1 < j1 and i2 < j2, and
{i1, j1}∩{i2, j2} = /0, then we use 2 vertices ofφ(v{i1,i2})
for each edge betweenV{i1, j1} andV{i2, j2}. There are at most

4|E′|/
(k

2

)2
edges betweenV{i1, j1} andV{i2, j2}, which means

that we use at most 8|E′|/
(k

2

)2
vertices ofφ(v{i1,i2}) for

each pair({i1, j1},{i2, j2}) satisfyingi1 < j1 and i2 < j2.
For a giveni1, i2, this can hold for at most(k− 1)2 pairs
({i1, j1},{i2, j2}), hence the total number of vertices we use
from φ(v{i1,i2}) is

2|V′|/
(

k
2

)

+(k−1)2 ·8|E′|/
(

k
2

)2

≤ 2|V ′|/
(

k
2

)

+32|E′|/k2 ≤ 36|E′|/k2

≤ 108|E|/k2 ≤ q,

as required.

Putting together Lemma 11 and Lemma 13, we can prove
the main result of the section:

Proof (of Lemma 4).Let f1(G) = nk + k2c1 log|V(G)|,
wherek = tw(G) andnk is the constant from Lemma 13.
Assume that|E(H)| = m≥ f1(G). By Lemma 13,H is a
minor of L(Kk)

(q) for q := ⌈108m/k2⌉ and a minor map-
ping ψ1 can be found in polynomial time. Letn := |V(G)|
and q′ := ⌈q/⌊c1 logn⌋⌉ (where c1 is the constant from
Lemma 11); clearly,H is a minor ofL(Kk)

(q′⌊c1 logn⌋). We
can assume thatc1 logn ≥ 2: for smallern, the lemma au-
tomatically holds if we setc sufficiently large. Observe
that m is large enough such thatq/⌊c1 logn⌋ ≥ 1 holds,
henceq′ ≤ 2q/⌊c1 logn⌋ ≤ 4q/(c1 logn). By Lemma 11,
L(Kk)

(⌊c1 logn⌋) is a minor of G(⌊c2 logn·k logk⌋) and a mi-
nor mappingψ2 can be found in timef2(G) by brute
force, for some functionf2(G). Therefore,L(Kk)

(q′⌊c1 logn⌋)

is a minor of G(q′⌊c2 logn·k logk⌋) and it is straightforward
to obtain the corresponding minor mappingψ3 from
ψ2. Sinceq′⌊c2 logn · k logk⌋ ≤ (4q/(c1 logn)) · c2 logn ·
k logk = 4(c2/c1)qklogk ≤ cmlogk/k for an appropriate
constantc, we have thatH is a minor ofG⌈cmlogk/k⌉. The
corresponding minor mapping is the compositionψ3 ◦ψ1.
Observe that each step can be done in polynomial time,
except the application of Lemma 11, which takesf2(G)
time. Thus the total running time can be bounded by
f2(G)mO(1).

4 Complexity of binary CSP

In this section, we prove our main result for binary CSP
(Theorem 2). The proof relies in an essential way on the
Sparsification Lemma:

Theorem 14 (Impagliazzo, Paturi, and Zane [14]). If
there is a2o(m) time algorithm for m-clause 3-SAT, then
there is a2o(n) time algorithm for n-variable 3-SAT.

The main strategy of the proof of Theorem 2 is the fol-
lowing. First we show that a 3SAT formulaφ with mclauses
can be turned into a binary CSP instanceI of size O(m)
(Lemma 15). By the embedding result of Lemma 4, for ev-
ery G ∈ G , the primal graph ofI is a minor ofG(q) for an
appropriateq. This implies that we can simulateI with a
CSP instanceI ′ whose primal graph isG (Lemma 16 and
Lemma 17). Now we can use the assumed algorithm for
CSP(G ) to solve instanceI ′, and thus decide the satisfia-
bility of formula φ . If the treewidth ofG is sufficiently
large, then the assumed algorithm is much better than the
treewidth based algorithm, which translates into a 2o(m) al-
gorithm for the 3SAT instance. By Theorem 14, this means
thatn-variable 3SAT can be solved in time 2o(n), i.e., ETH
fails.

Lemma 15. Given an instance of 3SAT with n variables
and m clauses, it is possible to construct in polynomial time
an equivalent CSP instance with n+m variables,3m binary
constraints, and domain size3.

Proof. Let φ be a 3SAT formula withn-variables andm-
clauses. We construct an instance of CSP as follows. The
CSP instance contains a variablexi (1≤ i ≤ n) correspond-
ing to thei-th variable ofφ and a variabley j (1 ≤ j ≤ m)
corresponding to thej-th clause ofφ . Let D = {1,2,3} be
the domain. We try to describe a satisfying assignment of
φ with thesen+m variables. The intended meaning of the
variables is the following. If the value of variablexi is 1
(resp., 2), then this represents that thei-th variable ofφ is
true (resp., false). If the value of variabley j is ℓ, then this
represents that thej-th clause ofφ is satisfied by itsℓ-th
literal. To ensure consistency, we add 3m constraints. Let
1≤ j ≤ mand 1≤ ℓ ≤ 3, and assume that theℓ-th literal of
the j-th clause is a positive occurrence of thei-th variable.
In this case, we add the binary constraint(xi = 1∨y j 6= ℓ):
either xi is true or some other literal satisfies the clause.
Similarly, if the ℓ-th literal of the j-th clause is a negated
occurrence of thei-th variable, then we add the binary con-
straint (xi = 2∨ y j 6= ℓ). It is easy to verify that ifφ is
satisfiable, then we can assign values to the variables of the
CSP instance such that every constraint is satisfied, and con-
versely, if the CSP instance has a solution, thenφ is satisfi-
able.



If G1 is a minor ofG2, then an instance with primal graph
G1 can be easily simulated by an instance with primal graph
G2: each variable ofG1 is simulated by a connected set of
variables inG2 that are forced to be equal.

Lemma 16. Assume that G1 is a minor of G2. Given a
binary CSP instance I1 with primal graph G1 and a minor
mappingψ from G1 to G2, it is possible to construct in poly-
nomial time an equivalent instance I2 with primal graph G2

and the same domain.

Proof. For simplicity, we assume that bothG1 andG2 are
connected; the proof can be easily extended to the general
case. IfG2 is connected, then we can assume thatψ is
onto. For each constraintci = 〈si ,Ri〉 of I1, we construct
a constraint ofI2 as follows. Letsi = (u,v). Sinceψ is a
minor mapping, there has to be at least one edgee = u′v′

in G2 such thatu′ ∈ ψ(u) andv′ ∈ ψ(v). Select such an
edge and add the constraint〈(u′,v′),Ri〉 to the constructed
instanceI2. Furthermore, for each edgexy of G2, we add a
constraint: ifψ−1(x) = ψ−1(y), then the new constraint is
〈(x,y),{(t,t) | t ∈ D}〉; if ψ−1(x) 6= ψ−1(y), then the new
constraint is〈(x,y),D×D}〉. Clearly, the primal graph ofI2
is G2.

Assume thatI1 has a solutionf1 : V1 → D. Then f2(v) =
f1(ψ−1(v)) is a solution ofI2. On the other hand, ifI2 has
a solution f2 : V2 → D, then we claim thatf2(x) = f2(y)
holds if ψ−1(x) = ψ−1(y). This follows from the way we
defined the constraints ofI2 and from the fact thatψ(x)
is connected. Therefore, we can definef1 : V1 → D as
f1(v) = f2(v′), wherev′ is an arbitrary member ofψ(v).
To see that a constraintci = 〈(u,v),Ri〉 of I1 is satisfied, ob-
serve that there is a constraint〈(u′,v′),Ri〉 in I2 for some
u′ ∈ ψ(u), v′ ∈ ψ(v). This means that( f1(u), f1(v)) =
( f2(u′), f2(v′)) ∈ Ri , hence the constraint is satisfied.

An instance with primal graphG(q) can be simulated by
an instance with primal graphG if we set the domain to be
theq-tuples of the original domain.

Lemma 17. Given a binary CSP instance I1 = (V1,D1,C1)
with primal graph G(q) (where G has no isolated vertices), it
is possible to construct (in time polynomial in the size of the
output) an equivalent instance I2 = (V2,D2,C2) with primal
graph G and|D2| = |D1|q.

Proof. Let ψ be the blow-up mapping fromG to G(q) and
let D2 = Dq

1, i.e., D2 is the set ofq-tuples ofD1. For ev-
eryv∈V2, there is a natural bijection between the elements
of D2 and the|D|q possible assignmentsf : ψ(v) → D.
For each edgev1v2 of G, we add a constraintcv1,v2 =
〈(v1,v2),Rv1,v2〉 to I2 as follows. Let(x1,x2) ∈ D2 × D2.
For i = 1,2, letgi be the assignment ofψ(vi) corresponding
to xi ∈ D2. The two assignment together define an assign-
mentg : ψ(v1)∪ψ(v2) → D on the union of their domains.

We define the relationRv1,v2 such that(x1,x2) is a member
of Rv1,v2 if and only if the corresponding assignmentg is a
solution of the induced instanceI1[ψ(v1)∪ψ(v2)].

Assume thatI1 has a solutionf1 : V1 →D1. For everyv∈
V2, let us definef2(v) to be the member ofD2 corresponding
to the assignmentf1 restricted toψ(v). It is easy to see
that f2 is a solution ofI2: this follows from the trivial fact
that for every edgev1v2 in G, assignmentf1 restricted to
ψ(v1)∪ψ(v2) is a solution ofI1[ψ(v1)∪ψ(v2)].

Assume now thatI2 has a solutionf2 : V2 → D2. For
everyv ∈ V2, there is an assignmentfv : ψ(v) → D1 cor-
responding tof2(v). These assignments together define an
assignmentf1 : V1 → D1. We claim thatf1 is a solution of
I1. Let cu,v = 〈(u,v),R〉 be an arbitrary constraint ofI1. As-
sume thatu∈ ψ(u′) andv∈ ψ(v′). If u′ 6= v′, thenu′v′ is an
edge ofG, hence there is a corresponding constraintcu′,v′

in I2. The waycu′,v′ is defined ensures thatf1 restricted to
ψ(u′)∪ψ(v′) is a solution ofI1[ψ(u′)∪ψ(v′)]. In particu-
lar, this means thatcu,v is satisfied inf1. If u′ = v′, then there
is an edgeu′w in G (sinceG has no isolated vertices), and
the corresponding constraintcu′,w ensures thatf1 satisfies
cu,v.

Now we are ready to prove the main result:

Proof (of Theorem 2).Assume that there is an algorithm
with running time f (G)‖I‖tw(G)/(logtw(G)·ι(tw(G))), whereι
is an unbounded function. We can assume thatι is non-
decreasing. We present a reduction from 3SAT to CSP(G )
such that this reduction, together with the assumed algo-
rithm for CSP(G ), is able to solve 3SAT in subexponential
time. The crucial point of the reduction is how to select an
appropriateG from G . The higher the treewidth ofG, the
more we gain in the running time. However,G has to be
sufficiently small such that some additional factors (such as
the time spent on findingG) are not too large.

SinceG is recursively enumerable and has unbounded
treewidth, there is an algorithm A that, given an integerk,
finds a graphG∈ G with tw(G) ≥ k in time g(k), for some
functiong. Using algorithm A, it is not difficult to construct
an algorithm B that, given an integerm≥ m0 (wherem0 is
a constant), constructs a graphG in time O(m) such that

1. f (G)|E(G)|tw(G)/ι(1) = O(m), where f is the function
in the statement of the theorem,

2. f1(G) ≤ m, wheref1 is the function in Lemma 4.

3. f2(G) = O(m), where f2 is the function in Lemma 4,
and

4. tw(G) = h(m) for some unbounded functionh.

Algorithm B simulates algorithm A fork = 1,2, . . . and af-
ter producing the graph for a givenk, it checks whether it
satisfies requirements 1–3 above. Algorithm B stops after



O(m) steps and outputs the last graph that satisfies the re-
quirements. Any graphG satisfies requirements 1–3 above
if m is sufficiently large. Thus there is no bound on the
treewidth of the graphs produced by Algorithm B, i.e., if
h(m) is defined to be the treewidth of the graph found with
inputm, thenh(m) is unbounded. If the constantm0 is suf-
ficiently large, then algorithmB can find in timeO(m) at
least one graph satisfying the requirements above for any
m≥ m0.

We use the assumed algorithm for CSP(G ) to solvem-
clause 3SAT in time 2o(m). Let φ be a 3SAT formula with
m clauses; by Lemma 15,φ can be turned into a binary
CSP instanceI1 with O(m) constraints and domain size 3.
Let H be the primal graph ofI1. Let us run algorithm B
with inputm to obtain a graphG∈ G and letk := tw(G) =
h(m). For simplicity, we assume thatG has no isolated ver-
tices as they can be handled in a straightforward way. By
Lemma 4,H is a minor ofG(q) for q= O(mlogk/k) and we
can find a minor mappingψ in time f2(G)mO(1) = mO(1)

(since f2(G) = O(m) by Property 2 above). Therefore, by
Lemma 16,I1 can be turned into an instanceI2 with primal
graphG(q), which, by Lemma 17, can be turned into an in-
stanceI3 with primal graphG and domain size 3q. Clearly,
‖I3‖ = O(|E(G)|32q). The assumed algorithm can solveI3
in time

f (G)‖I3‖k/(logk·ι(k))

= f (G)|E(G)|k/(logk·ι(k)) ·32qk/(logk·ι(k))

≤ f (G)|E(G)|k/ι(1) ·3O(m)/ι(k) = O(m)·3O(m)/ι(k) = 2o(m),

contradicting ETH (the last equality follows from the fact
that ι(k) = ι(h(m)) is unbounded asm tends to infinity).

5 Complexity of homomorphism

The aim of this section is to extend Theorem 2 in the
framework of the homomorphism problem for relational
structures, which is the standard way of studying CSP in
the theoretical literature. As we shall see, in this formula-
tion the complexity of the problem depends on the treewidth
of the core of the left-hand side. Furthermore, as in [12], we
state the result only for bounded-arity relational structures.

Let us recall the standard definitions of the homomor-
phism problem (see [7, 12]). Avocabularyτ is a finite
set of relation symbols of specified arities. Thearity of τ
is the maximum of the arities of all relational symbols it
contains. Aτ-structureA consists of a finite setA called
the universe ofA and for each relation symbolR∈ τ, say,
of arity k, a k-ary relationRA ⊆ Ak. We say that a class
C of structures is ofbounded arityif there is a constant
r such that the arity of the vocabulary of every structure

in C is at mostr. A homomorphismfrom a τ-structure
A to a τ-structureB is a mappingh : A → B from the
universe ofA to the universe ofB that preserves all rela-
tions, that is, for allR∈ τ, say, of arityk, and all tuples
(a1, . . . ,ak) ∈ RA it holds that(h(a1), . . . ,h(ak)) ∈ RB. Let
‖A‖ denote the length of the representation ofA. We as-
sume that‖A‖ = O(|τ|+ |A|+ ∑R∈τ |RA| · arity(R)) for a
τ-structureA with universeA.

A substructureof a relational structureA is a relational
structureB over the same vocabularyτ asA whereB ⊆ A
andRB ⊆ RA for all R∈ τ. If B is a substructure ofA, but
A 6= B, thenB is aproper substructureof A.

The notion of treewidth can be defined for relational
structures the following way. Atree decompositionof a τ-
structureA is a pair(T,X), whereT = (I ,F) is a tree, and
X = (Xi)i∈I is a family of subsets of A such that for each
R∈ τ, say, of arityk, and each(a1, . . . ,ak) ∈ RA there is a
nodei ∈ I such that{a1, . . . ,ak} ⊆ Xi , and for eacha ∈ A
the set{i ∈ I | a ∈ Xi} is connected inT. The width of
the decomposition(T,X) is max{|Xi| | i ∈ I}− 1, and the
treewidthof A, denoted by tw(A), is the minimum of the
widths of all tree decompositions ofA.

Theprimal graphof a structureA with vocabularyτ is
a graph with vertex setA where two elementsa′,a′′ ∈ A are
connected if and only if there is a relational symbolR∈ τ,
say, of arityk, such thatR has a tuple(a1, . . . ,ak) ∈ R with
a′,a′′ ∈ {a1, . . . ,ak}. It can be shown that the treewidth of
the primal graph ofA equals the treewidth ofA.

A core of a relational structureA is a substructureA′

of A such that there is a homomorphism fromA to A′, but
there is no homomorphism fromA to a proper substructure
of A′. We say that a relational structureA is a core if it
is its own core. It is well-known that the every relational
structureA has a core and the cores ofA are isomorphic
with each other. Let us denote by ctw(A) the treewidth of
the core ofA.

Given a CSP instanceI = (V,D,C), one can construct
in polynomial time two relational structuresA andB with
universeV andD, respectively, such that the solutions ofI
correspond to the homomorphisms fromA to B. Thus the
homomorphism problem of relational structures generalize
constraint satisfaction. Formally, in the homomorphism
problem the input is a pair(A,B) of relational structures and
the task is to decide whether there is a homomorphism form
A (the left-hand side structure) to B (the right-hand side
structure). If A andB are two classes of relational struc-
tures, then we denote by HOM(A ,B) the restriction of the
homomorphism problem whereA ∈ A andB ∈ B. We de-
note by the symbol− the class of all relational structures.
Thus HOM(A ,−) restricts the structure of the constraints,
while HOM(−,B) restricts the constraint language.

If ctw(A) ≤ k, then the homomorphism problem(A,B)
can be solved in timenO(k) [12, 4] (wheren is the length of



the input, which isO(‖A‖+‖B‖)). The main result of this
section is that there is no classA of structures such that
HOM(A ,−) can be solved significantly faster:

Theorem 18. Let A be a recursively enumerable class of
bounded-arity relational structures such that the treewidth
of the core is unbounded. If HOM(A ,−) can be solved
in time f(A)‖B‖o(ctw(A)/ logctw(A)), where f is an arbitrary
computable function, then ETH fails.

Proof. Let A be a class of relational structures of maxi-
mum arity rmax. Let G be the class of graphs containing
the primal graph of the core of every structureA ∈ A .
Clearly, G has unbounded treewidth and it is not difficult
to show thatG is recursively enumerable. We use the as-
sumed algorithm for HOM(A ,−) to construct an algorithm
for CSP(G ) that contradicts Theorem 2.

SinceA is recursively enumerable, there is an algorithm
that, given aG∈ G , outputs a structureAG ∈A such thatG
is the primal graph of the core ofAG. Let g(G) be the run-
ning time of this algorithm with inputG; clearly,‖AG‖ ≤
g(G). Let I = (V,D,C) be an instance of binary CSP with
primal graphG∈ G . LetAG ∈A be a structure whose core
A0 has primal graphG. (From now on, we useV both for
the set of variables of instanceI and for the universeA0.)
Let τ be the vocabulary ofAG. We construct aτ-structureB
as follows. The universeB of B isV×D. LetR∈ τ be a rela-
tion symbol and letRA0 be the corresponding relation inA0.
To construct the relationRB, let us enumerate ther-tuples
of RA0, and for each(v1, . . . ,vr) ∈ RA0 ⊆Vr , let us enumer-
ate the solutions ofI [(v1, . . . ,vr)]. If (v1, . . . ,vr) ∈ RA0 and
f is a solution ofI [(v1, . . . ,vr)], then let us add ther-tuple
((v1, f (v1)), . . . ,(vr , f (vr)) to RB. This completes the de-
scription of the relationRB and the structureB. Observe
that the size ofRB is at mostDrmax times the size ofRA0.
Therefore, the size ofB is (‖A0‖|D|)O(rmax) and can be con-
structed in time polynomial in its size.

We show thatA0 → B if and only if I has a solution.
Since A0 is the core ofAG, it follows that AG → B if
and only ifA0 → B. Therefore, the assumed algorithm for
HOM(A ,−) can decide the solvability ofI in time

g(G)+ f (AG)‖B‖o(ctw(AG)/ logctw(AG))

= g(G)+ f (AG)‖A0‖o(tw(G)/ logtw(G)) · |D|o(tw(G)/ logtw(G))

≤ f ′(G)‖I‖o(tw(G)/ logtw(G)),

for an appropriate functionf ′(G) (the last step follows from
the fact thatf (AG) and‖A0‖ are functions ofG, and that
|D| ≤ ‖I‖). By Theorem 2, this implies that ETH fails.

Assume first thatI has a solutionf : V → D. We
claim thatφ(v) = (v, f (v)) is a homomorphism fromA0

to B. Indeed, if (v1, . . . ,vr) ∈ RA0, then f restricted to
{v1, . . . ,vr} is obviously a solution ofI [{v1, . . . ,vr}], hence
((v1, f (v1)), . . . ,(vr , f (vr))) ∈ RB by the definition ofRB.

Assume now thatφ is a homomorphism fromA0 to B.
Let ψ be the projectionψ(v,d) = v from V ×D to V. Ob-
serve thatψ is a homomorphism fromB to A0. Therefore,
ψ ◦ φ is a homomorphism fromA0 to itself. SinceA0 is
core,ψ ◦ φ is an isomorphism ofA0. Thus we can assume
thatψ ◦φ is identity: otherwise let us replaceφ with φ ◦(ψ ◦
φ)−1. If ψ ◦ φ is the identity, then for everyv∈V, φ(v) =
(v, f (v)) for some f (v) ∈ D. We claim that this function
f : V → D is a solution ofI . Let ci = 〈(u,v),Ri〉 be an arbi-
trary constraint ofI . Sinceuv is an edge of the primal graph
G, there is anR∈ τ such thatRA0 has a tuple(v1, . . . ,vr)
containing bothu and v. Therefore,(φ(v1), . . . ,φ(vr)) =
((v1, f (v1)), . . . ,(vr , f (vr))) ∈ RB. By the definition ofRB,
this means thatf restricted to{v1, . . . ,vr} is a solution of
I [{v1, . . . ,vr}]. In particular, this means thatf satisfies
ci .
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