
A

Tractable hypergraph properties for constraint satisfaction and
conjunctive queries1

Dániel Marx, Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA

SZTAKI), Budapest, Hungary, dmarx@cs.bme.hu. 2

An important question in the study of constraint satisfaction problems (CSP) is understanding how the

graph or hypergraph describing the incidence structure of the constraints influences the complexity of the
problem. For binary CSP instances (i.e., where each constraint involves only two variables), the situation

is well understood: the complexity of the problem essentially depends on the treewidth of the graph of the

constraints [Grohe 2007; Marx 2010b]. However, this is not the correct answer if constraints with unbounded
number of variables are allowed, and in particular, for CSP instances arising from query evaluation problems

in database theory. Formally, if H is a class of hypergraphs, then let CSP(H) be CSP restricted to instances

whose hypergraph is in H. Our goal is to characterize those classes of hypergraphs for which CSP(H) is
polynomial-time solvable or fixed-parameter tractable, parameterized by the number of variables. Note that

in the applications related to database query evaluation, we usually assume that the number of variables is
much smaller than the size of the instance, thus parameterization by the number of variables is a meaningful

question.

The most general known property of H that makes CSP(H) polynomial-time solvable is bounded frac-
tional hypertree width. Here we introduce a new hypergraph measure called submodular width, and show

that bounded submodular width of H (which is a strictly more general property than bounded fractional

hypertree width) implies that CSP(H) is fixed-parameter tractable. In a matching hardness result, we show
that if H has unbounded submodular width, then CSP(H) is not fixed-parameter tractable (and hence not

polynomial-time solvable), unless the Exponential Time Hypothesis (ETH) fails. The algorithmic result uses

tree decompositions in a novel way: instead of using a single decomposition depending on the hypergraph,
the instance is split into a set of instances (all on the same set of variables as the original instance), and then

the new instances are solved by choosing a different tree decomposition for each of them. The reason why

this strategy works is that the splitting can be done in such a way that the new instances are “uniform” with
respect to the number extensions of partial solutions, and therefore the number of partial solutions can be

described by a submodular function. For the hardness result, we prove via a series of combinatorial results
that if a hypergraph H has large submodular width, then a 3SAT instance can be efficiently simulated by a

CSP instance whose hypergraph is H. To prove these combinatorial results, we need to develop a theory of

(multicommodity) flows on hypergraphs and vertex separators in the case when the function b(S) defining
the cost of separator S is submodular, which can be of independent interest.

Categories and Subject Descriptors: F.2 [Theory of Computing]: Analysis of Algorithms and Problem

Complexity; G.2.2 [Mathematics of Computing]: Discrete Mathematics—Graph Theory

General Terms: Algorithms

Additional Key Words and Phrases: constraint satisfaction, hypergraphs, hypertree width, fractional edge

covers

1. INTRODUCTION

There is a long line of research devoted to identifying hypergraph properties that make
the evaluation of conjunctive queries tractable (see e.g. [Gottlob et al. 2002a; Scarcello
et al. 2008; Grohe 2006; 2007]). Our main contribution is giving a complete theoretical
answer to this question: in a very precise technical sense, we characterize those hypergraph
properties that imply tractability for the evaluation of a query. Efficient evaluation of queries
is originally a question of database theory; however, it has been noted that the problem can
be treated as a constraint satisfaction problem (CSP) and this connection led to a fruitful

1An extended abstract of the paper was presented at the 42nd ACM Symposium on Theory of Computing
(STOC 2010) [Marx 2010c].
2Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized
complexity and the search for tight complexity results,” reference 280152.

A:2 D. Marx

interaction between the two communities [Kolaitis and Vardi 2000a; Gottlob and Szeider
2008; Scarcello et al. 2008]. Most of the literature relevant to the current paper use the
language of constraint satisfaction. Therefore, after a brief explanation of the database-
theoretic motivation, we switch to the language of CSPs.

Conjunctive queries. Evaluation of conjunctive queries (or equivalently, Select-Project-
Join queries) is one of the most basic and most studied tasks in relational databases.
A relational database consists of a fixed set of relations. A conjunctive query defines a
new relation that can be obtained as first taking the join of some relations and then
projecting it to a subset of the variables. As an example, consider a relational database
that contains three relations: enrolled(Person,Course,Date), teaches(Person,Course,Year),
parent(Person1,Person2). The following query Q defines a unary relation ans(P) with the
meaning that “P is enrolled in a course taught by her parent.”

Q : ans(P)← enrolled(P,C,D) ∧ teaches(P2, C, Y) ∧ parent(P2, P).

In the Boolean Conjunctive Query problem, the task is only to decide if the answer relation
is empty or not, that is, if the join of the relations is empty or not. This is usually denoted
as the relation “ans” not having any variables. Boolean Conjunctive Query contains most
of the combinatorial difficulty of the general problem without complications such that the
size of the output being exponentially large. Therefore, the current paper focuses on this
decision problem.

In a natural way, we can define the hypergraph of a query: its vertices are the variables
appearing in the query and for each relation there is a corresponding hyperedge containing
the variables appearing in the relation. Intuitively, if the hypergraph has “simple structure,”
then the query is easy to solve. For example, compare the following two queries:

Q1 : ans← R1(A,B,C) ∧R2(C,D) ∧R3(D,E, F) ∧R4(E,F,G,H) ∧R5(H, I)

Q2 : ans← R1(A,B) ∧R2(A,C) ∧R3(A,D) ∧R4(B,C) ∧R5(B,D) ∧R6(C,D)

Even though more variables appear in Q1, evaluating it seems to be easier: its hypergraph
is “path like,” thus the query can be answered efficiently by, say, dynamic programming
techniques. On the other hand, the hypergraph of Q2 is a clique on 4 vertices and no
significant shortcut is apparent compared to trying all possible combinations of values for
(A,B,C,D).

What are those hypergraph properties that make Boolean Conjunctive Query tractable?
In the early 80s, it has been noted that acyclicity is one such property [Beeri et al. 1983;
Fagin 1983; Yannakakis 1981; Beeri et al. 1981]. Later, more general such properties were
identified in the literature: for example, bounded query width [Chekuri and Rajaraman
2000], bounded hypertree width [Gottlob et al. 2002a], and bounded fractional hypertree
width [Marx 2010a; Grohe and Marx 2012]. Our goal is to find the most general hypergraph
property that guarantees an efficient solution for query evaluation.

Constraint satisfaction. Constraint satisfaction is a general framework that includes
many standard algorithmic problems such as satisfiability, graph coloring, database queries,
etc. [Grohe 2006; Feder and Vardi 1999]. A constraint satisfaction problem (CSP) consists
of a set V of variables, a domain D, and a set C of constraints, where each constraint is a
relation on a subset of the variables. The task is to assign a value from D to each variable
in such a way that every constraint is satisfied (see Definition 2.1 in Section 2 for the formal
definition). For example, 3SAT can be interpreted as a CSP problem where the domain
is D = {0, 1} and the constraints in C correspond to the clauses (thus the arity of each
constraint is 3). As another example, let us observe that the k-Clique problem (Is there a k-
clique in a given graph G?) can be easily expressed as a CSP instance the following way. Let

D be the set of vertices of G, let V contain k variables, and let C contain
(
k
2

)
constraints,

one constraint on each pair of variables. The binary relation of these constraints require

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:3

that the two vertices are distinct and adjacent. Therefore, the CSP instance has a solution
if and only if G has a k-clique.

It is easy to see that Boolean Conjunctive Query can be formulated as the problem of
deciding if a CSP instance has a solution: the variables of the CSP instance correspond to the
variables appearing in the query and the constraints correspond to the database relations.
A distinctive feature of CSP instances obtained this way is that the number of variables is
small (as queries are typically small), while the domain of the variables are large (as the
database relations usually contain a large number of entries). This has to be contrasted with
typical CSP problems from AI, such as 3-colorability and satisfiability, where the domain is
small, but the number of variables is large. As our motivation is database-theoretic, in the
rest of the paper the reader should keep in mind that we are envisioning scenarios where
the number of variables is small and the domain is large.

As the examples above show, solving constraint satisfaction problems is NP-hard in gen-
eral if there are no additional restrictions on the input instances. The main goal of the
research on CSP is to identify tractable special cases of the general problem. The theoreti-
cal literature on CSP investigates two main types of restrictions. The first type is to restrict
the constraint language, that is, the type of constraints that are allowed. This direction
includes the classical work of Schaefer [1978] and its many generalizations [Bulatov 2006;
2003; Bulatov et al. 2001; Feder and Vardi 1999; Jeavons et al. 1997]. The second type is
to restrict the structure induced by the constraints on the variables. The hypergraph of a
CSP instance is defined to be a hypergraph on the variables of the instance such that for
each constraint c ∈ C there is a hyperedge ec containing exactly the variables that appear
in c. If the hypergraph of the CSP instance has very simple structure, then the instance is
easy to solve. For example, it is well-known that a CSP instance I with hypergraph H can
be solved in time ‖I‖O(tw(H)) [Freuder 1990], where tw(H) denotes the treewidth of H and
‖I‖ is the size of the representation of I in the input.

Our goal is to characterize the “easy” and “hard” hypergraphs from the viewpoint of con-
straint satisfaction. However, formally speaking, CSP is polynomial-time solvable for every
fixed hypergraph H: since H has a constant number k of vertices, every CSP instance with
hypergraph H can be solved by trying all ‖I‖k possible combinations on the k variables. It
makes more sense to characterize those classes of hypergraphs where CSP is easy. Formally,
for a class H of hypergraphs, let CSP(H) be the restriction of CSP where the hypergraph
of the instance is assumed to be in H. For example, as discussed above, we know that if
H is a class of hypergraphs with bounded treewidth (i.e., there is a constant w such that
tw(H) ≤ w for every H ∈ H), then CSP(H) is polynomial-time solvable.

For the characterization of the complexity of CSP(H), we can investigate two notions
of tractability. CSP(H) is polynomial-time solvable if there is an algorithm solving every
instance of CSP(H) in time (‖I‖)O(1), where ‖I‖ is the length of the representation of I in
the input. The following notion interprets tractability in a less restrictive way: CSP(H) is
fixed-parameter tractable (FPT) if there is an algorithm solving every instance I of CSP(H)
in time f(H)(‖I‖)O(1), where f is an arbitrary computable function of the hypergraph H
of the instance. Equivalently, the factor f(H) in the definition can be replaced by a factor
f(k) depending only on the number k of vertices of H: as the number of hypergraphs on k
vertices (without parallel edges) is bounded by a function of k, the two definitions result in
the same notion. The motivation behind this definition is that if the number of variables is
assumed to be much smaller than the the domain size, then we can afford even exponential
dependence on the number of variables, as long as the dependence on the size of the instance
is polynomial. For a more background on fixed-parameter tractability, the reader is referred
to the parameterized complexity literature [Downey and Fellows 1999; Flum and Grohe
2006; Niedermeier 2006].

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 D. Marx

The case of bounded arities. If the constraints have bounded arity (i.e., the edge size
in H is bounded by a constant r), then the complexity of CSP(H) is well understood. In
this case, bounded treewidth is the only polynomial-time solvable case:

Theorem 1.1 (Grohe [2007]). If H is a recursively enumerable class of hypergraphs
with bounded edge size, then (assuming FPT 6= W[1]) the following are equivalent:

(1) CSP(H) is polynomial-time solvable.
(2) CSP(H) is fixed-parameter tractable.
(3) H has bounded treewidth.

The assumption FPT 6= W[1] is a standard hypothesis of parameterized complexity. Thus
in the bounded arity case bounded treewidth is the only property of the hypergraph that
can make the problem polynomial-time solvable. By definition, polynomial-time solvabil-
ity implies fixed-parameter tractability, but Theorem 1.1 proves the surprising result that
whenever CSP(H) is fixed-parameter tractable, it is polynomial-time solvable as well.

The following sharpening of Theorem 1.1 shows that there is no algorithm whose running
time is significantly better than the ‖I‖O(tw(H)) bound of the treewidth based algorithm,
and this is true if we restrict the problem to any class H of hypergraphs. The result is proved
under the Exponential Time Hypothesis (ETH) [Impagliazzo et al. 2001] stating that there
is no 2o(n) time algorithm for n-variable 3SAT, which is a somewhat stronger assumption
than FPT 6= W[1].

Theorem 1.2 (Marx [2010b]). If there is a compuable function f and a recursively
enumerable class H of hypergraphs with bounded edge size and unbounded treewidth such
that the problem CSP(H) can be solved in time f(H)‖I‖o(tw(H)/ log tw(H)) for instances I
with hypergraph H ∈ H, then ETH fails.

This means that the treewidth-based algorithm is almost optimal on every class of hyper-
graphs: in the exponent only an O(log tw(H)) factor improvement is possible. It is conjec-
tured in [Marx 2010b] that Theorem 1.2 can be made tight, i.e., the lower bound holds even
if the logarithmic factor is removed from the exponent.

Conjecture 1.3 (Marx [2010b]). If H is a class of hypergraphs with bounded edge
size, then there is no algorithm that solves CSP(H) in time f(H)‖I‖o(tw(H)) for instances
I with hypergraph H ∈ H, where f is an arbitrary function.

Unbounded arities. The situation is less understood in the unbounded arity case, i.e.,
when there is no bound on the maximum edge size in H. First, the complexity in the
unbounded-arity case depends on how the constraints are represented. In the bounded-arity
case, if each constraint contains at most r variables (r being a fixed constant), then every
reasonable representation of a constraint has size |D|O(r). Therefore, the size of the different
representations can differ only by a polynomial factor. On the other hand, if there is no
bound on the arity, then there can be exponential difference between the size of succinct
representations (e.g., formulas [Chen and Grohe 2010]) and verbose representations (e.g.,
truth tables [Marx 2011]). The running time of an algorithm is expressed as a function
of the input size, hence the complexity of the problem can depend on how the input is
represented: longer representation means that it is potentially easier to obtain a polynomial-
time algorithm.

The most well-studied representation of constraints is listing all the tuples that satisfy
the constraint. This representation is perfectly compatible with our database-theoretic mo-
tivation: the constraints are relations of the database, and a relation is physically stored as
a table containing all the tuples in the relation. For this representation, there are classes H
with unbounded treewidth such that CSP restricted to this class is polynomial-time solv-
able. A trivial example is the class H of all hypergraphs having only a single hyperedge of

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:5

arbitrary size. The treewidth of such hypergraphs can be arbitrarily large (as the treewidth
of a hypergraph consisting of a single edge e is exactly |e| − 1), but CSP(H) is trivial to
solve: we can pick any tuple from the constraint corresponding to the single edge. There are
other, nontrivial, classes of hypergraphs with unbounded treewidth such that CSP(H) is
solvable in polynomial time: for example, classes with bounded (generalized) hypertree width
[Gottlob et al. 2002b], bounded fractional edge cover number [Grohe and Marx 2012], and
bounded fractional hypertree width [Grohe and Marx 2012; Marx 2010a]. Thus, unlike in the
bounded-arity case, treewidth is not the right measure for characterizing the complexity of
the problem.

Our results. We introduce a new hypergraph width measure that we call submodular
width. Small submodular width means that for every monotone submodular function b on
the vertices of the hypergraph H, there is a tree decomposition where b(B) is small for
every bag B of the decomposition. (This definition makes sense only if we normalize the
considered functions: for this reason, we require that b(e) ≤ 1 for every edge e of H.) The
main result of the paper is showing that bounded submodular width is the property that
precisely characterizes the complexity of CSP(H):

Theorem 1.4 (Main). Let H be a recursively enumerable class of hypergraphs. As-
suming the Exponential Time Hypothesis, CSP(H) parameterized by H is fixed-parameter
tractable if and only if H has bounded submodular width.

Theorem 1.4 has an algorithmic side (algorithm for bounded submodular width) and a
complexity side (hardness result for unbounded submodular width). Unlike previous width
measures in the literature, where small value of the measure suggests a way of solving
CSP(H) it is not at all clear how bounded submodular width is of any help. In particular,
it is not obvious what submodular functions have to do with CSP instances. The main idea
of our algorithm is that a CSP instance can be “split” into a small number of “uniform”
CSP instances; for this purpose, we use a partitioning procedure inspired by a result of Alon
et al. [2007]. More precisely, splitting means that we partition the set of tuples appearing in
the constraint relations in a certain way and each new instance inherits only one class of the
partition (thus each new instance has the same set of variables as the original). Uniformity
means that for any subset B ⊆ A of variables, every solution for the problem restricted to
B has roughly the same number of extensions to A. The property of uniformity allows us to
bound the logarithm of the number of solutions on the different subsets by a submodular
function. Therefore, bounded submodular width guarantees that each uniform instance has
a tree decomposition where only a polynomially bounded number of solutions has to be
considered in each bag.

Conceptually, our algorithm goes beyond previous decomposition techniques in two ways.
First, the tree decomposition that we use depends not only on the hypergraph, but on the
actual constraint relations in the instance (we remark that this idea first appeared in [Marx
2011] in a different context that does not directly apply to our problem). Second, we are
not only decomposing the set of variables, but we also split the constraint relations. This
way, we can apply different decompositions to different parts of the solution space.

The proof of the complexity side of Theorem 1.4 follows the same high-level strategy as
the proof of Theorem 1.2 in [Marx 2010b]. In a nutshell, the argument of [Marx 2010b] is
the following: if treewidth is large, then there is subset of vertices which is highly connected
in the sense that the set does not have a small balanced separator; such a highly connected
set implies that there is uniform concurrent flow (i.e., a compatible set of flows connecting
every pair of vertices in the set); the paths in the flows can be used to embed the graph of a
3SAT formula; and finally this embedding can be used to reduce 3SAT to CSP. These
arguments build heavily on well-known characterizations of treewidth and results from
combinatorial optimization (such as the O(log k) integrality gap of sparsest cut). The proof
of Theorem 1.4 follows this outline, but now no such well-known tools are available: we are

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 D. Marx

CSP instances
Submodular functions

on hypergraphs

Highly connected sets
in hypergraphs

Embedding graphs
into hypergraphs

Section 4:
Algorithm for bounded sub-
modular width by partitioning
into uniform instances

Section 5:
Large submodular width im-
plies highly connected sets

Section 6:
Highly connected sets allow
efficient embedding

Section 7:
Using embedding results to
prove hardness results

Fig. 1. Connections between different domains.

dealing with hypergraphs and submodular functions in a way that was not explored before
in the literature. Thus we have to build from scratch all the necessary tools. One of the main
difficulties of obtaining Theorem 1.4 is that we have to work in three different domains:

— CSP instances. As our goal is to investigate the existence of algorithms solving CSP,
the most obvious domain is CSP instances. In light of previous results, we are especially
interested in algorithms based on tree decompositions. For such algorithms, what matters is
the existence of subsets of vertices such that restricting the instance to any of these subsets
gives an instance with “small” number of solutions. In order to solve the instance, we would
like to find a tree decomposition where every bag is such a small set.

— Submodular functions. Submodular width is defined in terms of submodular func-
tions, thus submodular functions defined on hypergraphs is our second natural domain. We
need to understand what large submodular width means, that is, what property of the sub-
modular function and the hypergraph makes it impossible to obtain a tree decomposition
where every bag has small value.

— Flows and embeddings in hypergraphs. In the hardness proof, our goal is to
embed the graph of a 3SAT formula into a hypergraph. Thus we need to define an appro-
priate notion of embedding and study what guarantees the existence of embeddings with
suitable properties. As in [Marx 2010b], we use the paths appearing in flows to construct
embeddings. For our purposes, the right notion of flow is a collection of weighted paths
where the total weight of the paths intersecting each hyperedge is at most 1. This notion
of flows has not been studied in the literature before, thus we need to obtain basic results
on such flows, such as exploring the duality between flows and separators.

A key question is how to find connections between these domains. As mentioned above
and detailed in Section 4, we have a procedure that reduces a CSP instance into a set of
uniform CSP instances, and the number of solutions on the different subsets of variables in
a uniform CSP instance can be described by a submodular function. This method allows
us to move from the domain of CSP instances to the domain of submodular functions.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:7

Section 5 is devoted to showing that if submodular width of a hypergraph is large, then
there is a certain “highly connected” set in the hypergraph. Highly connected set is defined
as a property of the hypergraph (it requires the existence of certain flows) and has no longer
anything to do with submodular functions. Thus this connection allows us to move from
the domain of submodular functions to the study of hypergraphs. In Section 6, we show
that a highly connected set in a hypergraph means that graphs can be efficiently embedded
into the hypergraph. In particular, the graph of a 3SAT formula can be embedded into the
hypergraph, which gives us (as shown in Section 7) a reduction from 3SAT to CSP(H). This
connection allows us to move from the domain of embeddings back to the domain of CSP
instances. We remark that Sections 4–7 are written in a self-contained way: only the first
theorem of each section is used outside the section.

A consequence of our characterization of submodular width implies the surprising fact
that bounded submodular width equals bounded adaptive width (defined in [Marx 2011]):

Theorem 1.5. A class of hypergraphs has bounded submodular width if and only if it
has bounded adaptive width.

It is proved in [Marx 2011] that there are classes of hypergraphs having bounded adaptive
width (and hence bounded submodular width), but unbounded fractional hypertree width.
Previously, bounded fractional hypertree width was the most general property that was
known to guarantee fixed-parameter tractability [Grohe and Marx 2012]. Thus Theorem 1.4
not only gives a complete characterization of the parameterized complexity of CSP(H), but
its algorithmic side proves fixed-parameter tractability in a strictly more general case than
what was known before.

Why fixed-parameter tractability? We argue that investigating the fixed-parameter
tractability of CSP(H) is at least as interesting as investigating polynomial-time solvability.
In problems coming from our database-theoretic motivation, the size of the hypergraph
(that is, the size of the query) is assumed to be much smaller than the input size (which is
usually dominated by the size of the database), hence a constant factor in the running time
depending only on the number of variables (or on the hypergraph) is acceptable3. Even the
STOC 1977 landmark paper of Chandra and Merlin [1977], which started the complexity
research on conjunctive queries, suggests spending exponential time (in the size of the query)
on finding the best possible evaluation order. Furthermore, the notion of fixed-parameter
tractability formalizes the usual viewpoint of the literature on conjunctive queries: in the
complexity analysis, we should analyze separately the contribution of the query size and
the contribution of the database size.

By aiming for fixed-parameter tractability, we can focus more on the core algorithmic
question: is there some method for decomposing the space of all solutions in a way that
allows efficient evaluation of the query? Some of the progress in this area was made by in-
troducing new decomposition techniques, without showing how to actually find such decom-
positions. For example, this was the case for the papers introducing query width [Chekuri
and Rajaraman 2000] and fractional hypertree width [Grohe and Marx 2012]: it was shown
that if a certain type of decomposition is given, then the problem can be solved in polyno-
mial time. In our terminology, these results already show the fixed-parameter tractability of
CSP(H) for the classes H where such decompositions exist (since the time required to find
an appropriate decomposition can be bounded by a function of the hypergraph H only),
but do not give polynomial-time algorithms. It took some more time and effort to come
up with polynomial-time (approximation) algorithms for finding such decompositions [Got-
tlob et al. 2002a; Marx 2010a]. While investigating algorithms for finding decompositions

3This assumption is valid only for evaluation problems (where the problem instance includes a large
database) and not for problems that involves only queries, such as the Conjunctive Query Containment
problem.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 D. Marx

give rise to interesting and important problems, they are purely combinatorial problems
on graphs and hypergraphs, and no longer has anything to do with query evaluation, con-
straints, or databases. Thus fixed-parameter tractability gives us a formal way of ignoring
these issues and focusing exclusively on the evaluation problem.

On the complexity side, fixed-parameter tractability of CSP(H) seems to be a more robust
question than polynomial-time solvability. For example, any polynomial-time reduction to
CSP(H) should be able to pick a member ofH, thus it seems that polynomial-time reduction
to CSP(H) is only possible if certain artificial technical conditions are imposed onH (such as
there is an algorithm efficiently generating appropriate members of H). Furthermore, there
are classesH for which CSP(H) is polynomial-time equivalent to Log Clique [Grohe 2007],
thus we cannot hope to classify CSP(H) into polynomial-time solvable and NP-hard cases.
Another difficulty in understanding polynomial-time solvability is that it can depend on the
“irrelevant” parts of the hypergraph. Suppose for example that there is class H for which
CSP(H) is not polynomial-time solvable, but it is fixed-parameter tractable: it can be solved
in time f(H) · (‖I‖)O(1). Let H′ be constructed the following way: for every H ∈ H, class
H′ contains a hypergraph H ′ that is obtained from H by adding a new component that is
a path of length f(H). This new path is trivial with respect to the CSP problem, thus any
algorithm for CSP(H) can be used for CSP(H′) as well. Consider an instance I of CSP(H′)
having hypergraph H ′, which was obtained from hypergraph H. After taking care of the
path, the assumed algorithm for CSP(H) can solve this instance in time f(H) · (‖I‖)O(1),
which is polynomial in ‖I‖: instance I contains a representation of H ′, which has at least
f(H) vertices, thus ‖I‖ is at least f(H). Therefore, CSP(H′) is polynomial-time solvable.
This example shows that aiming for polynomial-time solvability instead of fixed-parameter
tractability might require understanding such subtle, but mostly irrelevant phenomena.

In the hardness results obtained so far, evidence for the non-existence of polynomial-time
algorithms is given not in the form of NP-hardness, but by giving evidence that the problem
is not even fixed-parameter tractable. In Theorem 1.1, it is a remarkable coincidence that
polynomial-time solvability and fixed-parameter tractability are equivalent. However, there
is no reason to expect this to remain true in more general cases. Therefore, as discussed
above, it makes sense to focus first on understanding the fixed-parameter tractability of the
problem.

Organization. For convenience, Section 2 collects many of the definitions appearing in
the paper. The reader might want to skim through this at first and refer to appropriate
parts of it later. Submodular width and other width measures are defined in Section 3.
Section 4 contains the algorithmic part of the paper: the algorithm for classes with bounded
submodular width. Section 5 characterizes large submodular width with highly connected
sets, while Section 6 uses highly connected sets to find good embeddings in hypergraph.
The main hardness result of the paper is proved in Section 7.

2. PRELIMINARIES

Constraint satisfaction problems. We briefly recall the most important notions related
to CSP. For more background, see e.g., [Grohe 2006; Feder and Vardi 1999].

Definition 2.1. An instance of a constraint satisfaction problem is a triple (V,D,C),
where:

— V is a set of variables,
— D is a domain of values,
— C is a set of constraints, {c1, c2, . . . , cq}. Each constraint ci ∈ C is a pair 〈si, Ri〉,

where:
— si is a tuple of variables of length mi, called the constraint scope, and
—Ri is an mi-ary relation over D, called the constraint relation.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:9

For each constraint 〈si, Ri〉 the tuples of Ri indicate the allowed combinations of simulta-
neous values for the variables in si. The length mi of the tuple si is called the arity of the
constraint. A solution to a constraint satisfaction problem instance is a function f from
the set of variables V to the domain of values D such that for each constraint 〈si, Ri〉 with
si = 〈vi1 , vi2 , . . . , vim〉, the tuple 〈f(vi1), f(vi2), . . . , f(vim)〉 is a member of Ri. We say that
an instance is binary if each constraint relation is binary, i.e., mi = 2 for each constraint. 4

It can be assumed that the instance does not contain two constraints 〈si, Ri〉, 〈sj , Rj〉 with
si = sj , since in this case the two constraints can be replaced by the constraint 〈si, Ri∩Rj〉.

In the input, the relation appearing in a constraint is represented by listing all the tuples of
the constraint. We denote by ‖I‖ the size of the representation of the instance I = (V,D,C).
It can be assumed that |D| ≤ ‖I‖: elements of D that do not appear in any relation can be
safely removed.

Let I = (V,D,C) be a CSP instance and let V ′ ⊆ V be a nonempty subset of variables. If
f is a solution of I, then prV ′ f is the projection of f to V ′, which is simply the restriction
of the function f : V → D to V ′ ⊆ V . If R is a set of solutions for I, then we let
prV ′ R = {prV ′ f | f ∈ R}.

The projection prV ′ I of I to V ′ is a CSP I ′ = (V ′, D,C ′), where C ′ is defined the
following way: For each constraint c = 〈(v1, . . . , vk), R〉 having at least one variable in V ′,
there is a corresponding constraint c′ in C ′. Suppose that vi1 , . . . , vi` are the variables among
v1, . . . , vk that are in V ′. Then the constraint c′ is defined as 〈(vi1 , . . . , vi`), R′〉, where the
relation R′ is the projection of R to the coordinates i1, . . . , i`, that is, R′ contains an `-
tuple (d′1, . . . , d

′
`) ∈ D` if and only if there is a k-tuple (d1, . . . , dk) ∈ R such that d′j = dij

for 1 ≤ j ≤ `. Clearly, if f is a solution of I, then prV ′ f is a solution of prV ′ I (but the
converse is not true). For a subset V ′ ⊆ V , we denote by solI(V

′) the set of all solutions of
prV ′ I (which can contain a solution which is not the projection of any solution of I). If the
instance I is clear from the context, we drop the subscript.

The primal graph (or Gaifman graph) of a CSP instance I = (V,D,C) is a graph with
vertex set V such that u, v ∈ V are adjacent if and only if there is a constraint whose scope
contains both u and v. The hypergraph of a CSP instance I = (V,D,C) is a hypergraph
H with vertex set V , where e ⊆ V is an edge of H if and only if there is a constraint
whose scope is e (more precisely, where the scope is an |e|-tuple s, whose coordinates form
a permutation of the elements of e). For a class H of graphs, we denote by CSP(H) the
problem restricted to instances whose hypergraph is in H.

Graphs and hypergraphs. If G is a graph or hypergraph, then we denote by V (G)
and E(G) the set of vertices and the set of edges of G, respectively. Vertices u, v ∈ V (G)
are adjacent if there is an edge e ∈ E(G) with u, v ∈ e. A set K ⊆ V (G) is a clique if
the vertices in K are pairwise adjacent. If H is a hypergraph and V ′ ⊆ V (H), then the
subhypergraph induced by V ′ is a hypergraph H ′ with vertex set S and ∅ ⊂ e′ ⊆ V ′ is an
edge of H ′ if and only if there is an edge e ∈ E(H) with e ∩ V ′ = e′. We denote by H \ S
the subhypergraph of H induced by V (H) \ S.

Paths, separators, and flows in hypergraphs. A path P in hypergraph H is an
ordered sequence v0, v1, . . . , vr of distinct vertices such that vi and vi−1 are adjacent for
every 1 ≤ i < r. We distinguish the endpoints of a path: vertex v0 is the first endpoint of P
and vr is the second endpoint of P . For a path of length zero, the first and second endpoints
coincide. A path is an X − Y path if its first endpoint is in X and its second endpoint is
in Y . A path P = v1v2 . . . vt is minimal if there are no shortcuts, i.e., vi and vj are not
adjacent if |i− j| > 1. Note that a minimal path intersects each edge at most twice.

Let H be a hypergraph and X,Y ⊆ V (H) be two (not necessarily disjoint) sets of vertices.
An (X,Y)-separator is a set S ⊆ V (H) of vertices such that there is no (X \ S)− (Y \ S)

4It is unfortunate that while some communities use the term “binary CSP” in the sense that each constraint
is binary (as does this paper), others use it in the sense that the variables are 0-1, i.e, the domain size is 2.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 D. Marx

path in H \ S, or in other words, every X − Y path of H contains at least one vertex of S.
In particular, this means that X ∩ Y ⊆ S.

An assignment s : E(H)→ R+ is a fractional (X,Y)-separator if every X − Y path P is
covered by s, that is,

∑
e∈E(H),e∩P 6=∅ s(e) ≥ 1. The weight of the fractional separator s is∑

e∈E(H) s(e).

Let H be a hypergraph and let P be the set of all paths in H. A flow of H is an assignment
f : P → R+ such that

∑
P∈P,P∩e 6=∅ f(P) ≤ 1 for every e ∈ E(H). The value of the flow

f is
∑
P∈P f(P). We say that a path P appears in flow f , or simply P is a path of f

if f(P) > 0. For some X,Y ⊆ V (H), an (X,Y)-flow is a flow f such that only X − Y
paths appear in f . A standard LP duality argument shows that the minimum weight of a
fractional (X,Y)-separator is equal to the maximum value of an (X,Y)-flow.

If f, f ′ are flows such that f ′(P) ≤ f(P) for every path P , then f ′ is a subflow of f . The
sum of the flows f1, . . . , fr is a mapping that assigns weight

∑r
i=1 fi(P) to each path P .

Note that the sum of flows is not necessarily a flow itself as the total weight of the paths
intersecting a certain edge can be more than 1 in the sum. If the sum of f1, . . . , fr happens
to be a flow, then we say that f1, . . . , fr are compatible.

Highly connected sets. An important step in understanding various width measures
is showing that if the measure is large, then the (hyper)graph contains a highly connected
set (in a certain sense). We define here the notion of highly connectedness that will be used
in the paper. First, recall that a fractional independent set of a hypergraph H is a mapping
µ : V (H)→ [0, 1] such that

∑
v∈e µ(v) ≤ 1 for every e ∈ E(H). We extend functions on the

vertices of H to subsets of vertices of H the natural way by setting µ(X) :=
∑
v∈X µ(v),

thus we can equivalently say that µ : V (H) → [0, 1] is a fractional independent set if and
only if µ(e) ≤ 1 for every e ∈ E(H).

Let µ be a fractional independent set of hypergraph H and let λ > 0 be a constant. We
say that a set W ⊆ V (H) is (µ, λ)-connected if for any two disjoint sets A,B ⊆ W , the
minimum weight of a fractional (A,B)-separator is at least λ ·min{µ(A), µ(B)}. Note that
if W is (µ, λ)-connected, then W is (µ, λ′)-connected for every λ′ < λ and every W ′ ⊆ W
is also (µ, λ)-connected. Informally, if W is (µ, λ)-lambda connected for some fractional
independent set µ such that µ(W) is “large”, then we call W a highly connected set. For λ >
0, we denote by conλ(H) the maximum of µ(W), taken over every fractional independent
set µ and (µ, λ)-connected set W of H. Note that if λ′ ≤ λ, then conλ′(H) ≥ conλ(H).
Throughout the paper, λ can be thought of as a sufficiently small universal constant, say,
0.001.

Embeddings. The hardness result presented in the paper and earlier hardness results for
CSP(H) [Grohe 2007; Marx 2011; 2010b] are based on embedding some other problem (with
a certain graph structure) in a CSP instance whose hypergraph is a member of H. Thus
we need appropriate notions of embedding a graph in a (hyper)graph. Let us first recall
the definition of minors in graphs. A graph F is a minor of G if F can be obtained from
G by a sequence of vertex deletions, edge deletions, and edge contractions. The following
alternative definition is more relevant from the viewpoint of embeddings: a graph F is a
minor of G if there is a mapping ψ that maps each vertex of F to a connected subset of
V (G) such that ψ(u)∩ψ(v) = ∅ for u 6= v, and if u, v ∈ V (F) are adjacent in F , then there
is an edge in E(G) connecting ψ(u) and ψ(v).

A crucial difference between the proof of Theorem 1.1 in [Grohe 2007] and the proof
of Theorem 1.2 in [Marx 2010b] is that the former result is a based on finding a minor
embedding of a grid, while the latter result uses a more general notion of embedding where
the images of distinct vertices are not necessarily disjoint, but can overlap in a controlled
way. We define such embeddings the following way. We say that two sets of vertices X,Y ⊆
V (H) touch if either X ∩ Y 6= ∅, or there is an edge e ∈ E(H) intersecting both X and Y .
An embedding of graph G into hypergraph H is a mapping ψ that maps each vertex of G

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:11

to a connected subset of V (H) such that if u and v are adjacent in G, then ψ(u) and ψ(v)
touch. The depth of a vertex v ∈ V (H) in embedding ψ is dψ(v) := |{u ∈ V (G) | v ∈ ψ(u)}|,
the number of vertices of G whose images contain v. The vertex depth of the embedding
is maxv∈V (H) dψ(v). Observe that ψ is a minor mapping if and only if it has vertex depth
1. Because in our case we want to control the size of the constraint relations, we need a
notion of depth that is sensitive to “what the edges see.” We define the depth dψ(e) of
an edge e ∈ E(H) as dψ(e) =

∑
v∈e dψ(e) and the edge depth to be the maximum of e

taken over all edges e ∈ E(H). Equivalently, we can define the depth of an edge e ∈ H as
dψ(e) =

∑
v∈V (G) |ψ(v) ∩ e|, that is, each vertex v contributes |ψ(v) ∩ e| to the depth. (A

different, perhaps more natural, definition of edge depth would be to define it simply as a
maximum number of sets ψ(v) that intersect an edge. Somewhat unexpectedly, most results
of the paper remain true with both notions; see Remarks 7.6–7.7.)

Trivially, for any graph G and hypergraph H, there is an embedding of G into H having
vertex depth and edge depth at most |V (G)|. If G has m edges and no isolated vertices,
then |V (G)| is at most 2m. We are interested in how much we can gain compared to this
trivial solution of depth O(m). We define the embedding power emb(H) to be the maximum
(supremum) value of α for which there is an integer mα such that every graph G with
m ≥ mα edges has an embedding into H with edge depth m/α. It might look unmotivated
that we define embedding power in terms of the number of edges of G: defining it in terms
of the number of vertices might look more natural. However, if we replace the number m
of edges with the number n of vertices in the definition, then the worst case occurs if G is
a clique on n vertices. Such a definition would describe how well cliques can be embedded,
and would give us no information about how sparse graphs can be embedded.

3. WIDTH PARAMETERS

Treewidth and its various generalizations are defined in this section. We follow the frame-
work of width functions introduced by Adler [2006]. A tree decomposition of a hypergraph
H is a tuple (T, (Bt)t∈V (T)), where T is a tree and (Bt)t∈V (T) is a family of subsets of V (H)
satisfying the following two conditions: (1) for each e ∈ E(H) there is a node t ∈ V (T)
such that e ⊆ Bt, and (2) for each v ∈ V (H) the set {t ∈ V (T) | v ∈ Bt} is connected
in T . The sets Bt are called the bags of the decomposition. Let f : 2V (H) → R+ be a
function that assigns a nonnegative real number to each nonempty subset of vertices. The
f -width of a tree-decomposition (T, (Bt)t∈V (T)) is max

{
f(Bt) | t ∈ V (T)}. The f -width

of a hypergraph H is the minimum of the f -widths of all its tree decompositions. In other
words, f -width(H) ≤ w if and only if there is a tree decomposition of H where f(B) ≤ w
for every bag B.

The main idea of tree decomposition based algorithms is that if we have a tree decompo-
sition for instance I such that at most C assignments on Bt have to be considered for each
bag Bt, then the problem can be solved by dynamic programming in time polynomial in C
and ‖I‖. The various width notions try to guarantee the existence of such decompositions.
The simplest such notion, treewidth, can be defined as follows:

Definition 3.1. Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Further width notions defined in the literature can also be conveniently defined using this
setup. A subset E′ ⊆ E(H) is an edge cover if

⋃
e∈E′ e = V (H). The edge cover number

ρ(H) is the size of the smallest edge cover (here we assume that H has no isolated vertices).
For X ⊆ V (H), let ρH(X) be the size of the smallest set of edges covering X.

Definition 3.2. The generalized hypertree width of H is hw(H) := ρH -width(H).

The original (nongeneralized) definition [Gottlob et al. 2002a] of hypertree width includes
an additional requirement on the decomposition (we omit the details), thus it cannot be

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 D. Marx

less than generalized hypertree. However, it is known that hypertree width and generalized
hypertree width can differ by at most a constant factor [Adler et al. 2007].

Grohe and Marx [2012] further generalized hypertree width by considering linear relax-
ations of edge covers. A function γ : E(H) → [0, 1] is a fractional edge cover of H if∑
e∈E(H):v∈e γ(e) ≥ 1 for every v ∈ V (H). The fractional cover number ρ∗(H) of H is the

minimum of
∑
e∈e(H) γ(e) taken over all fractional edge covers of H (it is well known that

this minimum is achieved by some rational γ). We define ρ∗H(X) analogously to ρH(X): the
requirement

∑
e:v∈e γ(e) ≥ 1 is restricted to vertices v ∈ X.

Definition 3.3. The fractional hypertree width of H is fhw(H) := ρ∗H -width(H).

A crucial idea in [Marx 2011] is to make the choice of tree decomposition adaptive:
instead of assigning a single decomposition to each hypergraph, we choose the best decom-
position based on additional properties of the current instance. Motivated by this idea, we
generalize the notion of f -width from a single function f to a class of functions F . Let
H be a hypergraph and let F be an arbitrary (possibly infinite) class of functions that
assign nonnegative real numbers to nonempty subsets of vertices of H. The F-width of H
is F-width(H) := sup

{
f -width(H) | f ∈ F

}
. Thus if F-width(H) ≤ k, then for every

f ∈ F , hypergraph H has a tree decomposition with f -width at most k. Note that this tree
decomposition can be different for the different functions f . For normalization purposes, we
consider only functions f on V (H) that satisfy f(∅) = 0 and that are edge-dominated, that
is, f(e) ≤ 1 holds for every e ∈ E(H).

Using these definitions, we can define adaptive width, introduced in [Marx 2011], as
follows. Recall that in Section 2, we stated that if µ is a fractional independent set, then µ
is extended to subsets of vertices by defining µ(X) :=

∑
v∈X µ(v) for every X ⊆ V (H).

Definition 3.4. The adaptive width adw(H) of a hypergraph H is F-width(H), where
F is the set of all fractional independent sets of H.

A function f : 2V (H) → R is modular if f(X) =
∑
v∈X cv for some constants cv (v ∈ V (H)).

The function µ(X) arising from a fractional independent set is clearly a modular and edge
dominated function, in fact, in Definition 3.4 we can equivalently define F as the set of all
nonnegative modular edge-dominated functions on V (H). The main new definition of the
paper is a new width measure, which is obtained by imposing a requirement weaker than
modularity on the functions in F (hence the considered set F of functions is larger):

Definition 3.5. A function b : 2V (H) → R+ is submodular if b(X) + b(Y) ≥ b(X ∩
Y) + b(X ∪ Y) holds for every X,Y ⊆ V (H). Given a hypergraph H, let F contain every
edge-dominated monotone submodular function b on V (H) with b(∅) = 0. The submodular
width of hypergraph H is subw(H) := F-width(H).

It is well-known that submodular functions can be equivalently characterized by the prop-
erty that b(X ∪ v) − b(X), the marginal value of v with respect to X, is a nonincreasing
function of X. That is, for every v and X ⊆ Y ,

b(X ∪ v)− b(X) ≥ b(Y ∪ v)− b(Y). (1)

It is clear that subw(H) ≥ adw(H): Definition 3.5 considers a larger set of functions than
Definition 3.4. Furthermore, we show that subw(H) is at most the fractional hypertree
width fhw(H). This is a straightforward consequence of the fact that an edge-dominated
submodular function is always bounded by the fractional cover number:

Lemma 3.6. Let H be a hypergraph and b be a monotone edge-dominated submodular
function with b(∅) = 0. Then b(S) ≤ ρ∗H(S) for every S ⊆ V (H).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:13

Proof. The statement can be proved along the same lines as the proof of Shearer’s
Lemma [Chung et al. 1986] attributed to Radhakrishnan goes. It is sufficient to prove
the statement for the case S = V (H): otherwise, we can consider the subhypergraph of H
induced by S and the function b restricted to S. Let γ : E(H)→ R+ be a minimum fractional
edge cover of S. Let v1, . . . , vn be an arbitrary ordering of V (H) and let Vi = {v1, . . . , vi},
V0 = ∅. For every e ∈ E(H), we have

b(e) =
∑
vi∈e

(b(e ∩ Vi)− b(e ∩ Vi−1)) ≥
∑
vi∈e

(b(Vi)− b(Vi−1))

(the equality is a simple telescopic sum; the inequality uses (1), i.e., the marginal value of
vi with respect to Vi−1 is not greater than with respect to e ∩ Vi−1).

ρ∗H(V (H)) =
∑

e∈E(H)

γ(e) ≥
∑

e∈E(H)

γ(e)b(e) ≥
∑

e∈E(H)

γ(e)
∑
vi∈e

(b(Vi)− b(Vi−1))

=

n∑
i=1

(b(Vi)− b(Vi−1))
∑

e∈E(H),vi∈e

γ(e)

 ≥ n∑
i=1

(b(Vi)− b(Vi−1)) = b(V (H))

(in the first inequality, we use that f is edge dominated; in the last inequality, we use that
γ is a fractional edge cover).

Proposition 3.7. For every hypergraph H, subw(H) ≤ fhw(H).

Proof. Let (T,Bt∈V (T)) be a tree decomposition of H whose ρ∗H -width is fhw(H). If b is
an edge-bounded monotone submodular function with b(∅) = 0, then by Lemma 3.6, b(Bt) ≤
ρ∗H(Bt) ≤ fhw(H) for every bag Bt of the decomposition, i.e., b-width(H) ≤ fhw(H). This
is true for every such function b, hence subw(H) ≤ fhw(H).

Since adw(H) ≤ subw(H) ≤ fhw(H), if a class H of hypergraphs has bounded fractional
hypertree width, then it has bounded submodular width, and if a class H has bounded
submodular width, then it has bounded adaptive width. Surprisingly, it turns out that the
latter implication is actually an equivalence: Corollary 6.10 shows that subw(H) is at most
O(adw(H)4), thus a class of hypergraphs has bounded submodular width if and only if
it has bounded adaptive width. In other words, large submodular width can be certified
already by modular functions: if submodular width is unbounded in H and we want to
choose an H ∈ H and a submodular function b such that the b-width of H is larger than
some constant k, then we can choose H and b such that b is actually modular. There is
no intuitive reason why this is true: submodular functions seem to be much more powerful
than modular functions. Still, we obtain this result as a byproduct of our characterization
of submodular width.

There is no such connection between adaptive width and fractional hypertree width: it
is shown in [Marx 2011] that there is a class of hypergraphs with bounded adaptive width
and unbounded fractional hypertree width. Thus the property bounded fractional hypertree
width is a strictly weaker property than bounded adaptive/submodular width.

Figure 2 shows the relations of the hypergraph properties defined in this section (note
that the elements of this Venn diagram are sets of hypergraphs; e.g., the set “bounded
treewidth” contains every set H of hypergraphs with bounded treewidth). As discussed
above, all the inclusions in the figure are proper.

Finally, let us remark that there have been investigations of tree decompositions and
branch decompositions of submodular functions and matroids in the literature [Hliněný
and Oum 2008; Oum and Seymour 2007; Hliněný and Whittle 2006; Hliněný 2005; Amini
et al. 2009]. However, in those results the submodular function is a connectivity function:
b(S) describes the boundary of S, that is, the cost of separating S from its complement. In

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 D. Marx

Bounded (generalized)

hypertree width

Bounded submodular width =

Bounded adaptive width

Bounded

treewidth

Bounded fractional hypertree width

Fig. 2. Hypergraph properties that make CSP fixed-parameter tractable.

our case, b(S) describes the cost of the separator S itself. Therefore, we are in a completely
different setting and the previous results cannot be used.

4. FROM CSP INSTANCES TO SUBMODULAR FUNCTIONS

In this section, we prove the main algorithmic result of the paper: CSP(H) is fixed-parameter
tractable if H has bounded submodular width.

Theorem 4.1. Let H be a class of hypergraphs such that subw(H) ≤ c0 for every

H ∈ H. Then CSP(H) can be solved in time 2c0·2
O(|V (H)|) · ‖I‖O(c0).

The proof of Theorem 4.1 is based on two main ideas:

(1) A CSP instance I can be decomposed into a bounded number of “uniform” CSP
instances I1, . . . , It (Lemma 4.11). Here uniform means that if B ⊆ A are two sets of
variables, then every solution of prB Ij has roughly the same number of extensions to prA Ij .

(2) If I is a uniform CSP instance, then (the logarithm of) the number of solutions on
the different projections of I can be described by an edge-dominated monotone submodular
function b (Lemma 4.12). Therefore, if the hypergraph H of I has bounded submodular
width, then it follows that there is a tree decomposition where every bag has a polynomially
bounded number of solutions. This means that the existence of a solution can be tested by
standard techniques.

While our algorithm is based on these two ideas, the technical implementation is slightly
different. First, we can achieve uniformity only on “small sets” of variables. For technical
reasons, we have to ensure a certain consistency condition (for example, in order to ensure
that the submodular function b is monotone). It follows from the consistency condition that
when we find a tree decomposition for a uniform instance such that every bag has a small
number of solutions, then this automatically implies that the instance has a solution; we do
not even have to use the tree decomposition (see Lemma 4.7).

In Section 4.1 we define the notion of consistency that we use and discuss how it can be
achieved. Section 4.2 describes how the instance can be partitioned into uniform instances.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:15

Section 4.3 shows how a submodular function can be defined based on a uniform instance,
connecting our algorithm to submodular width.

4.1. Consistency

Recall from Section 2 that prA I is instance I projected to a set A of variables and solI(A) is
the set of all solutions of prA I. Note that, in general, it is possible that | solI(S

′)| > | solI(S)|
for some S′ ⊂ S. In the implementation of the first idea (Lemma 4.11), we guarantee
uniformity only to subsets of variables that are “small” in the following hereditary sense

Definition 4.2. Let I be a CSP instance and M ≥ 1 an integer. We say that S ⊆ V is
M -small if | solI(S

′)| ≤M for every S′ ⊆ S.

It is not difficult to find all the M -small sets, and every solution of the instances projected
onto these sets:

Lemma 4.3. Let I = (V,D,C) be a CSP instance and M ≥ 1 an integer. There is an
algorithm with running time 2O(|V |) · poly(‖I‖,M) that finds the set S of all M -small sets
S ⊆ V and constructs solI(S) for each such S ∈ S.

Proof. For i = 1, 2, . . . , |V |, we find every M -small set S of size i and construct solI(S).
This is trivial to do for i = 1. Suppose that we have already found the collection Si of all
M -small sets of size exactly i. By definition, every size i subset S of an M -small set S of
size i+1 is an M -small set. Thus we can find every M -small set of size i+1 by enumerating
every S ∈ Si and checking for every v ∈ V \ S whether S′ := S ∪ {v} is M -small. To check
whether S′ is M -small, we first check whether every subset of size i is M -small, which is
easy to do using the set Si. Then we construct solI(S

′): this can be done by enumerating
every tuple s ∈ solI(S) and every extension of s by a new value from D. Thus we need
to consider at most | solI(S)| · |D| ≤ M · |D| tuples as possible members in solI(S

′), which
means that solI(S

′) can be constructed in time polynomial in M and ‖I‖. If | solI(S
′)| ≤M ,

then we put S′ into Si+1. As the collection Si contains at most 2|V | sets and every operation
is polynomial in M and ‖I‖, the total running time is 2O(|V |) · poly(‖I‖,M).

We want to avoid dealing with assignments b ∈ sol(B) that cannot be extended to any
member of sol(A) for some A ⊇ B. Of course, there is no easy way to avoid this in general
(or even to detect if there is such a b): for example, if A is the set of all variables, then
we would need to check if b can be extended to a solution. Therefore, we require only that
there is no such unextendable b if A and B are M -small:

Definition 4.4. A CSP instance I is M -consistent if solI(B) = prB solI(A) for all
M -small sets B ⊆ A.

The notion of M -consistency is very similar to k-consistency, a standard notion in the
constraint satisfaction literature [Atserias et al. 2007; Dalmau et al. 2002; Kolaitis and
Vardi 2000b]. However, we restrict the considered subsets not by the number of variables,
but by the number of solutions (more precisely, by considering only M -small sets). Thus
the notion of M -consistency could be interpreted in the framework of Greco and Scarcello
[2010], where consistency is defined with respect to an arbitrary set of views.

Similarly to usual k-consistency, we can achieve M -consistency by throwing away partial
solutions that violate the requirements: if we use the algorithm of Lemma 4.3 to find all
possible assignments of the M -small sets, then we can check if there is such an unextendable
b for some M -small sets A and B. If there is such a b, then we can exclude it from consid-
eration (without losing any solution of the instance) by introducing a new constraint on B.
By repeatedly excluding the unextendable assignments, we can avoid all such problems. We
say that I ′ = (V,D,C ′) is a refinement of I = (V,D,C) if for every constraint 〈s,R〉 ∈ C,
there is a constraint 〈s,R′〉 ∈ C ′ such that R′ ⊆ R.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 D. Marx

Lemma 4.5. Let I = (V,D,C) be a CSP instance and M ≥ 1 an integer. There is
an algorithm with running time 2O(|V |) · poly(‖I‖,M) that produces an M -consistent CSP
instance I ′ that is a refinement of I with sol(I) = sol(I ′).

Proof. Using the algorithm of Lemma 4.3, we can find all the M -small sets and then
we can easily check if there are two M -small sets S ⊆ S′ violating consistency, i.e., sol(S) 6⊆
prS sol(S′). In this case, let s be an |S|-tuple whose coordinates contain S in an arbitrary
order and let us add the constraint 〈s,prS sol(S′)〉; it is clear that sol(V) does not change
but | sol(S)| strictly decreases. We repeat this step until the instance becomes M -consistent.
Note that adding the new constraint can make a set M -small that was not M -small before,
thus we need to rerun the algorithm of Lemma 4.3. To bound the number of iterations
before M -consistency is reached, observe that adding a new constraint does not increase
| sol(A)| for any A and strictly decreases | sol(S)| for some M -small set S. As there are at
most 2|V | sets S and | sol(S)| ≤M for every M -small set S, it follows that this step can be
repeated at most 2|V | ·M times. The size of the instance increases in each step by adding a
new constraint with at most M tuples, thus the size of the instance at the end of the process
can be still bounded by 2O(|V |) · poly(‖I‖,M). Thus the total time required to ensure that
instance I is M -consistent can be bounded by 2O(|V |) · poly(‖I‖,M).

We want to avoid degenerate cases where there is no solution even for some M -small sets.
Consistency implies that it is sufficient to require this for sets of size 1. We say that a CSP
instance is nontrivial if sol({v}) 6= ∅ for every v ∈ V . The following is immediate:

Proposition 4.6. If I is an M -consistent nontrivial CSP instance, then sol(S) 6= ∅
for every M -small set S.

It is well known that by achieving k-consistency, we can solve CSP instances with
treewidth k: the key observation is that if an instance I with treewidth at most k has
a k-consistent nontrivial refinement I ′, then I has a solution. The following lemma adapts
this statement to our setting.

Lemma 4.7. Let I = (V,D,C) be a CSP instance and M ≥ 1 an integer. Let I ′ be an
M -consistent nontrivial refinement of I. If the hypergraph H of I has a tree decomposition
where every bag B is M -small in I ′, then I has a solution.

Proof. Suppose that there is such a tree decomposition (T, (Bt)t∈V (T)). Assume that T
is rooted and for every node t ∈ V (T), let Vt be the union of the bags that are descendants
of t (including Bt). We claim that every assignment in solI′(Bt) can be extended to an
assignment of Vt that satisfies every constraint of I whose scope is fully contained in Vt.
Applying this statement to the root of T proves that there exists a solution for I. (Recall
that every edge of the hypergraph H, and hence the scope of every constraint, is fully
contained in one of the bags.)

We prove the claim for every node of T in a bottom up order. The statement is trivial
for the leaves. Let t1, . . . , t` be the children of t and suppose the claim is true for these
nodes. Consider an assignment g ∈ solI′(Bt). Since I ′ is M -consistent and Bti is M -small,
assignment g|Bt∩Bti can be extended to an assignment gi ∈ solI′(Bti). As the claim is true

for node ti, assignment gi can be extended to an assignment g′i of Vti . The assignments g,
g′1, . . . , g′` can be combined to obtain an assignment g′ on Vt (note that this is well defined:
the intersection of Vti and Vtj is in Vt, which means that a variable appearing in both Vti
and Vtj has the same value in g, g′i, and g′j). Furthermore, every edge e of H that is fully
contained in Vt is fully contained in at least one of Bt, Vt1 , . . . , Vt` , and the corresponding
assignment among g, g′1, . . . , g′` shows that g′ satisfies the constraint corresponding to e.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:17

Note the subtle detail that Lemma 4.7 does not claim that I ′ has a solution. Furthermore,
when Lemma 4.5 creates an M -consistent instance, then it possibly adds many new con-
straints and the hypergraph of I ′ can be very dense even if the hypergraph of I has nice
structure. However, this is not a problem, as Lemma 4.7 does not require any property on
the hypergraph of I ′. Note also that every M -small set in I is M -small in I ′ as well, thus
I ′ has a potentially larger collection of M -small sets, which makes finding the required tree
decomposition of the hypergraph H of I easier.

4.2. Decomposition into uniform CSP instances

Our algorithm for decomposing a CSP instance into uniform CSP instances is inspired by
a combinatorial result of Alon et al. [2007], which shows that, for every fixed n, an n-
dimensional point set S can be partitioned into polylog(|S|) classes such that each class
is O(1)-uniform. We follow the same proof idea: the instance is split into two instances if
uniformity is violated somewhere, and we analyze the change of an appropriately defined
weight function to bound the number of splits performed. However, the parameter setting
is different in our proof: we want to partition into f(|V |) classes, but we are satisfied
with somewhat weaker uniformity. Another minor technical difference is that we require
uniformity only on the N c-small sets.

The following definitions gives the precise notion of uniformity that we use:

Definition 4.8. Let I = (V,D,C) be a CSP instance. For B ⊆ A ⊆ V and an as-
signment b : B → D, let solI(A|B = b) := {a ∈ solI(A) | prB a = prB b}, the set of all
extensions of b to a solution of prA I. Let maxI(A|B) = maxb∈solI(B) | solI(A|B = b)| (if
solI(B) = ∅, then maxI(A|B) = 0). We define maxI(A|∅) = | solI(A)| and maxI(∅|∅) = 1.
We will drop I from the subscript of max if it is clear from the context.

Let us prove two straightforward properties of the function max(A|B):

Proposition 4.9. For every B ⊆ A ⊆ V with sol(A) 6= ∅ and C ⊆ V , we have

(1) max(A|B) ≥ | sol(A)|/| sol(B)|,
(2) max(A|B) ≥ max(A ∪ C|B ∪ C).

Proof. If every b ∈ sol(B) has at most max(A|B) extensions to A, then clearly | sol(A)|
is at most | sol(B)| ·max(A|B), proving the first statement. To show the second statement,
consider an x ∈ sol(B ∪ C) with max(A ∪ C|B ∪ C) extensions to A ∪ C. For any two
y1, y2 ∈ sol(A ∪ C|B ∪ C = x) with y1 6= y2, we have prC y1 = prC y2 = prC x, hence y1
and y2 can be different only if prA y1 6= prA y2. This means that prA y1 and prA y2 are two
different extensions of prB x to A. Therefore,

max(A|B) ≥ | sol(A|B = prB x)| ≥ | sol(A ∪ C|B ∪ C = x)| = max(A ∪ C|B ∪ C),

what we had to show.

Notice that (2) in Prop. 4.9 gives a hint that submodularity will be relevant: it is analogous
to inequality (1) (Section 3) expressing that marginal value is larger with respect to a
smaller set.

Definition 4.10. We say that A ⊆ V is c-uniform (for some integer c) if sol(A) 6= ∅
and, for every B ⊆ A,

maxI(A|B) ≤ c| solI(A)|/| solI(B)|.
A CSP instance is (N, c, ε)-uniform if every N c-small set is N ε-uniform.

That is, A is c-uniform if every solution of solI(B) has at most c times as many extensions
as the average number of extensions. The following lemma states the main combinatorial tool
of our algorithm: splitting an instance into a constant number of uniform instances. Note

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 D. Marx

that instances arising from this splitting are more constrained than the original instance,
hence it is possible that they contain N c-small sets that are not N c-small in the original
instance. Therefore, it may happen that the hypergraph of the original instance has no tree
decomposition using the N c-small sets of the original instance, but has a tree decomposition
using the N c-small sets of one of the new instances (and then we can invoke Lemma 4.7 to
show that the original instance has a solution).

Lemma 4.11. Let I = (V,D,C) be a CSP instance, let N an be an integer, and let c ≥ 1,

ε > 0 be real numbers. There is an algorithm with running time 22
O(|V |)·c/ε · poly(‖I‖, N c)

that produces a set of (N, c, ε)-uniform N c-consistent nontrivial instances I1, . . . , It with

0 ≤ t ≤ 22
O(|V |)·c/ε, all on the set V of variables, such that

(1) every solution of I is a solution of exactly one instance Ii,
(2) for every 1 ≤ i ≤ t, instance Ii is a refinement of I.

Proof. The main step of the algorithm takes a CSP instance I and either makes it
(N, c, ε)-uniform and N c-consistent without losing any solutions, or splits it into two in-
stances Ismall, Ilarge. By applying the main step recursively on Ismall and Ilarge, we even-
tually arrive to a set of (N, c, ε)-uniform N c-consistent instances. We will argue that the

number of constructed instances is 22
O(|V |)·c/ε.

In the main step, we first check if the instance is trivial; in this case we can stop with t = 0.
Otherwise, we invoke the algorithm of Lemma 4.5 to obtain an N c-consistent refinement of
the instance, without losing any solution. Next we check if this N c-consistent instance I is
(N, c, ε)-uniform. This can be tested in time 2O(|V |) · poly(‖I‖, N c) if we use Lemma 4.3 to
find all the N c-small sets and the corresponding sets of solutions. Suppose that N c-small
sets B ⊆ A violate uniformity, that is,

max(A|B) > N ε| sol(A)|/| sol(B)|. (2)

Let solsmall(B) contain those tuples b for which | sol(A|B = b)| ≤
√
N ε| sol(A)|/| sol(B)|

and let sollarge(B) = sol(B) \ solsmall(B). Note that | sol(A)| ≥ | sollarge(B)| ·
(
√
N ε| sol(A)|/| sol(B)|) (as every tuple b ∈ sollarge(B) has at least

√
N ε| sol(A)|/| sol(B)|

extensions to A), hence

| sollarge(B)| ≤ | sol(B)|/
√
N ε. (3)

Let instance Ismall (resp., Ilarge) be obtained from I by adding the constraint 〈B, solsmall(B)〉
(resp., 〈B, sollarge(B)〉). Clearly, the set of solutions of I is the disjoint union of the sets of
solutions of Ismall and Ilarge. This completes the description of the main step.

It is clear that if the recursive procedure stops, then the instances at the leaves of the
recursion satisfy the two requirements: the application of Lemma 4.5 does not lose any
solution and each resulting instance is N c-consistent and (N, c, ε)-uniform. We show that
the height of the recursion tree can be bounded from above by a function h(|V |, c, ε) =
2O(|V |) · c/ε depending only on |V |, c, and ε; in particular, this shows that the recursive

algorithm eventually stops and produces at most t = 2h(|V |,c,ε) = 22
O(|V |)·c/ε instances.

Let us consider a path in the recursion tree starting at the root, and let I1, I2, . . . , Ip be
the corresponding N c-consistent instances. If a set S is N c-small in Ij , then it is N c-small
in Ij

′
for every j′ > j: the main step cannot increase | sol(S)| for any S. Thus, with the

exception of at most 2|V | values of j, instances Ij and Ij+1 have the same N c-small sets.
Let us consider a subpath Ix, . . . , Iy such that all these instances have the same N c-small
sets. We show that the length of this subpath is O(3|V | · c/ε), hence p = O(2|V | · 3|V | · c/ε).
As this holds for any path starting at the root, we obtain that the height of the recursion

tree is 2O(|V |) · c/ε and hence t = 22
O(|V |)·c/ε.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:19

For the instance Ij , let us define the following weight:

W j =
∑

∅⊆B⊆A⊆V
A,B are Nc-small in Ij

log2 maxIj (A|B).

We bound the length of the subpath Ix, . . . , Iy by analyzing how this weight changes
in each step. Observe first that when invoking the algorithm of Lemma 4.5 to find an
N c-consistent refinement, then the weight does not increase: adding new constraints cannot
increase max(A|B) for any A,B ⊆ V and cannot create newN c-small sets by the assumption
on the subpath Ix and Iy. Thus it is sufficient to analyze how the weight decreases in Ilarge
and Ismall compared to I. Note that 0 ≤ W j ≤ 3|V | log2N

c = 3|V | · c log2N : the sum
consists of at most 3|V | terms and (as A is N c-small and the instance Ij is N c-consistent
and nontrivial) maxIj (A|B) is between 1 and N c. We show that W j+1 ≤W j−(ε/2) log2N ,
which immediately implies that the length of the subpath is O(3|V | · c/ε). Let us inspect
how W j+1 changes compared to W j . Since Ij and Ij+1 have the same N c-small sets by
assumption, no new term can appear in W j+1. It is clear that maxIi+1(A|B) cannot be
greater than maxIi(A|B) for any A,B. Moreover, we show that there is at least one term
that strictly decreases. Suppose first that Ij+1 was obtained from Ij by adding the constraint
〈B, solsmall(B)〉. Then

log2 maxIj+1(A|B) ≤ log2

√
N ε
| solIj (A)|
| solIj (B)|

≤ log2

maxIj (A|B)√
N ε

= log2 maxIj (A|B)−(ε/2) log2N,

where we have used (2) in the second inequality. On the other hand, if Ij+1 was obtained
by adding the constraint 〈B, sollarge(B)〉, then

log2 maxIj+1(B|∅) = log2 | solIj+1(B)| ≤ log2(| solIj (B)|/
√
N ε) = log2 maxIj (B|∅)−(ε/2) log2N,

where the inequality follows from (3). In both cases, we get that at least one term decreases
by at least (ε/2) log2N .

4.3. Uniform CSP instances and submodularity

Assume for a moment that we have a 1-uniform instance I with hypergraph H. Note that by
Prop 4.9(1), this means that max(A|B) = | sol(A)|/| sol(B)|. Suppose that every constraint
contains at most N tuples and let us define the function b(S) = logN | sol(S)|. For every
edge e ∈ E(H), there is a corresponding constraint, which has at most N tuples by the
definition of N . Thus | sol(e)| ≤ N and hence b(e) ≤ 1 for every e ∈ E(H), that is, b is edge
dominated. The crucial observation of this section is that this function b is submodular:

b(X) + b(Y) = logN | sol(X)|+ logN

(
| sol(X ∩ Y)| | sol(Y)|

| sol(X ∩ Y)|

)
= logN | sol(X)|+ logN (| sol(X ∩ Y)| ·max(Y |X ∩ Y))

≥ logN | sol(X)|+ logN (| sol(X ∩ Y)| ·max(X ∪ Y |X))

= logN | sol(X)|+ logN

(
| sol(X ∩ Y)| · | sol(X ∪ Y)|

| sol(X)|

)
= logN | sol(X ∩ Y)|+ logN | sol(X ∪ Y)|
= b(X ∩ Y) + b(X ∪ Y)

(the equalities follow from 1-uniformity; the inequality uses Prop. 4.9(2) with A = Y ,
B = X ∩ Y , C = X). Therefore, if the submodular width of H is at most c, then H has a
tree decomposition where b(B) ≤ c and hence | sol(B)| ≤ N c for every bag B. Thus we can
find a solution of the instance by dynamic programming in time polynomial in N c.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 D. Marx

Lemma 4.11 guarantees some uniformity for the created instances, but not perfect 1-
uniformity and only for the N c-small sets. Thus in Lemma 4.12, we need to define b in a
slightly different and more technical way: we add some small terms to correct errors arising
from the weaker uniformity and we truncate the function at large values (i.e., for sets that
are not N c-small). Also, we state Lemma 4.12 for an arbitrary hypergraph H, possibly
different from the hypergraph of I; then to guarantee that b is edge dominated, we need
that | sol(e)| ≤ N for every edge e of H. The reason we need the statement in this form
is that in an instance Ii produced by Lemma 4.11 from instance I, the maximum size of a
constraint relation in I is an upper bound on | solIi(e)| only if e corresponds to a constraint
of I, but we have no such bound if e corresponds to a constraint of Ii not appearing in I.

Lemma 4.12. Let I = (V,D,C) be a CSP instance and let H be a hypergraph on
V (possibly different from the hypergraph of I) such that | sol(e)| ≤ N holds for every
e ∈ E(H). If I is N c-consistent and (N, c, ε3)-uniform for some c ≥ 1 and ε := 1/|V |, then
the following function b is an edge-dominated, monotone, submodular function on H with
b(∅) = 0:

b(S) :=

{
(1− ε)logN | sol(S)|+ 2ε2|S| − ε3|S|2 if S is N c-small,

(1− ε)c+ 2ε2|S| − ε3|S|2 otherwise.

Proof. Let h(S) := 2ε2|S| − ε3|S|2. The function h(S) is a quadratic function of |S|; it
is 0 when |S| = 0 or |S| = 2/ε, hence its maximum is at |S| = 1/ε = |V (H)| with maximum
value ε. Therefore, h(S) is monotone in the range 0 ≤ |S| ≤ |V (H)|. Furthermore, h is a
submodular function:

h(X)+h(Y)− h(X ∩ Y)− h(X ∪ Y)

= 2ε2(|X|+ |Y | − |X ∩ Y | − |X ∪ Y |) + ε3(−|X|2 − |Y |2 + |X ∩ Y |2 + |X ∪ Y |2)

= ε3
(
−(|X ∩ Y |+ |X \ Y |)2 − (|X ∩ Y |+ |Y \X|)2

+ |X ∩ Y |2 + (|X ∩ Y |+ |X \ Y |+ |Y \X|)2
)

= 2ε3|X \ Y | · |Y \X| ≥ 0.

This calculation shows that if |X \ Y |, |Y \X| ≥ 1, then we actually have h(X) + h(Y) ≥
h(X ∩ Y) + h(X ∪ Y) + 2ε3. We will use this extra 2ε3 term to dominate the error terms
arising from assuming only (N, c, ε3)-uniformity instead of perfect 1-uniformity.

Let us first verify the monotonicity of b. If Y is N c-small, then every X ⊆ Y is N c-small,
which implies | sol(X)| ≤ | sol(Y)| as I is N c-consistent. Therefore, b(X) ≤ b(Y) follows from
the monotonicity of h. If Y is not N c small, then b(Y) = (1− ε)c+ h(Y) and b(X) ≤ b(Y)
is clear for every X ⊆ Y , no matter whether X is N c-small or not.

To see that b is edge-dominated, consider an edge e ∈ E(H). By assumption,
logN | sol(e)| ≤ 1 for every e ∈ E(H) and hence (using N c-consistency and c ≥ 1) e is
N c-small. Thus b(e) ≤ (1− ε) + h(S) ≤ 1, as required.

Finally, let us verify the submodularity of b for some X,Y ⊆ V . If X ⊆ Y or Y ⊆ X,
then there is nothing to show. Thus we can assume that |X \ Y |, |Y \X| ≥ 1. We consider
three cases depending on which of X and Y are N c-small. Suppose first that X and Y are
both N c-small. In this case,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:21

b(X) + b(Y) = (1− ε)logN | sol(X)|+ (1− ε)logN | sol(Y)|+ h(X) + h(Y)

= (1− ε)logN | sol(X)|+ (1− ε) logN

(
| sol(X ∩ Y)| · | sol(Y)|

| sol(X ∩ Y)|

)
+ h(X) + h(Y)

≥ (1− ε)logN | sol(X)|+ (1− ε)logN | sol(X ∩ Y)|

+ (1− ε)logN (max(Y |X ∩ Y)/N ε3) + h(X) + h(Y)

≥ (1− ε)logN | sol(X ∩ Y)|+ (1− ε)logN (| sol(X)|max(X ∪ Y |X))

− (1− ε) · ε3 + h(X ∩ Y) + h(X ∪ Y) + 2ε3

≥ (1− ε)logN | sol(X ∩ Y)|+ (1− ε)logN | sol(X ∪ Y)|+ h(X ∩ Y) + h(X ∪ Y)

≥ b(X ∩ Y) + b(X ∪ Y)

(in the first inequality, we used the definition of (N, c, ε3)-uniformity on X∩Y and Y ; in the
second inequality, we used the submodularity of h and Prop. 4.9(2) for A = Y , B = X ∩Y ,
and C = X; in the third inequality, we used Prop. 4.9(1) for A = X ∪ Y , B = X; the last
inequality is strict only if X ∪ Y is not N c-small).

For the second case, suppose that, say, X is N c-small but Y is not. In this case, X ∩ Y
is N c-small but X ∪ Y is not. Thus

b(X) + b(Y) = (1− ε)logN | sol(X)|+ (1− ε)c+ h(X) + h(Y)

≥ (1− ε)logN | sol(X ∩ Y)|+ (1− ε)c+ h(X ∩ Y) + h(X ∪ Y)

= b(X ∩ Y) + b(X ∪ Y)

(in the inequality, we used the N c-consistency on X ∩ Y and Y , and the submodularity of
h).

Finally, suppose that neither X nor Y is N c-small. In this case, X ∪ Y is not N c-small
either. Now

b(X)+b(Y) = 2(1−ε)c+h(X)+h(Y) ≥ 2(1−ε)c+h(X∩Y)+h(X∪Y) ≥ b(X∩Y)+b(X∪Y).

Having constructed the submodular function b as in Lemma 4.12, we can use the argument
described at the beginning of the section: if H has submodular width at most (1 − ε)c,
then there is a tree decomposition where every bag is N c-small, and we can use this tree
decomposition to find a solution. In fact, by Lemma 4.7, in this case N c-consistency implies
that every nontrivial instance has a solution.

Proof (of Theorem 4.1). Let I be an instance of CSP(H) having hypergraph H ∈ H.
We decide the solvability of I the following way. Let N ≤ ‖I‖ be the size of the largest
constraint relation in I, i.e., every constraint has at most N satisfying assignments. Trivially,
we have | solI(e)| ≤ N for every e ∈ E(H). Set ε := 1/|V (H)| (we may assume that
|V (H)| ≥ 2), and let c := c0/(1 − ε) ≤ 2c0. Let us use the algorithm of Lemma 4.11 to
produce the nontrivial N c-consistent (N, c, ε3)-uniform instances I1, . . . , It. The running

time of this step is 22
O(|V |)·c/ε · poly(‖I‖, N c), which is 2c0·2

O(|V (H)|) · ‖I‖O(c0).
If t = 0, then we can conclude that I has no solution. Otherwise, we argue that I has a

solution. Consider any Ii; as Ii is a refinement of I, we have | solIi(e)| ≤ | solI(e)| ≤ N for
any e ∈ E(H). Let us use Lemma 4.12 with Ii and H (the hypergraph of I, not Ii!) to define
the edge-dominated monotone submodular function b. By definition of submodular width,
H has a tree decomposition (T, (Bt)t∈V (T)) such that b(Bt) ≤ subw(H) ≤ c0 = (1− ε)c for
every t ∈ V (T). Since b(S) ≤ (1−ε)c implies | solIi(S)| ≤ N c and b is monotone, this means

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 D. Marx

that Bt is N c-small in Ii for every t ∈ V (T). Therefore, the conditions of Lemma 4.7 hold,
and I has a solution.

5. FROM SUBMODULAR FUNCTIONS TO HIGHLY CONNECTED SETS

The aim of this section is to show that if a hypergraph H has large submodular width,
then there is a large highly connected set in H. Recall that we say that a set W is (µ, λ)-
connected for some fractional independent set µ and λ > 0, if for every disjoint A,B ⊆W ,
every fractional (A,B)-separator has weight at least λ · min{µ(A), µ(B)} (see Section 2).
Equivalently, we can say that for every disjoint A,B ⊆ W , there is an (A,B)-flow of value
λ ·min{µ(A), µ(B)}. Recall also that conλ(H) denotes the maximum value of µ(W) taken
over every fractional independent set µ and (µ, λ)-connected set W .

The main result of this section allows us to identify a highly connected set if submodular
width is large:

Theorem 5.1. For every sufficiently small constant λ > 0, the following holds. Let b
be an edge-dominated monotone submodular function of H with b(∅) = 0. If the b-width of
H is greater than 3

2 (w + 1), then conλ(H) ≥ w.

For the proof of Theorem 5.1, we need to show that if there is no tree decomposition
where b(B) is small for every bag B, then a highly connected set exists. There is a standard
recursive procedure that either builds a tree decomposition or finds a highly connected set
(see e.g., [Flum and Grohe 2006, Section 11.2]). Simplifying somewhat, the main idea is that
if the graph can be decomposed into smaller graphs by splitting a certain set of vertices
into two parts, then a tree decomposition for each part is constructed using the algorithm
recursively, and the tree decompositions for the parts are joined in an appropriate way to
obtain a tree decomposition for the original graph. On the other hand, if the set of vertices
cannot be split, then we can conclude that it is highly connected. This high-level idea has
been applied for various notions of tree decompositions [Oum and Seymour 2006; Oum
2005; Adler et al. 2007; Oum and Seymour 2007; Marx 2010a], and it turns out to be useful
in our context as well. However, we need to overcome two major difficulties:

(1) Highly connected set in our context is defined as not having certain fractional sep-
arators (i.e., weight assignments). However, if we want to build a tree decomposition in a
recursive manner, we need integer separators (i.e., subsets of vertices) that decompose the
hypergraph into smaller parts.

(2) Measuring the sizes of sets with a submodular function b can lead to problems, since
the size of the union of two sets can be much smaller than the sum of the sizes of the
two sets. We need the property that, roughly speaking, removing a “large” part from a set
makes it “much smaller.” For example, if A and B are components of H \S, and both b(A)
and b(B) are large, then we need the property that both of them are much smaller than
b(A ∪B). Adler [2006, Section 4.2] investigates the relation between some notion of highly
connected sets and f -width, but assumes that f is additive: if A and B do not touch, then
f(A∪B) = f(A)+f(B). However, for a submodular function b, there is no reason to assume
that additivity holds: for example, it very well may be that b(A) = b(B) = b(A ∪B).

To overcome the first difficulty, we have to understand what fractional separation really
means. The first question is whether fractional separation is equivalent to some notion of
integral separation, perhaps up to constant factors. The first, naive, question is whether a
fractional (X,Y)-separator of weight w implies that there are O(w) edges whose union is
an (X,Y)-separator, i.e., there is an (X,Y)-separator S with ρH(S) = O(w). There is a
simple counterexample showing that this is not true. It is well-known that for every integer
k > 0, there is a hypergraph Hk such that ρ∗(Hk) = 2 and ρ(Hk) = k. Let V be the set of
vertices of Hk and let H ′k be obtained from Hk by extending it with two independent sets
X,Y , each of size k, and connecting every vertex of X ∪ Y with every vertex of V . It is

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:23

clear that there is a fractional (X,Y)-separator of weight 2, but every (X,Y)-separator S
has to fully contain at least one of X, Y , or V , implying ρH′(S) ≥ k.

A less naive question is whether a fractional (X,Y)-separator with weight w in H implies
that there exists an (X,Y)-separator S with ρ∗H(S) = O(w) (or at most f(w) for some
function f). It can be shown that this is not true either: using the hypergraph family
presented in [Marx 2011, Section 5], one can construct counterexamples where the minimum
weight of a fractional (X,Y)-separator is a constant, but ρ∗H(S) has to be arbitrarily large
for every (X,Y)-separator S (we omit the details).

We will characterize fractional separation in a very different way. We show that if there is
a fractional (A,B)-separator of weight w, then there is an (A,B)-separator S with b(S) =
O(w) for every edge-dominated monotone submodular function b. Note that this separator
S can be different for different functions b, so we are not claiming that there is a single
(A,B)-separator S that is small in every b. The converse is also true, thus this gives a novel
characterization of fractional separation, tight up to a constant factor. This result is the key
idea that allows us to move from the domain of submodular functions to the domain of pure
hypergraph properties: if there is no (A,B)-separator such that b(S) is small, then we know
that there is no small fractional (A,B)-separator, which is a property of the hypergraph H
only and has no longer anything to do with the submodular function b.

To overcome the second difficulty, we introduce a transformation that turns a monotone
submodular function b on V (H) into a function b∗ that encodes somehow the neighborhood
structure of H as well. The new function b∗ is no longer monotone and submodular, but
it has a number of remarkable properties, for example, b∗ remains edge dominated and
b∗(S) ≥ b(S) for every set S ⊆ V (H), implying that b∗-width is not smaller than b-width.
The main idea is to prove Theorem 5.1 for b∗-width instead of b-width (note that this
makes the statement stronger). Because of the way b∗ encodes the neighborhoods, the
second difficulty will disappear: for example, it will be true that b∗(A∪B) = b∗(A) + b∗(B)
if there are no edges between A and B, that is, b∗ is additive on disjoint components.
Lemma 5.6 formulates (in a somewhat technical way) the exact property of b∗ that we will
need. Furthermore, luckily it turns out that the result mentioned in the previous paragraph
remains true with b replaced by b∗: if there is a fractional (A,B)-separator of weight w,
then there is an (A,B)-separator S such that not only b(S), but even b∗(S) is O(w).

5.1. The function b∗

We define the function b∗ the following way. Let H be a hypergraph and let b be a monotone
submodular function defined on V (H). Let SV (H) be the set of all permutations of V (H).

For a permutation π ∈ SV (H), let N−π (v) be the neighbors of v preceding v in the ordering
π. For π ∈ SV (H) and Z ⊆ V (H), we define

∂bπ,Z(v) := b(v ∪ (N−π (v) ∩ Z))− b(N−π (v) ∩ Z).

In other words, ∂bπ,Z(v) is the marginal value of v with respect to the set of its neighbors
in Z preceding it. We abbreviate ∂bπ,V (H) by ∂bπ. As usual, we extend the definition to
subsets by letting ∂bπ,Z(S) :=

∑
v∈S ∂bπ,Z(v). Furthermore, we define

bπ(Z) := ∂bπ,Z(Z) =
∑
v∈Z

∂bπ,Z(v),

b∗(Z) := min
π∈SV (H)

bπ(Z).

Thus bπ(Z) is the sum of the marginal values with respect to a given ordering, while b∗(Z)
is the smallest possible sum taken over all possible orderings. Let us prove some simple
properties of the function b∗. Properties (1)–(3) and their proofs show why b∗ was defined

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 D. Marx

this way: b∗(Z) is never smaller than b(Z), but it is still edge dominated. Properties (4)–(5)
are technical statements that we will need later.

Proposition 5.2. Let H be a hypergraph and let b be a monotone submodular function
defined on V (H) with b(∅) = 0. For every π ∈ SV (H) and Z ⊆ V (H) we have

(1) bπ(Z) ≥ b(Z),
(2) b∗(Z) ≥ b(Z),
(3) b∗(Z) = bπ(Z) = b(Z) if Z is a clique,
(4) ∂bπ,Z1

(v) ≤ ∂bπ,Z2
(v) if Z2 ⊆ Z1,

(5) ∂bπ(v) ≤ ∂bπ,Z(v),
(6) b∗(X ∪ Y) ≤ b∗(X) + b∗(Y).

Proof. (1) We prove the statement by induction on |Z|; for Z = ∅, the claim is true
(as b(∅) = 0). Otherwise, let v be the last element of Z according to the ordering π. As v
is not preceding any element of Z, for every u ∈ Z we have N−π (u) ∩ Z = N−π (u) ∩ (Z \ v),
and hence ∂bπ,Z(u) = ∂bπ,Z\v(u).

bπ(Z) =
∑
u∈Z\v

∂bπ,Z(u) + ∂bπ,Z(v) =
∑
u∈Z\v

∂bπ,Z\v(u) + ∂bπ,Z(v)

= bπ(Z \ v) + ∂bπ,Z(v) ≥ b(Z \ v) + b(v ∪ (N−π (v) ∩ Z))− b(N−π (v) ∩ Z) ≥ b(Z).

In the first inequality, we used the induction hypothesis and the definition of ∂bπ,Z(v); in
the second inequality, we used the submodularity of b: the marginal value of v with respect
to Z \ v is not greater than with respect to N−π (v) ∩ Z ⊆ Z \ v.

(2) Follows immediately from (1) and from the definition of b∗.
(3) As bπ(Z) ≥ b∗(Z) ≥ b(Z) (by property (1) and the definition of b∗(Z)), we need to

prove bπ(Z) = b(Z) only. We prove the statement by induction on |Z|. As in (1), let v be
the last vertex of Z in π. Note that since Z is a clique, N−π (v) ∩ Z is exactly Z \ v.

bπ(Z) =
∑
u∈Z\v

∂bπ,Z(u)+∂bπ,Z(v) =
∑
u∈Z\v

∂bπ,Z\v(u)+b(v∪(N−π (v)∩Z))−b(N−π (v)∩Z)

= bπ(Z \ v) + b(v ∪ (Z \ v))− b(Z \ v) = b(Z \ v) + b(Z)− b(Z \ v) = b(Z).

(4) Follows from the submodularity of b: ∂bπ,Z1
(v) is the marginal value of v with respect

to N−π (v)∩Z1, while ∂bπ,Z2
(v) is the marginal value of v with respect to the subset N−π (v)∩

Z2 of N−π (v) ∩ Z1.
(5) Immediate from (4).
(6) Let πX and πY be the orderings such that bπX (X) = b∗(X) and bπY = b∗(Y). Let us

define ordering π such that it starts with the elements of X, in the order of πX , followed
by the elements of Y \ X, in the order of πY , and completed by an arbitrary ordering
of V (H) \ (X ∪ Y). It is clear that for every v ∈ X, we have ∂bπ,X∪Y (v) = ∂bπX ,X(v).
Furthermore, for every v ∈ Y \ X, we have N−πY (v) ∩ Y ⊆ N−π (v) ∩ (X ∪ Y): if u is a
neighbor of v in Y that precedes it in πY , then u is either in X or in Y \X; in both cases u
precedes v in π. Thus, similarly to (4), we have ∂bπ,X∪Y (v) ≤ ∂bπY ,Y (v) for every v ∈ Y \X:
∂bπ,X∪Y (v) is the marginal value of v with respect to N−π (v)∩ (X ∪ Y), while ∂bπY ,Y (v) is
the marginal value of v with respect to the subset N−πY (v) ∩ Y . Now we have

b∗(X ∪ Y) ≤ bπ(X ∪ Y) =
∑

v∈X∪Y
∂bπ,X∪Y (v) ≤

∑
v∈X

∂bπX ,X(v) +
∑

v∈Y \X

∂bπY ,Y (v)

≤
∑
v∈X

∂bπX ,X(v) +
∑
v∈Y

∂bπY ,Y (v) = b∗(X) + b∗(Y).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:25

Prop. 5.2(3) implies that ∂bw,Z can be used to define a fractional independent set:

Lemma 5.3. Let H be a hypergraph and let b be an edge-dominated monotone submodu-
lar function defined on V (H) with b(∅) = 0. Let W ⊆ V (H) and let π be an ordering of W .
Let us define µ(v) = ∂bπ,W (v) for v ∈ W and µ(v) = 0 otherwise. Then µ is a fractional
independent set of H with µ(W) = bπ(W).

Proof. Let e be an edge of H and let Z := e ∩W . We have

µ(e) = µ(Z) = ∂bπ,W (Z) ≤ ∂bπ,Z(Z) = bπ(Z) = b(Z) ≤ 1,

where the first inequality follows from Prop. 5.2(4), the last equality follows from
Prop. 5.2(3), and the second inequality follows from the fact that b is edge dominated.
Furthermore, we have µ(W) = ∂bπ,W (W) = bπ(W).

We close this section by proving the main property of b∗ that allows us to avoid the second
difficulty described at the beginning of Section 5. First, although it is not used directly, let
us state that b∗ is additive on sets that are independent from each other:

Lemma 5.4. Let H be a hypergraph, let b be an edge-dominated monotone submodular
function defined on V (H) with b(∅) = 0, and let A,B ⊆ V (H) be disjoint sets such that
there is no edge intersecting both A and B. Then b∗(A ∪B) = b∗(A) + b∗(B).

Proof. By Prop. 5.2(6), we have to show only b∗(A∪B) ≥ b∗(A) + b∗(B). Let π be an
ordering of V (H) such that bπ(A ∪ B) = b∗(A ∪ B); we can assume that π starts with the
vertices of A∪B. Since there is no edge that intersects both A and B, and no vertex outside
A ∪ B precedes a vertex u ∈ A ∪ B, we have N−π (u) ⊆ A for every u ∈ A and N−π (u) ⊆ B
for every u ∈ B. Thus ∂bπ,A∪B(u) = ∂bπ,A(u) for every u ∈ A and ∂bπ,A∪B(u) = ∂bπ,B(u)
for every u ∈ B. Therefore, b∗(A∪B) = bπ(A∪B) = bπ(A) + bπ(B) ≥ b∗(A) + b∗(B), what
we had to show.

The actual statement that we use is more complicated than Lemma 5.4: there can be
edges between A and B, but we assume that there is a small (A,B)-separator. We want to
generalize the following simple statement to our setting:

Proposition 5.5. Let G be a graph, W ⊆ V (G) a set of vertices, A,B ⊆ W two
disjoint subsets, and an (A,B)-separator S. If |S| < |A|, |B|, then |(C ∩W) ∪ S| < |W | for
every component C of G \ S.

The proof of Prop. 5.5 is easy to see: every component C of G \ S is disjoint from either A
or B, thus |C ∩W | is at most |W | −min{|A|, |B|} < |W | − |S|, implying that |(C ∩W)∪S|
is less than |W |. Statements of this form are useful when constructing tree decompositions
in a recursive way. In our setting, we want to measure the size of the sets using the function
b∗, not by the number of vertices. More precisely, we measure the size of S and (C ∩W)∪S
using b∗, while the size of W , A, and B are measured using the fractional independent set
µ defined by Lemma 5.3. The reason for this will be apparent in the proof of Lemma 5.10:
we want to claim that if such a separator S does not exist for any A,B ⊆ W , then W is a
(µ, λ)-connected set for this fractional independent set µ.

Lemma 5.6. Let H be a hypergraph, let b be an edge-dominated monotone submodular
function defined on V (H) with b(∅) = 0 and let W be a set of vertices. Let πW be an
ordering of V (H), and let µ(v) := ∂bπW ,W (v) for v ∈ W and µ(v) = 0 otherwise. Let
A,B ⊆ W be two disjoint sets, and let S be an (A,B)-separator. If b∗(S) < µ(A), µ(B),
then b∗((C ∩W) ∪ S) < µ(W) for every component C of H \ S.

Proof. Let C be a component of H \ S and let Z := (C ∩ W) ∪ S. Let πS be the
ordering reaching the minimum in the definition of b∗(S). Let us define the ordering π that
starts with S in the order of πS , followed by C ∩W in the order of πW , and finished by

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 D. Marx

an arbitrary ordering of the remaining vertices. It is clear that for every v ∈ S, we have
∂bπ,Z(v) = ∂bπS ,S(v). Let us consider a vertex v ∈ C ∩W and let u ∈ W be a neighbor
of v that precedes it in πW . Since v ∈ C and C is a component of H \ S, either u ∈ S or
u ∈ C ∩W . In both cases, u precedes v in π. This means that N−πW (v) ∩W ⊆ N−π (v) ∩ Z,
which implies that ∂bπ,Z(v) ≤ ∂bπW ,W (v) = µ(v) for every v ∈ C ∩W . As S separates A
and B, component C intersects at most one of A and B; suppose, without loss of generality,
that C is disjoint from A. Thus

b∗(Z) ≤ bπ(Z) =
∑
v∈S

∂bπ,Z(v) +
∑

v∈C∩W
∂bπ,Z(v) ≤ b∗(S) + µ(C ∩W)

< µ(A) + µ(W \A) = µ(W).

5.2. Submodular separation

This section is devoted to understanding what fractional separation means: we show that
having a small fractional (A,B)-separator is essentially equivalent to the property that for
every edge-dominated submodular function b, there is an (A,B)-separator S such that b(S)
is small. The proof is based on a standard trick that is often used for rounding fractional
solutions for separation problems: we define a distance function and show by an averaging
argument that cutting at some distance t gives a small separator. However, in our setting,
we need significant new ideas to make this trick work: the main difficulty is that the cost
function b is defined on subsets of vertices and is not a modular function defined by the cost
of vertices. To overcome this problem, we use the definitions in Section 5.1 (in particular,
the function ∂bπ(v)) to assign a cost to every single vertex.

Theorem 5.7. Let H be a hypergraph, X,Y ⊆ V (H) two sets of vertices, and b :
V (H)→ R+ an edge-dominated monotone submodular function with b(∅) = 0. Suppose that
s is a fractional (X,Y)-separator of weight at most w. Then there is an (X,Y)-separator
S ⊆ V (H) with b(S) ≤ b∗(S) = O(w).

Proof. The total weight of the edges covering a vertex v is
∑
e∈E(H),v∈e s(e); let us

define x(v) := min{1,
∑
e∈E(H),v∈e s(e)}. It is clear that if P is a path from X to Y , then∑

v∈P x(v) ≥ 1. We define the distance d(v) to be the minimum of
∑
v′∈P x(v′), taken over

all paths from X to v (this means that d(v) = x(v) for every v ∈ X, that is, d(v) > 0 is
possible for v ∈ X). It is clear that d(v) ≥ 1 for every v ∈ Y . Let us associate the closed
interval ι(v) = [d(v) − x(v), d(v)] to each vertex v. If v is in X, then the left endpoint of
ι(v) is 0, while if v is in Y , then the right endpoint of ι(v) is at least 1.

Let u and v be two adjacent vertices in H such that d(u) ≤ d(v). It is easy to see that
d(v) ≤ d(u) + x(u): there is a path P from X to u such that

∑
u′∈P x(u′) = d(u), thus the

path P ′ obtained by appending v to P has
∑
v′∈P ′ x(v′) =

∑
u′∈P x(u′)+x(v) = d(u)+x(v).

Therefore, we have:

Claim 1. If u and v are adjacent, then ι(u) ∩ ι(v) 6= ∅.

The class of a vertex v ∈ V (H) is the largest integer κ(v) such that x(v) ≤ 2−κ(v), and
we define κ(v) :=∞ if x(v) = 0. Recall that x(v) ≤ 1, thus κ(v) is nonnegative. The offset
of a vertex v is the unique value 0 ≤ α < 2 ·2−κ(v) such that d(v) = i(2 ·2−κ(v))+α for some
integer i. In other words, if the class is 0, 1, 2, . . ., the offset is d(v) modulo 2, 1, 1/2, . . .,
respectively. Let us define an ordering π = (v1, . . . , vn) of V (H) such that

— κ(v) is nondecreasing,
— among vertices having the same class, the offset is nondecreasing.

Let directed graph D be the orientation of the primal graph of H such that if vi and vj
are adjacent and i < j, then there is a directed edge −−→vivj in D. Figure 3 shows a directed

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:27

0

v5

v4

v3

v2

v1

1
8

v6

v7

v8

class 0

2
8

3
8

4
8

5
8

6
8

7
8

1

class 2

class 1

class 3

Fig. 3. The intervals corresponding to a directed path v1, . . . , v8. The shaded lines show the offsets of the
vertices.

i · 2h− h i · 2h+ h (i+ 1) · 2h

v5

v4

v3

v2

v1

i · 2h

v6

v7

v8

P1

P2

(a)

i · 2h− h i · 2h+ h (i+ 1) · 2h

v6

v4

v3

v2

v1

i · 2h

v5

P1

P2

(b)

Fig. 4. Proof of Claim 2: Two examples of directed paths where every vertex has the same class κ (and
h := 2−κ). The shaded lines show the offsets of the vertices.

path in D. If P is a directed path in D, then the width of P is the length of the interval⋃
v∈P ι(v) (note that by Claim 1, this union is indeed an interval). The following claim

bounds the maximum possible width of a directed path:

Claim 2. If P is a directed path D starting at v, then the width of P is at most 16x(v).

Proof. We first prove that if every vertex of P has the same class κ(v), then the width of P
is at most 4 · 2−κ(v). Since the class is nondecreasing along the path, we can partition the
path into subpaths such that every vertex in a subpath has the same class and the classes
are distinct on the different subpaths. The width of P is at most the sum of the widths of
the subpaths, which is at most

∑
i≥κ(v) 4 · 2−i = 8 · 2−κ(v) ≤ 16x(v).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 D. Marx

Suppose now that every vertex of P has the same class κ(v) as the first vertex v and
let h := 2−κ(v). As the offset is nondecreasing, path P can be partitioned into two parts: a
subpath P1 containing vertices with offset less than h, followed by a subpath P2 containing
vertices with offset at least h (one of P1 and P2 can be empty). See Figure 4 for examples.
We show that each of P1 and P2 has width at most 2h, which implies that the width of P
is at most 4h. Observe that if u ∈ P1 and ι(u) contains a point i · 2h − h for some integer
i, then, considering x(u) ≤ h and the bounds on the offset of u, this is only possible if
ι(u) = [i · 2h− h, i · 2h], i.e., i · 2h− h is the left endpoint of ι(u). Thus if I1 =

⋃
u∈P1

ι(u)
contains i · 2h− h, then it is the left endpoint of I1. Therefore, I1 can contain i · 2h− h for
at most one value of i, which immediately implies that the length of I1 is at most 2h.

We argue similarly for P2. If u ∈ P2, then ι(u) can contain the point i · 2h only if
ι(u) = [i ·2h, i ·2h+h]. Thus if I2 =

⋃
u∈P2

ι(u) contains i ·2h, then it is the left endpoint of
I2. We get that I2 can contain i · 2h for at most one value of i, which immediately implies
that the width of I2 is at most 2h. This concludes the proof of Claim 2. y

Let c(v) := ∂bπ(v).

Claim 3.
∑
v∈V (H) x(v)c(v) ≤ w.

Proof. Let us examine the contribution of an edge e ∈ E(H) with value s(e) to the sum.
For every vertex v ∈ e, edge e increases the value x(v) by at most s(e) (the contribution
may be less than s(e), since we defined x(v) to be at most 1). Thus the total contribution
of edge e is at most

s(e) ·
∑
v∈e

c(v) = s(e) ·
∑
v∈e

∂bπ(v) ≤ s(e) ·
∑
v∈e

∂bπ,e(v) = s(e)bπ(e) = s(e)b(e) ≤ s(e),

where the first inequality follows Prop. 5.2(5); the last equality follows form Prop. 5.2(3);
the last inequality follows from the fact that b is edge dominated. Therefore,∑
v∈V (H) x(v)c(v) ≤

∑
e∈E(H) s(e) ≤ w, proving Claim 3. y

Let S be a set of vertices. We define Ŝ to be the “inneighbor closure” of S, that is, the set
of all vertices from which a vertex of S is reachable on a directed path in D (in particular,

this means that S ⊆ Ŝ).

Claim 4. For every S ⊆ V (H),
∑
v∈Ŝ c(v) = bπ(Ŝ).

Proof. Observe that for any v ∈ Ŝ, every inneighbor of v is also in Ŝ, hence N−π (v) ⊆ Ŝ.
Therefore, ∂bπ,Ŝ(v) = ∂bπ(v) = c(v) and Claim 4 follows. y

Let S(t) be the set of all vertices v ∈ V (H) for which t ∈ ι(v). Observe that for every

0 ≤ t ≤ 1, the set S(t) (and hence Ŝ(t)) separates X from Y . We use an averaging argument

to show that there is a 0 ≤ t ≤ 1 for which bπ(Ŝ(t)) is O(w). As b∗(Ŝ(t)) ≤ bπ(Ŝ(t)) by

definition, the set Ŝ(t) satisfies the requirement of the lemma.

If we are able to show that
∫ 1

0
bπ(Ŝ(t))dt = O(w), then the existence of the required t

clearly follows. Let Iv(t) = 1 if v ∈ Ŝ(t) and let Iv(t) = 0 otherwise. If Iv(t) = 1, then there
is a path P in D from v to a member of S(t). By Claim 2, the width of this path is at most

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:29

16x(v), thus t ∈ [d(v)−16x(v), d(v)+15x(v)]. Therefore,
∫ 1

0
Iv(t)dt ≤ 31x(v). Now we have∫ 1

0

bπ(Ŝ(t))dt =

∫ 1

0

∑
v∈Ŝ(t)

c(v)dt =

∫ 1

0

∑
v∈V (H)

c(v)Iv(t)dt

=
∑

v∈V (H)

c(v)

∫ 1

0

Iv(t)dt ≤ 31
∑

v∈V (H)

x(v)c(v) ≤ 31w

(we used Claim 4 in the first equality and Claim 3 in the last inequality).

Although it is not used in this paper, we can prove the converse of Theorem 5.7 in a very
simple way.

Theorem 5.8. Let H be a hypergraph, and let X,Y ⊆ V (H) be two sets of vertices.
Suppose that for every edge-dominated monotone submodular function b on H with b(∅) = 0,
there is an (X,Y)-separator S with b(S) ≤ w. Then there is a fractional (X,Y)-separator
of weight at most w.

Proof. If there is no fractional (X,Y)-separator of weight at most w, then by LP duality,
there is an (X,Y)-flow F of value greater than w. Let b(Z) be defined as the total weight of
the paths in F intersecting Z; it is easy to see that f is a monotone submodular function,
and since F is a flow, b(e) ≤ 1 for every e ∈ E(H). Thus by assumption, there is an (X,Y)-
separator S with b(S) ≤ w. However, every X −Y path of F intersects (X,Y)-separator S,
which implies b(S) > w, a contradiction.

The problem of finding a small separator in the sense of Theorem 5.7 might seem related
to submodular function minimization at a first look. We close this section by pointing out
that finding an (A,B)-separator S with b(S) small for a given submodular function b is
not an instance of submodular function minimization, and hence the well-known algorithms
(see [Iwata 2008; Iwata et al. 2001; Schrijver 2000]) cannot be used for this problem. If
a submodular function g(X) describes the weight of the boundary of X, then finding a
small (A,B)-separator is equivalent to minimizing g(X) subject to A ⊆ X, X ∩ B = ∅,
which can be expressed as an instance of submodular function minimization (and hence
solvable in polynomial time). In our case, however, b(S) is the weight of S itself, which
means that we have to minimize g(S) subject to S being an (A,B)-separator and this latter
constraint cannot be expressed in the framework of submodular function minimization. A
possible workaround is to define δ(X) as the neighborhood of X (the set of vertices outside
X adjacent to X) and b′(X) := b(δ(S)); now minimizing b′(X) subject to A ⊆ X ∪ δ(X),
X ∩ B = ∅ is the same as finding an (X,Y)-separator S minimizing b(S). However, the
function b′ is not necessarily a submodular function in general. Therefore, transforming b
to b′ this way does not lead to a polynomial-time algorithm using submodular function
minimization. In fact, it is quite easy to show that finding an (A,B)-separator S with b(S)
minimum possible can be an NP-hard problem even if b is a submodular function of very
simple form.

Theorem 5.9. Given a graph G, subsets of vertices X, Y , and collection S of subsets
of vertices, it is NP-hard to find an (X,Y)-separator that intersects the minimum number
of members of S.

Proof. The proof is by reduction from 3-coloring. Let H be a graph with n vertices
and m edges; we identify the vertices of H with the integers from 1 to n. We construct a
graph G consisting of 3n+ 2 vertices, vertex sets X, Y , and a collection S of 6m sets such
that there is an (X,Y)-separator S in G intersecting at most 3m members of S if and only
if H is 3-colorable.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 D. Marx

The graph G consists of two vertices x, y, and for every 1 ≤ i ≤ n, a path xvi,1vi,2vi,3y
of length 4 connecting x and y. The collection S is constructed such that for every edge
ij ∈ E(H) and 1 ≤ a, b ≤ 3, a 6= b, there is a corresponding set {vi,a, vj,b, x, y}. Let X := {x}
and Y := {y}. Observe that the set {vi,a, vj,b} intersects exactly 3 sets of S if a 6= b and
exactly 4 sets of S if a = b.

Let c : V (H) → {1, 2, 3} be a 3-coloring of H. The set S = {vi,c(i) | 1 ≤ i ≤ n} is
clearly an (X,Y)-separator. For every ij ∈ E(H), separator S intersects only 3 of the 6 sets
{vi,a, vi,b, x, y}. Therefore, S intersects exactly 3m members of S.

Consider now an (X,Y)-separator S intersecting at most 3m members of S. Since every
member of S contains both x and y, it follows that x, y 6∈ S. Thus S has to contain at
least one internal vertex of every path xvi,1vi,2vi,3y. For every 1 ≤ i ≤ n, let us fix a vertex
vi,c(i) ∈ S. We claim that c is a 3-coloring of H. For every ij ∈ E(H), S intersects at least 3
of the sets {vi,a, vi,b, x, y}, and intersects 4 of them if c(i) = c(j). Thus the assumption that
S intersects at most 3m members of S immediately implies that c is a proper 3-coloring.

5.3. Obtaining a highly connected set

The following lemma is the same as the main result of Section 5 (Theorem 5.1) we are
trying to prove, with the exception that b-width is replaced by b∗-width. By Prop 5.2(2),
b∗(S) ≥ b(S) for every set S ⊆ V (H), thus b∗-width is not less than b-width. Therefore, the
following is actually a stronger statement and immediately implies Theorem 5.1.

Lemma 5.10. For every sufficiently small constant λ > 0, the following holds. Let b be
an edge-dominated monotone submodular function of H with b(∅) = 0. If the b∗-width of H
is greater than 3

2 (w + 1), then conλ(H) ≥ w.

Proof. Suppose that λ < 1/c, where c is the universal constant of Lemma 5.7 hidden by
the big-O notation. Suppose that conλ(H) < w, that is, there is no fractional independent
set µ and (µ, λ)-connected set W with µ(W) ≥ w. We show that H has a tree decomposition
of b∗-width at most 3

2 (w+ 1), or more precisely, we show the following stronger statement:

For every subhypergraph H ′ of H and every W0 ⊆ V (H ′) with b∗(W0) ≤ w+ 1,
there is a tree decomposition of H ′ having b∗-width at most 3

2 (w + 1) such that
W0 is contained in one of the bags.

We prove this statement by induction on |V (H ′)|. If b∗(V (H ′)) ≤ 3
2 (w + 1), then a decom-

position consisting of a single bag proves the statement. Otherwise, let W be a superset of
W0 such that w ≤ b∗(W) ≤ w + 1; let us choose a W that is inclusionwise maximal with
respect to this property. Observe that there has to be at least one such set: from the fact
that b∗(v) ≤ 1 for every vertex v and from Prop. 5.2(6), we know that adding a vertex
increases b∗(W) by at most 1. Since b∗(V (H ′)) ≥ 3

2 (w+ 1), by adding vertices to W0 in an
arbitrary order, we eventually find a set W with b∗(W) ≥ w, and the first such set satisfies
b∗(W) ≤ w + 1 as well.

Let π be an ordering of V (H ′) such that bπ(W) = b∗(W). As in Lemma 5.3, let us define
the fractional independent set µ by µ(v) := ∂bπ,W (v) if v ∈ W and µ(v) = 0 otherwise.
Clearly, we have µ(W) = bπ(W) = b∗(W) ≥ w.

By assumption, W is not (µ, λ)-connected, hence there are disjoint sets A,B ⊆ W
and a fractional (A,B)-separator of weight less than λ · min{µ(A), µ(B)}. Thus by Theo-
rem 5.7, there is an (A,B)-separator S ⊆ V (H ′) with b∗(S) < c · λ · min{µ(A), µ(B)} <
min{µ(A), µ(B)} ≤ µ(W)/2 ≤ (w + 1)/2 (the second inequality follows from the fact that
A and B are disjoint subsets of W). Let C1, . . . , Cr be the connected components of H ′ \S;
by Lemma 5.6, b∗((Ci ∩W) ∪ S) < µ(W) = bπ(W) = b∗(W) ≤ w + 1 for every 1 ≤ i ≤ r.
As b∗(V (H ′)) ≥ 3

2 (w + 1) and b∗(S) ≤ (w + 1)/2, it is not possible that S = V (H ′), hence
r > 0. It is not possible that r = 1 either: (C1 ∩W) ∪ S is a proper superset of W with

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:31

b∗-value strictly less than b∗(W) ≤ w + 1, and (as b∗(V (H ′)) ≥ 3
2 (w + 1)) we could find

a set between (C1 ∩W) ∪ S and V (H ′) contradicting the maximality of the choice of W .
Thus r ≥ 2, which means that each hypergraph H ′i := H ′[Ci ∪S] has strictly fewer vertices
than H ′ for every 1 ≤ i ≤ r.

By the induction hypothesis, each H ′i has a tree decomposition Ti having b∗-width at
most 3

2 (w + 1) such that Wi := (Ci ∩W) ∪ S is contained in one of the bags. Let Bi be
the bag of Ti containing Wi. We build a tree decomposition T of H by joining together the
tree decompositions T1, . . . , Tr: let B0 := W0 ∪S be a new bag that is adjacent to bags B1,
. . . , Br. It can be easily verified that T is indeed a tree decomposition of H ′. Furthermore,
by Prop. 5.2(6), b∗(B0) ≤ b∗(W0) + b∗(S) < w + 1 + (w + 1)/2 = 3

2 (w + 1) and by the

assumptions on T1, . . . , Tr, every other bag has b∗ value at most 3
2 (w + 1).

6. FROM HIGHLY CONNECTED SETS TO EMBEDDINGS

The main result of this section is showing that the existence of highly connected sets implies
that the hypergraph has large embedding power. Recall from Section 2 that W is a (µ, λ)-
connected set for some λ > 0 and fractional independent set µ if for every disjointX,Y ⊆W ,
the minimum weight of a fractional (X,Y)-separator is at least λ · {µ(X), µ(Y)}. We denote
by conλ(H) the maximum value of µ(W) taken over every fractional independent set µ and
(µ, λ)-connected set W . Recall also that the edge depth of an embedding φ of G into H is
the maximum of

∑
v∈V (G) |φ(v) ∩ e|, taken over every e ∈ E(H).

Theorem 6.1. For every sufficiently small λ > 0 and hypergraph H, there is a constant
mH,λ such that every graph G with m ≥ mH,λ edges has an embedding into H with edge

depth O(m/(λ
3
2 con

1
4

λ (H))). Furthermore, there is an algorithm that, given G, H, and λ,

produces such an embedding in time f(H,λ)nO(1).

In other words, Theorem 6.1 gives a lower bound on the embedding power of H:

Corollary 6.2. For every sufficiently small λ > 0 and hypergraph H, emb(H) =

Ω(λ
3
2 con

1
4

λ (H)).

Theorem 6.1 is stated in algorithmic form, since the reduction in the hardness result of
Section 7 needs to find such embeddings. For the proof, our strategy is similar to the
embedding result of [Marx 2010b]: we show that a highly connected set implies that a
uniform concurrent flow exists, the paths appearing in the uniform concurrent flow can be
used to embed (a blowup of) the line graph of a complete graph, and every graph has an
appropriate embedding in the line graph of a complete graph. To make this strategy work,
we need generalizations of concurrent flows, multicuts, and multicommodity flows in our
hypergraph setting and we need to obtain results that connect these concepts to highly
connected sets. Some of these results are similar in spirit to the O(

√
n)-approximation

algorithms appearing in the combinatorial optimization literature [Gupta 2003; Hajiaghayi
and Räcke 2006; Agarwal et al. 2007]. However, those approximation algorithms are mostly
based on clever rounding of fractional solutions, while in our setting rounding is not an
option: as discussed in Section 5, the existence of a fractional (X,Y)-separator of small
weight does not imply the existence of a small integer separator. Thus we have to work
directly with the fractional solution and use the properties of the highly connected set.

It turns out that the right notion of uniform concurrent flow for our purposes is a collection
of flows that connect cliques: that is, a collection Fi,j (1 ≤ i < j ≤ k) of compatible flows,
each of value ε, such that Fi,j is a (Ki,Kj)-flow, where K1, . . . , Kk are disjoint cliques.
Thus our first goal is to find a highly connected set that can be partitioned into k cliques
in an appropriate way.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 D. Marx

6.1. Highly connected sets with cliques

Let (X1, Y1), . . . , (Xk, Yk) be pairs of vertex sets such that the minimum weight of a
fractional (Xi, Yi)-separator is si. Analogously to multicut problems in combinatorial op-
timization, we investigate weight assignments that simultaneously separate all these pairs.
Clearly, the minimum weight of such an assignment is at least the minimum of the si’s and
at most the sum of the si’s. The following lemma shows that in a highly connected set, such
a simultaneous separator cannot be very efficient: roughly speaking, its weight is at least
the square root of the sum of the si’s.

Lemma 6.3. Let µ be a fractional independent set in hypergraph H and let W be a
(µ, λ)-connected set for some 0 < λ ≤ 1. Let (X1, . . . , Xk, Y1, . . . , Yk) be a partition of W ,

let wi := min{µ(Xi), µ(Yi)} ≥ 1/2, and let w :=
∑k
i=1 wi. Let s : E(H) → R+ be a weight

assignment of total weight p such that s is a fractional (Xi, Yi)-separator for every 1 ≤ i ≤ k.
Then p ≥ (λ/7) ·

√
w.

Proof. Let us define the function s′ by s′(e) = 6s(e) and let x(v) :=
∑
e∈E(H),v∈e s

′(e).

We define the distance d(u, v) to be the minimum of
∑
r∈P x(r), taken over all paths P from

u to v. It is clear that the triangle inequality holds, i.e., d(u, v) ≤ d(u, z) + d(z, v) for every
u, v, z ∈ V (H). If s covers every u − v path, then d(u, v) ≥ 6: every edge e intersecting a
u− v path P contributes at least s′(e) to the sum

∑
r∈P x(r) (as e can intersect P in more

than one vertices, e can increase the sum by more than s′(e)). On the other hand, we claim
that if d(u, v) ≥ 2, then s′ covers every u− v path. Clearly, it is sufficient to verify this for
minimal paths. Such a path P can intersect an edge e at most twice, hence e contributes at
most 2s′(e) to the sum

∑
r∈P x(r) ≥ 2, implying that the edges intersecting P have total

weight at least 1 in s′.
Suppose for contradiction that p < (λ/7) ·

√
w, that is, w > 49p2/λ2. As s is an

(Xi, Yi)-separator, we have that p ≥ 1. Let A := ∅ and B :=
⋃k
i=1(Xi ∪ Yi). Note that

µ(B) ≥ 2
∑k
i=1 wi = 2w. We will increase A and decrease B while maintaining the in-

variant condition that the distance of A and B is at least 2 in d. Let T be the smallest
integer such that

∑T
i=1 wi > 6p/λ; if there is no such T , then w ≤ 6p/λ, a contradiction.

As wi ≥ 1/2 for every i, it follows that T ≤ 12p/λ+ 1 ≤ 13p/λ (since p ≥ 1 and λ ≤ 1).
For i = 1, 2, . . . , T , we perform the following step. Let X ′i (resp., Y ′i) be the set of all

vertices of W that are at distance at most 2 from Xi (resp., Yi). As the distance of Xi and
Yi is at least 6, by the triangle inequality the distance of X ′i and Y ′i is at least 2, hence s′ is a
fractional (X ′i, Y

′
i)-separator. Since W is (µ, λ)-connected and s′ is an assignment of weight

6p, we have min{µ(X ′i), µ(Y ′i)} ≤ 6p/λ. If µ(X ′i) ≤ 6p/λ, then let us put Xi (note: not X ′i)
into A and let us remove X ′i from B. The set X ′i, which we remove from B, contains all
the vertices that are at distance at most 2 from any new vertex in A, hence it remains true
that the distance of A and B is at least 2. Similarly, if µ(X ′i) > 6p/λ and µ(Y ′i) ≤ 6p/λ,
then let us put Yi into A and let us remove Y ′i from B. Note that we may put a vertex into
A even if it was removed from B in an earlier step.

In the i-th step of the procedure, we increase µ(A) by at least wi (as µ(Xi), µ(Yi) ≥ wi
and these sets are disjoint from the sets already contained in A) and µ(B) is decreased by

at most 6p/λ. Thus at the end of the procedure, we have µ(A) ≥
∑T
i=1 wi > 6p/λ and

µ(B) ≥ 2w − T · 6p/λ > 98p2/(λ2)− (13p/λ)(6p/λ) > 6p/λ,

that is, min{µ(A), µ(B)} > 6p/λ. By the invariant condition, the distance of A and B is
at least 2, thus s′ is a fractional (A,B)-separator of weight exactly 6p, contradicting the
assumption that W is (µ, λ)-connected.

In the rest of the section, we need a more constrained notion of flow, where the endpoints
“respect” a particular fractional independent set. Let µ1, µ2 be fractional independent sets

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:33

of hypergraph H and let X,Y ⊆ V (H) be two (not necessarily disjoint) sets of vertices.
A (µ1, µ2)-demand (X,Y)-flow is an (X,Y)-flow F such that for each x ∈ X, the total
weight of the paths in F having first endpoint x is at most µ1(x), and similarly, the total
weight of the paths in F having second endpoint y ∈ Y is at most µ2(y). Note that there
is no bound on the weight of the paths going through an x ∈ X, we only bound the paths
whose first/second endpoint is x. The definition is particularly delicate if X and Y are not
disjoint, in this case, a vertex z ∈ X ∩ Y can be the first endpoint of some paths and the
second endpoint of some other paths, or it can be even both the first and second endpoint
of a path of length 0. We use the abbreviation µ-demand for (µ, µ)-demand.

The following lemma shows that if a flow connects a set U with a highly connected set
W , then U is highly connected as well (“W can be moved to U”). This observation will be
used in the proof of Lemma 6.5, where we locate cliques and show that their union is highly
connected, since there is a flow that connects the cliques to a highly connected set.

Lemma 6.4. Let H be a hypergraph, µ1, µ2 fractional independent sets, and W ⊆ V (H)
a (µ1, λ)-connected set for some 0 < λ ≤ 1. Suppose that U ⊆ V (H) is a set of vertices and
F is a (µ1, µ2)-demand (W,U)-flow of value µ2(U). Then U is (µ2, λ/6)-connected.

Proof. Suppose that there are disjoint sets A,B ⊆ U and a fractional (A,B)-separator
s of weight w < (λ/6) ·min{µ2(A), µ2(B)}. (Note that this means µ2(A), µ2(B) > 6w/λ ≥
6w.) For a path P , let s(P) =

∑
e∈E(H),e∩P 6=∅ s(e) be the total weight of the edges inter-

secting P . Let A′ ⊆ W (resp., B′ ⊆ W) contain a vertex v ∈ W if there is a path P in F
with first endpoint v and second endpoint in A (resp., B) and s(P) ≤ 1/3. If A′ ∩ B′ 6= ∅,
then it is clear that there is a path P with s(P) ≤ 2/3 connecting a vertex of A and a
vertex of B via a vertex of A′ ∩ B′, a contradiction. Thus we can assume that A′ and B′

are disjoint.
Since F is a flow and s has weight w, the total weight of the paths in F with s(P) ≥ 1/3

is at most 3w. As the value of F is exactly µ2(U), the total weight of the paths in F with
second endpoint in A is exactly µ2(A). If s(P) ≤ 1/3 for such a path, then its first endpoint
is in A′ by definition. Therefore, the total weight of the paths in F with first endpoint in
A′ is at least µ2(A)− 3w, which means that µ1(A′) ≥ µ2(A)− 3w ≥ µ2(A)/2. Similarly, we
have µ1(B′) ≥ µ2(B)/2. Since W is (µ1, λ)-connected and s is an assignment with weight
less than (λ/6) ·min{µ2(A), µ2(B)} ≤ (λ/3) ·min{µ1(A′), µ1(B′)}, there is an A′−B′ path
P with s(P) < 1/3. Now the concatenation of an A′ −A path PA having s(PA) ≤ 1/3, the
path P , and a B′−B path PB having s(PB) ≤ 1/3 forms an A−B path that is not covered
by s, a contradiction.

A µ-demand multicommodity flow between pairs (A1, B1), . . . , (Ar, Br) is a set F1, . . . ,
Fr of compatible flows such that Fi is a µ-demand (Ai, Bi)-flow (recall that a set of flows
is compatible if their sum is also a flow, that is, does not violate the edge constraints). The
value of a multicommodity flow is the sum of the values of the r flows. Let A =

⋃r
i=1Ai,

B =
⋃r
i=1Bi, and let us restrict our attention to the case when (A1, . . . , Ar, B1, . . . , Br) is

a partition of A∪B. In this case, the maximum value of a µ-demand multicommodity flow
between pairs (A1, B1), . . . , (Ar, Br) can be expressed as the optimum values of the primal
and dual linear programs in Figure 5.

The following lemma shows that if conλ(H) is sufficiently large, then there is a highly
connected set that has the additional property that it is the union of k cliques K1, . . . ,
Kk with µ(Ki) ≥ 1/2 for every clique. The high-level idea of the proof is the following.
Take a (µ, λ)-connected set W with µ(W) = conλ(H) and find a large multicommodity
flow between some pairs (A1, B1), . . . , (Ar, Br) in W . Consider the dual solution y. By
complementary slackness, every edge with nonzero value in y covers exactly 1 unit of the
multicommodity flow. If most of the weight of the dual solution is on the edge variables, then
we can choose k edges that cover at least Ω(k) units of flow. These edges are connected to

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 D. Marx

Primal LP Dual LP

maximize minimize
r∑
i=1

∑
u∈Ai,v∈Bi
P∈Puv

x(P)
∑

e∈e(H)

y(e) +
∑
u∈A

µ(u)y(u) +
∑
v∈B

µ(v)y(v)

s.t. s.t.
r∑
i=1

∑
u∈Ai,v∈Bi

P∈Puv,P∩e 6=∅

x(P) ≤ 1 ∀e ∈ E(H)

∑
v∈Bi,P∈Puv

x(P) ≤ µ(u) ∀1 ≤ i ≤ r, u ∈ Ai∑
u∈Ai,P∈Puv

x(P) ≤ µ(v) ∀1 ≤ i ≤ r, v ∈ Bi

x(P) ≥ 0
∀1 ≤ i ≤ r,
u ∈ Ai, v ∈ Bi,
P ∈ Puv

∑
e∈E(H),
e∩P 6=∅

y(e) + y(u) + y(v) ≥ 1
∀1 ≤ i ≤ r,
u ∈ Ai, v ∈ Bi,
P ∈ Puv

y(e) ≥ 0 ∀e ∈ E(H)

y(u) ≥ 0 ∀u ∈ A
y(v) ≥ 0 ∀v ∈ B

Fig. 5. Primal and dual linear programs for µ-demand multicommodity flow between pairs (A1, B1), . . . ,
(Ar, Br). We denote by Puv the set of all u− v paths.

W by a flow, and therefore by Lemma 6.4 the union of these edges is also highly connected
and obviously can be partitioned into a small number cliques.

There are two things that can go wrong with this argument. First, it can happen that the
dual solution assigns most of the weight to the vertex variables y(u), y(v) (u ∈ A, v ∈ B).
The cost of covering the Ai − Bi paths using vertex variables only is min{µ(Ai), µ(Bi)},
thus this case is only possible if the value of the dual (and hence the primal) solution is close
to
∑r
i=1(min{µ(Ai), µ(Bi)}). To avoid this situation, we want to select the pairs (Ai, Bi)

such that they are only “moderately connected”: there is a fractional (Ai, Bi)-separator of
weight 2λmin{µ(Ai), µ(Bi)}, that is, at most twice the minimum possible. This means that
the weight of the dual solution is at most 2λ

∑r
i=1(min{µ(Ai), µ(Bi)}), which is much less

than
∑r
i=1(min{µ(Ai), µ(Bi)} (if λ is small). If we are not able to find sufficiently many

such pairs, then we argue that a larger highly connected set can be obtained by scaling
µ by a factor of 2. More precisely, we show that there is a large subset W ′ ⊆ W that is
(2µ, λ)-connected and 2µ(W ′) > conλ(H), a contradiction (a technical difficulty here that
we have to make sure first that 2µ is also a fractional independent set).

The second problem we have to deal with is that the value of the dual solution can be
so small that we find a very small set of edges that already cover a large fraction of the
multicommodity flow. However, we can use Lemma 6.3 to argue that a weight assignment
on the edges that covers a large multicommodity flow in a (µ, λ)-connected set cannot have
very small weight.

Lemma 6.5. Let H be a hypergraph and let 0 < λ < 1/16 be a constant. Then there is
fractional independent set µ, a (µ, λ/6)-connected set W , and a partition (K1, . . . ,Kk) of

W such that k = Ω(λ
√

conλ(H)), and for every 1 ≤ i ≤ k, Ki is a clique with µ(Ki) ≥ 1/2.

Proof. Let k be the largest integer such that conλ(H) ≥ 3T + 2k holds, where T :=

(56/λ)2 ·k2; it is clear that k = Ω(λ
√

conλ(H)). Let µ0 be a fractional independent set and
W0 be a (µ0, λ)-connected set with µ0(W0) = conλ(H). We can assume that µ0(v) > 0 if
and only if v ∈W0. This also implies that W0 is in one connected component of H.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:35

Highly loaded edges. First, we want to modify µ0 such that there is no edge e with
µ0(e) ≥ 1/2. The following claim shows that we can achieve this by restricting µ0 to an
appropriate subset W of W0.

Claim 1. There is a subset W ⊆W0 such that µ0(W) ≥ conλ(H)− k and µ0(e∩W) < 1/2
for every edge e.

Proof.
Let us choose edges g1, g2, . . . as long as possible with the requirement µ0(Ki) ≥ 1/2 for

Ki := (gi ∩W0) \
⋃i−1
j=1Kj . If we can select at least k such edges, then the cliques K1, . . . ,

Kk satisfy the requirements of Lemma 6.5 and we are done. Indeed, W ′ :=
⋃k
i=1Ki ⊆ W0

is a (µ0, λ)-connected set, µ0(Ki) ≥ 1/2, and (K1, . . . ,Kk) is a partition of W ′ into cliques.
Thus we can assume that the selection of the edges stops at edge gt for some t < k. Let

W := W0 \
⋃t
i=1Ki. Observe that there is no edge e ∈ E(H) with µ0(e ∩W) ≥ 1/2, as

in this case the selection of the edges could be continued with gt+1 := e. Furthermore, we

have µ0(W) = µ0(W0 \
⋃t
i=1Ki) > µ0(W0)− k = conλ(H)− k, as required. y

Moderately connected pairs. Let us define µ such that µ(v) = 2µ0(v) if v ∈ W and
µ(v) = 0 otherwise. By Claim 1, µ is a fractional independent set. The set W is (µ0, λ)-
connected (recall that a subset of (µ0, λ)-connected is also (µ0, λ)-connected). However,
W is not necessarily (µ, λ)-connected. In the next step, we find a large collection of pairs
(Ai, Bi) that violate (µ, λ)-connectivity. Informally, we can say that these pairs (Ai, Bi)
are “moderately connected”: denoting wi = min{µ(Ai), µ(Bi)}, the minimum value of a
fractional (Ai, Bi)-separator for such a pair is less than λwi (because the pair (Ai, Bi)
violates (µ, λ)-connectivity), but at least λwi/2 = λmin{µ0(Ai), µ0(Bi)} (because W is
(µ0, λ)-connected).

Claim 2. There are disjoint sets A1, B1, . . . , Ar, Br ⊆W such that for every 1 ≤ i ≤ r there
is a fractional (Ai, Bi)-separator with weight less than λwi for wi := min{µ(Ai), µ(Bi)} and
w :=

∑r
i=1 wi ≥ T .

Proof. Let us greedily select a maximal collection of pairs (A1, B1), . . . , (Ar, Br) with
the property that there is a fractional (Ai, Bi)-separator with weight less than λwi for
wi := min{µ(Ai), µ(Bi)}. Note that every fractional separator has value at least 1 (as W is
in a single component of H), thus λwi > 1 holds, implying wi > 1/λ > 1. We can assume
that µ(Ai), µ(Bi) ≤ wi + 1: if, say, µ(Ai) > µ(Bi) + 1, then removing an arbitrary vertex of
Ai decreases µ(Ai) by at most one (as µ is a fractional independent set) without changing
min{µ(Ai), µ(Bi)}, hence there would be a smaller pair of sets with the required properties.
Therefore, we have 2wi ≤ µ(Ai ∪Bi) ≤ 2wi + 1 ≤ 3wi for every 1 ≤ i ≤ r.

Suppose for contradiction that w :=
∑r
i=1 wi < T . Let W ′ := W \

⋃r
i=1(Ai ∪ Bi). As

µ(
⋃r
i=1(Ai ∪Bi)) ≤

∑r
i=1 3wi = 3w < 3T , we have µ(W ′) > µ(W)− 3T = 2µ0(W)− 3T ≥

2 conλ(H)− 2k − 3T ≥ conλ(H). Since the greedy selection stopped, there is no fractional
(A′, B′)-separator of value less than λ ·min{µ(A′), µ(B′)} for any disjoint A′, B′ ⊆W ′, that
is, W ′ is (µ, λ)-connected with µ(W ′) > conλ(H), contradicting the definition of conλ(H).
y

Finding a multicommodity flow. Let (A1, B1), . . . , (Ar, Br) be as in Claim 2. Since
there is a fractional (Ai, Bi)-separator of value less than λwi, the maximum value of a µ-
demand multicommodity flow between pairs (A1, B1), . . . , (Ar, Br) is less than λw. Let y be
an optimum dual solution; we give a lower bound on the total weight of the edge variables.

Claim 3.
∑
e∈E(H) y(e) ≥ 2k.

Proof. Let A :=
⋃r
i=1Ai and B :=

⋃r
i=1Bi. Let A∗ := {u ∈ A | y(u) ≤ 1/4}, B∗ := {v ∈

B | y(v) ≤ 1/4}, A∗i = Ai ∩ A∗, B∗i = Bi ∩ B∗, and w∗i = min{µ(A∗i), µ(B∗i)}. For each i,

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 D. Marx

the value of w∗i is either at least wi/2, or less than that. Assume without loss of generality

that there is a 1 ≤ r∗ ≤ r such that w∗i ≥ wi/2 if and only if i ≤ r∗. Let w∗ =
∑r∗

i=1 w
∗
i .

We claim that w∗ ≥ w/4. Note that w∗i < wi/2 means that either µ(A∗i) < wi/2 or
µ(B∗i) < wi/2; as µ(Ai), µ(Bi) ≥ wi, this is only possible if µ(Ai \A∗) +µ(Bi \B∗) > wi/2.
Suppose first that

∑r
i=r∗+1 wi > w/2. This would imply

µ((A \A∗) ∪ (B \B∗)) ≥
r∑

i=r∗+1

(µ(Ai \A∗) + µ(Bi \B∗)) >
r∑

i=r∗+1

wi/2 > w/4.

However, y(u) > 1/4 for every u ∈ (A \ A∗) ∪ (B \ B∗), thus
∑
v∈A∪B µ(v)y(v) ≥ µ((A \

A∗) ∪ (B \ B∗))/4 ≥ w/16 > λw (since λ < 1/16), a contradiction with the assumption
that the optimum is at most λw. Thus we can assume that

∑r
i=r∗+1 wi ≤ w/2 and hence∑r∗

i=1 wi ≥ w/2. Together with w∗i ≥ wi/2 for every 1 ≤ i ≤ r∗, this implies w∗ ≥ w/4.
As y(a), y(b) ≤ 1/4 for every a ∈ A∗i , b ∈ B∗i , it is clear that for every A∗i −B∗i path P , the

total weight of the edges intersecting P has to be at least 1/2 in assignment y. Therefore, if
we define y∗ : E(H)→ R+ by y∗(e) = 2y(e) for every e ∈ E(H), then y∗ covers everyA∗i−B∗i
path. Let W ∗ =

⋃r∗
i=1(A∗i ∪B∗i). We use Lemma 6.3 for the (µ, λ)-connected set W ∗, the pairs

(A∗1, B
∗
1), . . . , (A∗r∗ , B

∗
r∗), and for the weight assignment y∗. Note that w∗i ≥ wi/2 ≥ 1/2 for

every i. It follows that the total weight of y∗ on the edges is at least (λ/7)·
√
w∗ ≥ (λ/14)·

√
w,

which means that
∑
e∈E(H) y(e) ≥ (λ/28) ·

√
w ≥ (λ/28) ·

√
T ≥ 2k. y

Locating the cliques. Let y be an optimum dual solution for the maximum multicom-
modity flow problem with pairs (A1, B1), . . . , (Ar, Br) and let flow F be the sum of the
flows obtained from an optimum primal solution.

Claim 4. There are k pairwise-disjoint cliques K1, . . . , Kk and a set of k subflows f1,
. . . , fk of F , each of them having value at least 1/2, such that every path appearing in fi
intersects Ki and is disjoint from Kj for every j 6= i.

Proof. Let F (0) = F and for i = 1, 2, . . . , let F (i) be the flow obtained from F (0) by removing
f1, . . . , fi. Let c(e, F (i)) be the total weight of the paths in F (i) intersecting edge e and let
Ci =

∑
e∈E(H) y(e)c(e, F (i)). By complementary slackness, c(e, F (0)) = 1 for each e ∈ E(H)

with y(e) > 0 and hence C0 =
∑
e∈E(H) y(e) ≥ 2k.

Let us select ei to be an edge such that c(ei, F
(i−1)) is maximum possible and let Ki :=

ei \
⋃i−1
j=1 ej . Let the flow fi contain all the paths of F (i−1) intersecting ei. Observe that

the paths appearing in fi do not intersect e1, . . . , ei−1 (otherwise they would be in one of
f1, . . . , fi−1 and hence they would no longer be in F (i−1)), thus clique Ki intersects every
path in fi.

For every u− v path P appearing in F (0), we get
∑
e∈E(H),e∩P 6=∅ y(e) + y(u) + y(v) = 1

from complementary slackness: if the primal variable corresponding to P is nonzero, then
the corresponding dual constraint is tight. In particular, this means that the total weight of
the edges intersecting such a path P is at most 1 in y. As F (i−1) is a subflow of F (0), this
is also true for every path P in F (i−1). This means that when we remove a path of weight
γ from F (i−1) to obtain F (i), then the total weight of the edges e for which c(e, F (i−1))
decreases by γ is at most 1, i.e., Ci−1 decreases by at most γ. As only the paths intersecting
ei are removed from F (i−1) and the total weight of the paths intersecting ei is at most 1, we
get that Ci ≥ Ci−1 − 1 and hence Ci ≥ C0 − k ≥ C0/2 for i ≤ k. Since C0 =

∑
e∈E(H) y(e)

and Ci =
∑
e∈E(H) y(e)c(e, F (i)) ≥ C0/2, it follows that there has to be at least one edge e

with c(e, F (i)) ≥ 1/2. Thus in each step, we can select an edge ei such that that the total

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:37

Primal LP Dual LP

maximize ε minimize
∑

e∈e(H)

y(e)

s.t. s.t.∑
1≤i<j≤k

∑
P∈Pi,j ,
P∩e6=∅

x(P) ≤ 1 ∀e ∈ E(H)

∑
P∈Pi,j

x(P) ≥ ε ∀1 ≤ i < j ≤ k

x(P) ≥ 0
∀1 ≤ i < j ≤ k,
P ∈ Pi,j

∑
e∈E(H),e∩P 6=∅

y(e) ≥ `i,j
∀1 ≤ i < j ≤ k,
P ∈ Pi,j∑

1≤i<j≤k

`i,j ≥ 1

y(e) ≥ 0 ∀e ∈ E(H)

`i,j ≥ 0 ∀1 ≤ i < j ≤ k

Fig. 6. Primal and dual linear programs for uniform concurrent flow on W = (X1, . . . , Xk). We denote by
Pi,j the set of all Xi −Xj paths.

weight of the paths in F (i) intersecting ei is at least 1/2, and hence the value of fi is at
least 1/2 for every 1 ≤ i ≤ k. y

Moving the highly connected set. Let U =
⋃k
i=1Ki.

Claim 5. There is a fractional independent set µ′ such that U is a (µ′, λ/6)-connected set
with µ′(Ki) ≥ 1/2 for every 1 ≤ i ≤ r.
Proof. Each path P in fi is a path with endpoints in W and intersecting Ki. Let us truncate
each path P in fi such that its first endpoint is still in W and its second endpoint is in
Ki; let f ′i be the (W,Ki)-flow obtained by truncating every path in fi. Note that f ′i is still
a flow and the sum F ′ of f ′1, . . . , f ′k is a (W,U)-flow. Let µ1 = µ and let µ2(v) be the
total weight of the paths in F ′ with second endpoint v. It is clear that µ2 is a fractional
independent set, µ2(Ki) ≥ 1/2, and F is a (µ1, µ2)-demand (W,U)-flow with value µ2(U).
Thus by Lemma 6.4, U is a (µ2, λ/6)-connected set with the required properties. y

The set U , the partition (K1, . . . ,Kr), and the fractional independent set µ′ clearly satisfy
the requirements of the lemma.

6.2. Concurrent flows and embedding

Let W be a set of vertices and let (X1, . . . , Xk) be a partition of W . A uniform concurrent

flow of value ε on (X1, . . . , Xk) is a compatible set of
(
k
2

)
flows Fi,j (1 ≤ i < j ≤ k) where

Fi,j is an (Xi, Xj)-flow of value ε. The maximum value of a uniform concurrent flow on W
can be expressed as the optimum values of the primal and dual linear programs in Figure 6.
Intuitively, the dual linear program expresses that the “distance” of Xi and Xj is at least
`i,j (where distance is measured as the minimum total weight of the edges intersected by

an Xi −Xj path) and the sum of these
(
k
2

)
distances is at least 1.

If H is connected, then the maximum value of a uniform concurrent flow on (X1, . . . , Xk)

is at least 1/
(
k
2

)
= Ω(k−2): if each of the

(
k
2

)
flows has value 1/

(
k
2

)
, then they are clearly

compatible. The following lemma shows that in a (µ, λ)-connected set, if the sets X1, . . . ,
Xk are cliques and µ(Xi) ≥ 1/2 for every i, then we can guarantee a better bound of

Ω(k−
3
2).

Lemma 6.6. Let H be a hypergraph, µ a fractional independent set of H, and W ⊆ V (H)
a (µ, λ)-connected set for some 0 < λ < 1. Let (K1, . . . ,Kk) (for some k ≥ 1) be a partition
of W such that Ki is a clique and µ(Ki) ≥ 1/2 for every 1 ≤ i ≤ k. Then there is a uniform

concurrent flow of value Ω(λ/k
3
2) on (K1, . . . ,Kk).

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 D. Marx

Proof. Suppose that there is no uniform concurrent flow of value β ·λ/k 3
2 , where β > 0

is a sufficiently small universal constant specified later. This means that the dual linear
program has a solution having value less than that. Let us fix such a solution (y, `i,j)
of the dual linear program. In the following, for every path P , we denote by y(P) :=∑
e∈E(H),e∩P 6=∅ y(e) the total weight of the edges intersecting P . It is clear from the dual

linear program that y(P) ≥ `i,j for every P ∈ Pi,j .
We construct two graphs G1 and G2: the vertex set of both graphs is {1, . . . , k} and

for every 1 ≤ i < j ≤ k, vertices i and j are adjacent in G1 (resp., G2) if and only if
`i,j > 1/(3k2) (resp., `i,j > 1/k2). Note that G2 is a subgraph of G1. First we prove the
following claim:

Claim 1. If the distance of u and v is at most 3 in the complement of G1, then u and v are
not adjacent in G2.

Proof. Suppose that uw1w2v is a path of length 3 in the complement of G1 (the same
argument works for paths of length less than 3). By definition of G1, there is a Ku −Kw1

path P1, a Kw1
−Kw2

path P2, and a Kw2
−Kv path P3 such that y(P1), y(P2), y(P3) ≤

1/(3k2). Since Kw1
and Kw2

are cliques, paths P1 and P2 touch, and paths P2 and P3

touch. Thus by concatenating the three paths, we can obtain a Ku − Kv path P with
y(P) ≤ y(P1) + y(P2) + y(P3) ≤ 1/k2, implying that u and v are not adjacent in G2,
proving the claim. Note that the proof of this claim is the only point where we use that the
Ki’s are cliques. y

Let y′ : E(H) → R+ be defined by y′(e) := 3k2 · y(e), thus y′ has total weight less

than 3β · λ
√
k. Suppose first that G1 has a matching a1b1, . . . , ambm of size m = dk/4e.

This means that y′ covers every Kai − Kbi path for every 1 ≤ i ≤ dk/4e. Therefore, by

Lemma 6.3, y′ has weight at least (λ/7) ·
√
dk/4e · (1/2) > 3β ·λ

√
k, if β is sufficiently small,

yielding a contradiction.
Thus the size of the maximum matching in G1 is less than dk/4e, which means that there

is a vertex cover S1 of size at most k/2. Let S2 ⊆ S1 contain those vertices of S1 that are
adjacent to every vertex outside S1 in G1. We claim that S2 is a vertex cover of G2. Suppose
that there is an edge uv of G2 for some u, v 6∈ S2. By the definition of S2, either u 6∈ S1,
or there is a vertex w1 6∈ S1 such that u and w1 are not adjacent in G1. Similarly, either v
is not in S1, or it is not adjacent in G1 to some w2 6∈ S1. Since vertices not in S1 are not
adjacent in G1 (as S1 is a vertex cover of G1), we get that the distance of u and v is at
most 3 in the complement of G1. Thus by the claim, u and v are not adjacent in G2.

Let us give an upper bound on
∑

1≤i<j≤k `i,j by bounding `i,j separately for pairs that
are adjacent in G2 and for pairs that are not adjacent in G2. The number of edges in G2 is
at most |S2|k (as S2 is vertex cover). The total weight of y, which is less than β · λ/k 3

2 , is
an upper bound on any `i,j . Furthermore, if i and j are not adjacent in G2, then we have
`i,j ≤ 1/k2. Therefore,

1 ≤
∑

1≤i<j≤k

`i,j ≤ |S2|k · β · λ/k
3
2 +

(
k

2

)
(1/k2) ≤ β · λ|S2|/

√
k + 1/2,

which implies that |S2| ≥
√
k/(2βλ). Let A :=

⋃
i∈S2

Ki and B :=
⋃
i 6∈S1

Ki; we have

µ(A) ≥ |S2| · (1/2) ≥
√
k/(4βλ) and µ(B) ≥ (1/2) · (k − |S1|)) ≥ k/4. As every vertex

of S2 is adjacent in G1 with every vertex outside S1, assignment y′ covers every A − B
path. However, y′ has weight less than 3β · λ

√
k < min{

√
k/(4βλ), k/4} (using that λ ≤ 1

and assuming that β is sufficiently small), contradicting the assumption that W is (µ, λ)-
connected.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:39

Intuitively, the intersection structure of the paths appearing in a uniform concurrent flow
on cliques K1, . . . , Kk is reminiscent of the edges of the complete graph on k vertices: if
{i1, j1} ∩ {i2, j2} 6= ∅, then every path of Fi1,j1 touches every path of Fi2,j2 . We use the
following result from [Marx 2010b], which shows that the line graph of cliques have good
embedding properties. If G is a graph and q ≥ 1 is an integer, then the blow up G(q) is
obtained from G by replacing every vertex v with a clique Kv of size q and for every edge
uv of G, connecting every vertex of the clique Ku with every vertex of the clique Kv. Let
Lk be the line graph of the complete graph on k vertices.

Lemma 6.7 (Marx [2010b]). For every k > 1 there is a constant nk > 0 such that

for every G with |E(G)| > nk and no isolated vertices, the graph G is a minor of L
(q)
k for

q = d130|E(G)|/k2e. Furthermore, a minor mapping can be found in time polynomial in the
size of G.

Using the terminology of embeddings, a minor mapping of G into L
(q)
k can be considered

as an embedding from G to Lk where every vertex of Lk appears in the image of at most q
vertices, i.e., the vertex depth of the embedding is at most q. Thus we can restate Lemma 6.7
the following way:

Lemma 6.8. For every k > 1 there is a constant nk > 0 such that for every G with
|E(G)| > nk and no isolated vertices, the graph G has an embedding into Lk with vertex
depth O(|E(G)|/k2). Furthermore, such an embedding can be found in time polynomial in
the size of G.

Now we are ready to prove Theorem 6.1, the main result of the section:

Proof (of Theorem 6.1). By Lemma 6.5 and Lemma 6.6, for some k =

Ω(λ
√

conλ(H)), there are cliques K1, . . . , Kk and a uniform concurrent flow Fi,j (1 ≤
i < j ≤ k) of value ε = Ω(λ/k

3
2) on (K1, . . . ,Kk). By trying all possibilities for the cliques

and then solving the uniform concurrent flow linear program, we can find these flows (the
time required for this step is a constant f(H,λ) depending only on H and λ) . Let w0 be
the smallest positive weight appearing in the flows.

Let m = |E(G)| and suppose that m ≥ nk, for the constant nk in Lemma 6.8. Thus
the algorithm of Lemma 6.8 can be used to find a an embedding ψ from G to Lk with
vertex depth q = O(m/k2). Let us denote by v{i,j} (1 ≤ i < j ≤ k) the vertices of
Lk with the meaning that distinct vertices v{i1,j1} and v{i2,j2} are adjacent if and only if
{i1, j1} ∩ {i2, j2} 6= ∅.

We construct an embedding φ from G to H the following way. The set φ(u) ⊆ V (H) is
obtained from the set ψ(u) ⊆ V (Lk) by replacing each vertex of v{i,j} ∈ ψ(u) ⊆ V (Lk) by
a path from the flow Fi,j (thus φ(u) is the union of |ψ(u)| paths of H). We select the paths
in such a way that the following requirement is satisfied: a path P of Fi,j having weight
w is selected into the image of at most d(q/ε) · we vertices of G. We set mH,λ sufficiently
large that (q/ε) · w0 ≥ 1 (note that q depends on m, but ε and w0 depends only on H and
λ). Thus if m ≥ mH,λ, then d(q/ε) · we ≤ 2(q/ε) · w. Since the total weight of the paths in
Fi,j is ε, these paths can accommodate the image of at least (q/ε) · ε = q vertices. As each
vertex v{i,j} of Lk appears in the image of at most q vertices of G in the mapping ψ, we
can satisfy the requirement.

It is easy to see that if u1 and u2 are adjacent in G, then φ(u1) and φ(u2) touch: in this
case, there are vertices v{i1,j1} ∈ ψ(u1), v{i2,j2} ∈ ψ(u2) that are adjacent or the same in Lk
(that is, there is a t ∈ {i1, j1} ∩ {i2, j2}), and the corresponding paths of Fi1,j1 and Fi2,j2
selected into φ(u1) and φ(u2) touch, as they both intersect the clique Kt. With a similar
argument, we can show that φ(u) is connected.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 D. Marx

To bound the edge depth of the embedding φ, consider an edge e. The total weight
of the paths intersecting e is at most 1 and a path with weight w is used in the image
of at most 2(q/ε) · w vertices. Each path intersects e in at most 2 vertices (as we can
assume that the paths appearing in the flows are minimal), thus a path with weight w
contributes at most 4(q/ε) · w to the depth of e. Thus the edge depth of φ is at most

4(q/ε) = O(m/(λ
√
k)) = O(m/(λ

3
2 conλ(H)

1
4)).

6.3. Connection with adaptive width

As an easy consequence of the embedding result Corollary 6.2, we can show that large
submodular width implies large adaptive width:

Lemma 6.9. For every hypergraph H, adw(H) = Ω(emb(H)).

Proof. Suppose that emb(H) > α. This means that there is an integer mα such that
every graph with m ≥ mα edges has an embedding into H with edge depth m/α. It is well-
known that there are arbitrarily large sparse graphs whose treewidth is linear in the number
of vertices (for example, bounded-degree expanders, see e.g., [Grohe and Marx 2009]): for
some universal constant β, there is a graph G with m ≥ mα edges and treewidth at least
βm. Thus there is an embedding φ from G to H with edge depth at most q ≤ m/α. Let
d(v) be the depth of vertex v in the embedding and let us define µ(v) := d(v)/q. From
the definition of edge depth, it is clear that µ is a fractional independent set. Suppose that
there is a tree decomposition (T,Bv∈V (T)) of H having µ-width w. This tree decomposition
can be turned into a tree decomposition (T,B′v∈V (T)) of G: for every Bt ⊆ V (H), let

B′t := {u ∈ V (G) | φ(u) ∩ Bt 6= ∅} contain those vertices of G whose images intersect Bt.
Now µ(Bt) ≤ w means that

∑
v∈Bt d(v) ≤ qw, which implies that |B′t| ≤ qw. Thus the

width of (T,B′v∈V (T)) is less than qw, which means that w has to be at least βm/q = Ω(α),

the required lower bound on the adaptive width of H.

Combining Theorem 5.1 and Lemma 6.9 gives:

Corollary 6.10. For every hypergraph H, subw(H) = O(adw(H)4).

7. FROM EMBEDDINGS TO HARDNESS OF CSP

We prove the main hardness result of the paper in this section:

Theorem 7.1. Let H be a recursively enumerable class of hypergraphs with unbounded
submodular width. If there is an algorithm A and a function f such that A solves every

instance I of CSP(H) with hypergraph H ∈ H in time f(H) · ‖I‖o(subw(H)1/4), then the
Exponential Time Hypothesis fails.

In particular, Theorem 7.1 implies that CSP(H) for such a H is not fixed-parameter
tractable:

Corollary 7.2. If H is a recursively enumerable class of hypergraphs with unbounded
submodular width, then CSP(H) is not fixed-parameter tractable, unless the Exponential
Time Hypothesis fails.

The Exponential Time Hypothesis (ETH) states that there is no 2o(n) time algorithm for
n-variable 3SAT. The Sparsification Lemma of Impagliazzo et al. [2001] shows that ETH
is equivalent to the assumption that there is no algorithm for 3SAT whose running time is
subexponential in the number of clauses. This result will be crucial for our hardness proof,
as our reduction from 3SAT is sensitive to the number of clauses.

Theorem 7.3 (Impagliazzo et al. [2001]). If there is a 2o(m) time algorithm for m-
clause 3SAT, then there is a 2o(n) time algorithm for n-variable 3SAT.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:41

To prove Theorem 7.1, we show that a subexponential-time algorithm for 3SAT exists
if CSP(H) can be solved “too fast” for some H with unbounded submodular width. We
use the characterization of submodular width from Section 5 and the embedding results of
Section 6 to reduce 3SAT to CSP(H) by embedding the incidence graph of a 3SAT formula
into a hypergraph H ∈ H. The basic idea of the proof is that if the 3SAT formula has m
clauses and the edge depth of the embedding is m/r, then we can gain a factor r in the
exponent of the running time. If submodular width is unbounded in H, then we can make
this gap r between the number of clauses and the edge depth arbitrary large, and hence
the exponent can be arbitrarily smaller than the number of clauses, i.e., the algorithm is
subexponential in the number of clauses.

The following simple lemma from [Marx 2010b] gives a transformation that turns a 3SAT
instance into a binary CSP instance. We include the proof for completeness.

Lemma 7.4. Given an instance of 3SAT with n variables and m clauses, it is possible
to construct in polynomial time an equivalent CSP instance with n+m variables, 3m binary
constraints, and domain size 3.

Proof. Let φ be a 3SAT formula with n variables and m clauses. We construct an in-
stance of CSP as follows. The CSP instance contains a variable xi (1 ≤ i ≤ n) corresponding
to the i-th variable of φ and a variable yj (1 ≤ j ≤ m) corresponding to the j-th clause of
φ. Let D = {1, 2, 3} be the domain. We try to describe a satisfying assignment of φ with
these n + m variables. The intended meaning of the variables is the following. If the value
of variable xi is 1 (resp., 2), then this represents that the i-th variable of φ is true (resp.,
false). If the value of variable yj is `, then this represents that the j-th clause of φ is sat-
isfied by its `-th literal. To ensure consistency, we add 3m constraints. Let 1 ≤ j ≤ m and
1 ≤ ` ≤ 3, and assume that the `-th literal of the j-th clause is a positive occurrence of the
i-th variable. In this case, we add the binary constraint (xi = 1 ∨ yj 6= `): either xi is true
or some other literal satisfies the clause. Similarly, if the `-th literal of the j-th clause is a
negated occurrence of the i-th variable, then we add the binary constraint (xi = 2∨yj 6= `).
It is easy to verify that if φ is satisfiable, then we can assign values to the variables of the
CSP instance such that every constraint is satisfied, and conversely, if the CSP instance has
a solution, then φ is satisfiable.

Next we show that an embedding from graph G to hypergraph H can be used to simulate
a binary CSP instance I1 having primal graph G by a CSP instance I2 whose hypergraph
is H. The domain size and the size of the constraint relations of I2 can grow very large in
this transformation: the edge depth of the embedding determines how large this increase is.

Lemma 7.5. Let I1 = (V1, D1, C1) be a binary CSP instance with primal graph G and
let φ be an embedding of G into a hypergraph H with edge depth q. Given I1, H, and
the embedding φ, it is possible to construct (in time polynomial in the size of the output)
an equivalent CSP instance I2 = (V2, D2, C2) with hypergraph H where the size of every
constraint relation is at most |D1|q.

Proof. For every v ∈ V (H), let Uv := {u ∈ V (G) | v ∈ φ(u)} be the set of vertices in G
whose images contain v, and for every e ∈ E(H), let Ue :=

⋃
v∈e Uv. Observe that for every

e ∈ E(H), we have |Ue| ≤
∑
v∈e |Uv| ≤ q, since the edge depth of φ is q. Let D2 be the set

of integers between 1 and |D1|q. For every v ∈ V (H), the number of assignments from Uv
to D1 is clearly |D1||Uv| ≤ |D1|q. Let us fix a bijection hv between these assignments on Uv
and the set {1, . . . , |D1||Uv|} ⊆ D2.

The set C2 of constraints of I2 are constructed as follows. For each e ∈ E(H), there
is a constraint 〈se, Re〉 in C2, where se is an |e|-tuple containing an arbitrary ordering
of the elements of e. The relation Re is defined the following way. Suppose that vi is

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 D. Marx

the i-th coordinate of se and consider a tuple t = (d1, . . . , d|e|) ∈ D
|e|
2 of integers where

1 ≤ di ≤ |D1||Uvi | for every 1 ≤ i ≤ |e|. This means that di is in the image of hvi and hence
fi := h−1vi (di) is an assignment from Uvi to D1. We define relation Re such that it contains
tuple t if the following two conditions hold. First, we require that the assignments f1, . . . ,
f|e| are consistent in the sense that fi(u) = fj(u) for any i, j and u ∈ Uvi ∩Uvj . In this case,

f1, . . . , f|e| together define an assignment f on
⋃|e|
i=1 Uvi = Ue. The second requirement is

that this assignment f satisfies every constraint of I1 whose scope is contained in Ue, that
is, for every constraint 〈(u1, u2), R〉 ∈ C1 with {u1, u2} ⊆ Ue, we have (f(u1), f(u2)) ∈ R.
This completes the description of the instance I2.

Let us bound the maximum size of a relation of I2. Consider the relation Re constructed

in the previous paragraph. It contains tuples (d1, . . . , d|e|) ∈ D
|e|
2 where 1 ≤ di ≤ |D1||Uvi |

for every 1 ≤ i ≤ |e|. This means that

|Re| ≤
|e|∏
i=1

|D1||Uvi | = |D1|
∑|e|
i=1 |Uvi | ≤ |D1|q, (4)

where the last inequality follows from the fact that φ has edge depth at most q.
To prove that I1 and I2 are equivalent, assume first that I1 has a solution f1 : V1 → D1.

For every v ∈ V2, let us define f2(v) := hv(prUv f2), that is, the integer between 1 and

|D1||Uv| corresponding to the projection of assignment f2 to Uv. It is easy to see that f2 is
a solution of I2.

Assume now that I2 has a solution f2 : V2 → D2. For every v ∈ V (H), let fv := h−1v (f2(v))
be the assignment from Uv to D1 that corresponds to f2(v) (note that by construction, f2(v)
is at most |D1||Uv|, hence h−1v (f2(v)) is well-defined). We claim that these assignments are
compatible: if u ∈ Uv′ ∩ Uv′′ for some u ∈ V (G) and v′, v′′ ∈ V (H), then fv′(u) = fv′′(u).
Recall that φ(u) is a connected set in H, hence there is a path between v′ and v′′ in φ(u).
We prove the claim by induction on the distance between v′ and v′′ in φ(u). If the distance
is 0, that is, v′ = v′′, then the statement is trivial. Suppose now that the distance of v′ and
v′′ is d > 0. This means that v′ has a neighbor z ∈ φ(u) such that the distance of z and v′′

is d− 1. Therefore, fz(u) = fv′′(u) by the induction hypothesis. Since v′ and z are adjacent
in H, there is an edge E ∈ E(H) containing both v′ and z. From the way I2 is defined,
this means that fv′ and fz are compatible and fv′(u) = fz(u) = fv′′(u) follows, proving
the claim. Thus the assignments {fv | v ∈ V (H)} are compatible and these assignments
together define an assignment f1 : V (G) → D. We claim that f1 is a solution of I1. Let
c = 〈(u1, u2), R〉 be an arbitrary constraint of I1. Since u1u2 ∈ E(G), sets φ(u1) and φ(u2)
touch, thus there is an edge e ∈ E(H) that contains a vertex v1 ∈ φ(u1) and a vertex
v2 ∈ φ(u2) (or, in other words, u1 ∈ Uv1 and u2 ∈ Uv2). The definition of ce in I2 ensures
that f1 restricted to Uv1 ∪ Uv2 satisfies every constraint of I1 whose scope is contained in
Uv1 ∪ Uv2 ; in particular, f1 satisfies constraint c.

Now we are ready to prove Theorem 7.1, the main result of the section. We show that
if there is a class H of hypergraphs with unbounded submodular width such that CSP(H)
is FPT, then this algorithm can be used to solve 3SAT in subexponential time. The main
ingredients are the embedding result of Theorem 6.1, and Lemmas 7.4 and 7.5 above on
reduction to CSP. Furthermore, we need a way of choosing an appropriate hypergraph
from the set H. As discussed earlier, the larger the submodular width of the hypergraph
is, the more we gain in the running time. However, we should not spend too much time
on constructing the hypergraph and on finding an embedding. Therefore, we use the same
technique as in [Marx 2010b]: we enumerate a certain number of hypergraphs and we try
all of them simultaneously. The number of hypergraphs enumerated depends on the size of
the 3SAT instance. This will be done in such a way that guarantees that we do not spend

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:43

too much time on the enumeration, but eventually every hypergraph in H is considered for
sufficiently large input sizes.

Proof (of Theorem 7.1). Let us fix a λ > 0 that is sufficiently small for Theorems 5.1

and 6.1. Suppose that there is an f1(H)no(subw(H)1/4) time algorithm A for CSP(H). We can

express the running time as f1(H)nsubw(H)1/4/ι(subw(H)) for some unbounded nondecreasing
function ι with ι(1) > 0. We construct an algorithm B that solves 3SAT in subexponential
time by using algorithm A as subroutine.

Given an instance I of 3SAT with n variables and m clauses and a hypergraph H ∈ H, we
can solve I the following way. First we use Lemma 7.4 to transform I into a CSP instance
I1 = (V1, D1, C1) with |V1| = n+m, |D1| = 3, and |C1| = 3m. Let G be the primal graph of
I1, which is a graph having 3m edges. It can be assumed thatm is greater than some constant
mH,λ of Theorem 6.1, otherwise the instance can be solved in constant time. Therefore, the
algorithm of Theorem 6.1 can be used to find an embedding φ of G into H with edge depth
q = O(m/(λ

3
2 conλ(H)1/4)); by Theorem 5.1, we have that conλ(H) = Ω(subw(H)) and

hence q ≤ cλm/ subw(H)1/4 for some constant cλ depending only on λ. By Lemma 7.5, we
can construct an equivalent instance I2 = (V2, D2, C2) whose hypergraph is H. By solving
I2 using the assumed algorithm A for CSP(H), we can answer if I1 has a solution, or
equivalently, if the 3SAT instance I has a solution.

We will call “running algorithm A[I,H]” this way of solving the 3SAT instance I. Let
us determine the running time of A[I,H]. The two dominating terms are the time required
to find embedding φ using the f(H,λ)mO(1) time algorithm of Theorem 7.1 and the time
required to run A on I2. The size of every constraint relation in I2 is at most |D1|q = 3q,
hence ‖I2‖ = O((|E(H)|+ |V (H)|)3q). Let k = subw(H). The total running time of A[I,H]
can be bounded by

f(H,λ)mO(1)+f1(H)‖I2‖k
1/4/ι(k) = f(H,λ)mO(1)+f1(H)(|E(H)|+|V (H|)k

1/4/ι(k)·3q·k
1/4/ι(k)

= f2(H,λ) ·mO(1) · 3cλm/ι(k)

for an appropriate function f2(H,λ) depending only on H and λ.
Algorithm B for 3SAT proceeds as follows. Let us fix an arbitrary computable enumeration

H1, H2, . . . of the hypergraphs in H. Given an m-clause 3SAT formula I, algorithm B
spends the first m steps on enumerating these hypergraphs; let H` be the last hypergraph
produced by this enumeration (we assume that m is sufficiently large that ` ≥ 1). Next we
start simulating the algorithms A[I,H1], A[I,H2], . . . , A[I,H`] in parallel. When one of the
simulations stops and returns an answer, then we stop all the simulations and return the
answer. It is clear that algorithm B will correctly decide the satisfiability of I.

We claim that there is a universal constant d such that for every s, there is an ms such
that for every m > ms, the running time of B is at most (m ·2m/s)d on an m-clause formula.
Clearly, this means that the running time of B is 2o(m).

For any positive integer s, let ks be the smallest positive integer such that ι(ks) ≥ s
(as ι is unbounded, this is well defined). Let is be the smallest positive integer such that
subw(His) ≥ ks (as H has unbounded submodular width, this is also well defined). Set ms

sufficiently large that ms ≥ f2(His , λ) and the fixed enumeration of H reaches His in less
then ms steps. This means that if we run B on a 3SAT formula I with m ≥ ms clauses, then
` ≥ is and hence A[I,His] will be one of the ` simulations started by B. The simulation of
A[I,His] terminates in

f2(His , λ)mO(1) · 3cλm/ι(subw(His)) ≤ m ·mO(1) · 3cλm/s

steps. Taking into account that we simulate ` ≤ m algorithms in parallel and all the simu-
lations are stopped not later than the termination of A[I,His], the running time of B can

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 D. Marx

be bounded polynomially by the running time of A[I,His]. Therefore, there is a constant d
such that the running time of B is at most (m · 2m/s)d, as required.

Remark 7.6. Recall that if φ is an embedding of G into H, then the depth of an edge
e ∈ E(H) is dφ(e) =

∑
v∈V (G) |φ(v) ∩ e|. A variant of this definition would be to define the

depth of e as d′φ(e) = |{v ∈ V (G) | φ(v)∩e 6= ∅}|, i.e., if φ(v) intersects e, then v contributes

only 1 to the depth of e, not |φ(v) ∩ e| as in the original definition. Let us call this variant
weak edge depth, it is clear that the weak edge depth of an embedding is at most the edge
depth of the embedding.

Lemma 7.5 can be made stronger by requiring only that the weak edge depth is at most q.
Indeed, the only place where we use the bound on edge depth is in Inequality (4). However,
the size of the relation Re can be bounded by the number of possible assignments on Ue in
instance I1. If weak edge depth is at most q, then |Ue| ≤ q, and the |D1|q bound on the size
of Re follows.

Remark 7.7. A different version of CSP was investigated in [Marx 2011], where each
variable has a different domain, and each constraint relation is represented by a full truth
table (see the exact definition in [Marx 2011]). Let us denote by CSPtt(H) this variant
of the problem. It is easy to see that CSPtt(H) can be reduced to CSP(H) in polynomial
time, but a reduction in the other direction can possibly increase the representation of a
constraint by an exponential factor. Nevertheless, the hardness results of this section apply
to the “easier” problem CSPtt(H) as well. What we have to verify is that the proof of
Lemma 7.5 works even if I2 is an instance of CSPtt, i.e., the constraint relations have to be
represented by truth tables. Inspection of the proof shows that it indeed works: the product
in Inequality (4) is exactly the size of the truth table describing the constraint corresponding
to edge e, thus the |D1|q upper bound remains valid even if constraints are represented by
truth tables. Therefore, the hardness results of [Marx 2011] are subsumed by the following
corollary:

Corollary 7.8. If H is a recursively enumerable class of hypergraphs with unbounded
submodular width, then CSPtt(H) is not fixed-parameter tractable, unless the Exponential
Time Hypothesis fails.

8. CONCLUSIONS

The main result of the paper is introducing submodular width and proving that bounded
submodular width is the property that determines the fixed-parameter tractability of
CSP(H). The hardness result is proved assuming the Exponential Time Hypothesis. This
conjecture was formulated relatively recently [Impagliazzo et al. 2001], but it turned out to
be very useful in proving lower bounds in a variety of settings [Marx 2010b; Andoni et al.
2006; Marx 2007; Pǎtraşcu and Williams 2010].

For the hardness proof, we had to understand what large submodular width means and we
had to explore the connection between submodular width and other combinatorial proper-
ties. We have obtained several equivalent characterizations of bounded submodular width,
in particular, we have showed that bounded submodular width is equivalent to bounded
adaptive width:

Corollary 8.1. The following are equivalent for every class H of hypergraphs:

(1) There is a constant c1 such that µ-width(H) ≤ c1 for every H ∈ H and fractional
independent set µ.

(2) There is a constant c2 such that b-width(H) ≤ c2 for every H ∈ H and edge-
dominated monotone submodular function b on V (H) with b(∅) = 0.

(3) There is a constant c3 such that b∗-width(H) ≤ c3 for every H ∈ H and edge-
dominated monotone submodular function b on V (H) with b(∅) = 0.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:45

(4) There is a constant c4 such that conλ(H) ≤ c4 for every H ∈ H, where λ > 0 is a
universal constant.

(5) There is a constant c5 such that emb(H) ≤ c5 for every H ∈ H.

Implications (2)⇒(1) and (3)⇒(2) are trivial; (4)⇒(3) follows from Lemma 5.10; (5)⇒(4)
follows from Corollary 6.2; (1)⇒(5) follows from Lemma 6.9.

Let us briefly review the main ideas that were necessary for proving the main result of
the paper:

— Recognizing that submodular width is the right property characterizing the complexity
of the problem.

— A CSP instance can be partitioned into a bounded number of uniform instances (Sec-
tion 4.2).

— The number of solutions in a uniform CSP instance can be described by a submodular
function (Section 4.3).

— There is a connection between fractional separation and finding a separator minimizing
an edge-dominated submodular cost function (Section 5.2).

— The transformation that turns b into b∗, and the properties of b∗ that are more suitable
than b for recursively constructing a tree decomposition (Section 5.1).

— Our results on fractional separation and the standard framework of finding tree de-
compositions show that large submodular width implies that there is a highly connected
set (Section 5.3).

— A highly connected set can be turned into a highly connected set that is partitioned
into cliques in an appropriate way (Section 6.1).

— A highly connected set with appropriate cliques implies that there is a uniform con-
current flow of large value between the cliques (Section 6.2).

— Similarly to [Marx 2010b], we use the observation that a concurrent flow is analogous
to a line graph of a clique, hence it has good embedding properties (Section 6.2).

— Similarly to [Marx 2010b], an embedding in a hypergraph gives a way of simulating
3SAT with CSP(H) (Section 7).

It is possible that the main result can be proved in a simpler way by bypassing some
of the ideas above. In particular, a surprising consequence of our results is that bounded
submodular width and bounded adaptive width are the same, i.e., if a classH has unbounded
submodular width, then for every k there is a Hk ∈ H and a fractional independent set µk
such that µk-width(Hk) ≥ k, or in other words, large submodular width can be certified by
the modular function µk. To prove this, we need all the results of Sections 5 and 6. Having
a better understanding and an independent proof of this fact could simplify the proofs
considerably. Another possible target for simplification is Section 6.1, where a lot of effort
is spent on proving that if there is a large highly connected set, then there is a large highly
connected set that is partitioned into cliques in an appropriate way. It might be possible to
strengthen the results of Section 5 (perhaps by better understanding the role of cliques in
separators) so that they give such a highly connected set directly.

An obvious question for further research is whether it is possible to prove a similar
dichotomy result with respect to polynomial-time solvability. At this point, it is hard to
see what the answer could be if we investigate the same question using the more restricted
notion of polynomial time solvability. We know that bounded fractional hypertree width
implies polynomial-time solvability [Marx 2010a] and Theorem 7.1 shows that unbounded
submodular width implies that the problem is not polynomial-time solvable (as it is not
even fixed-parameter tractable). So only those classes of hypergraphs are in the “gray zone”
that have bounded submodular width but unbounded fractional hypertree width.

What could be the truth in this gray zone? A first possibility is that CSP(H) is
polynomial-time solvable for every such class, i.e., Theorem 4.1 can be improved from

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 D. Marx

fixed-parameter tractability to polynomial-time solvability. However, Theorem 4.1 uses the
power of fixed-parameter tractability in an essential way (splitting into a double-exponential
number of uniform instances), so it is not clear how such improvement is possible. A sec-
ond possibility is that unbounded fractional hypertree width implies that CSP(H) is not
polynomial-time solvable. Substantially new techniques would be required for such a hard-
ness proof. The hardness proofs of this paper and of [Grohe 2007; Marx 2010b] are based
on showing that a large problem space can be efficiently embedded into an instance with a
particular hypergraph. However, the fixed-parameter tractability results show that no such
embedding is possible in case of classes with bounded submodular width. Therefore, a pos-
sible hardness proof should embed a problem space that is comparable (in some sense) with
the size of the hypergraph and should create instances where the domain size is bounded
by a function of the size of the hypergraph. A third possibility is that the boundary of
polynomial-time solvability is somewhere between bounded fractional hypertree width and
bounded submodular width. Currently, there is no natural candidate for a property that
could correspond to this boundary and, again, the hardness part of the characterization
should be substantially different than what was done before. Finally, there is a fourth pos-
sibility: the boundary of the polynomial-time cases cannot be elegantly characterized by a
simple combinatorial property. In general, if we consider the restriction of a problem to all
possible classes of (hyper)graphs, then there is no a priori reason why an elegant charac-
terization should exist that describes the easy and hard classes. For example, it is highly
unlikely that there is an elegant characterization of those classes of graphs where solving the
Maximum Independent Set problem is polynomial-time solvable. As discussed earlier,
the fixed-parameter tractability of CSP(H) is a more robust question than its polynomial-
time solvability, hence it is very well possible that only the former question has an elegant
answer.

REFERENCES

Isolde Adler. 2006. Width functions for hypertree decompositions. Ph.D. Dissertation. Albert-Ludwigs-
Universität Freiburg.

Isolde Adler, Georg Gottlob, and Martin Grohe. 2007. Hypertree width and related hypergraph invariants.
European J. Combin. 28, 8 (2007), 2167–2181.

Amit Agarwal, Noga Alon, and Moses Charikar. 2007. Improved approximation for directed cut problems.
In STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing. ACM, New
York, 671–680.

Noga Alon, Ilan Newman, Alexander Shen, Gábor Tardos, and Nikolai Vereshchagin. 2007. Partitioning
multi-dimensional sets in a small number of “uniform” parts. European J. Combin. 28, 1 (2007), 134–
144.

Omid Amini, Frédéric Mazoit, Nicolas Nisse, and Stéphan Thomassé. 2009. Sub-
modular partition functions. Discrete Mathematics 309, 20 (2009), 6000 – 6008.
DOI:http://dx.doi.org/DOI:10.1016/j.disc.2009.04.033

Alexandr Andoni, Piotr Indyk, and Mihai Patrascu. 2006. On the Optimality of the Dimensionality
Reduction Method. In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’06). IEEE Computer Society, Washington, DC, USA, 449–458.
DOI:http://dx.doi.org/10.1109/FOCS.2006.56

Albert Atserias, Andrei A. Bulatov, and Vı́ctor Dalmau. 2007. On the Power of k-Consistency. In ICALP.
279–290.

Catriel Beeri, Ronald Fagin, David Maier, Alberto O. Mendelzon, Jeffrey D. Ullman, and Mihalis Yan-
nakakis. 1981. Properties of Acyclic Database Schemes. In STOC. 355–362.

Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. 1983. On the desirability of acyclic
database schemes. J. Assoc. Comput. Mach. 30, 3 (1983), 479–513.

Andrei A. Bulatov. 2003. Tractable conservative Constraint Satisfaction Problems. In 18th Annual IEEE
Symposium on Logic in Computer Science (LICS’03). IEEE Computer Society, Los Alamitos, CA,
USA, 321.

Andrei A. Bulatov. 2006. A dichotomy theorem for constraint satisfaction problems on a 3-element set. J.
ACM 53, 1 (2006), 66–120.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

Tractable hypergraph properties for constraint satisfaction and conjunctive queries A:47

A. A. Bulatov, A. A. Krokhin, and P. Jeavons. 2001. The complexity of maximal constraint languages. In
Proceedings of the 33rd ACM Symposium on Theory of Computing. 667–674.

Ashok K. Chandra and Philip M. Merlin. 1977. Optimal Implementation of Conjunctive Queries in Rela-
tional Data Bases. In STOC. 77–90.

Chandra Chekuri and Anand Rajaraman. 2000. Conjunctive query containment revisited. Theoret. Comput.
Sci. 239, 2 (2000), 211–229.

Hubie Chen and Martin Grohe. 2010. Constraint satisfaction with succinctly specified relations. J. Comput.
Syst. Sci. 76, 8 (2010), 847–860.

F. R. K. Chung, R. L. Graham, P. Frankl, and J. B. Shearer. 1986. Some intersection theorems for ordered
sets and graphs. J. Combin. Theory Ser. A 43, 1 (1986), 23–37.

Vı́ctor Dalmau, Phokion G. Kolaitis, and Moshe Y. Vardi. 2002. Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics. In CP ’02: Proceedings of the 8th International Conference
on Principles and Practice of Constraint Programming. Springer-Verlag, London, UK, 310–326.

R. G. Downey and M. R. Fellows. 1999. Parameterized Complexity. Springer, New York. xvi+533 pages.

Ronald Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. J. Assoc. Com-
put. Mach. 30, 3 (1983), 514–550.

Tomás Feder and Moshe Y. Vardi. 1999. The computational structure of monotone monadic SNP and
constraint satisfaction: a study through Datalog and group theory. SIAM J. Comput. 28, 1 (1999),
57–104.

Jörg Flum and Martin Grohe. 2006. Parameterized Complexity Theory. Springer, Berlin.

E. C. Freuder. 1990. Complexity of K-Tree Structured Constraint Satisfaction Problems. In Proc. of AAAI-
90. Boston, MA, 4–9.

G. Gottlob, N. Leone, and F. Scarcello. 2002a. Hypertree Decompositions and Tractable Queries. J. Comput.
System Sci. 64 (2002), 579–627.

Georg Gottlob, Francesco Scarcello, and Martha Sideri. 2002b. Fixed-parameter complexity in AI and
nonmonotonic reasoning. Artificial Intelligence 138, 1-2 (2002), 55–86.

G. Gottlob and S. Szeider. 2008. Fixed-Parameter Algorithms For Artificial Intelligence, Constraint Satis-
faction and Database Problems. Comput. J. 51, 3 (2008), 303–325.

Gianluigi Greco and Francesco Scarcello. 2010. The power of tree projections: local consistency, greedy algo-
rithms, and larger islands of tractability. In Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems (PODS ’10). ACM, New York, NY, USA,
327–338. DOI:http://dx.doi.org/10.1145/1807085.1807127

Martin Grohe. 2006. The Structure of Tractable Constraint Satisfaction Problems.. In MFCS 2006. 58–72.

Martin Grohe. 2007. The complexity of homomorphism and constraint satisfaction problems seen from the
other side. J. ACM 54, 1 (2007), 1. DOI:http://dx.doi.org/10.1145/1206035.1206036

Martin Grohe and Dániel Marx. 2009. On tree width, bramble size, and expansion. Journal of Combinatorial
Theory Ser. B 99, 1 (2009), 218–228.

Martin Grohe and Dániel Marx. 2012+. Constraint solving via fractional edge covers. (2012+). To appear
in ACM Transactions on Algorithm.

Anupam Gupta. 2003. Improved results for directed multicut. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (Baltimore, MD, 2003). ACM, New York, 454–455.

Mohammad Taghi Hajiaghayi and Harald Räcke. 2006. An O(
√
n)-approximation algorithm for directed

sparsest cut. Inform. Process. Lett. 97, 4 (2006), 156–160.

Petr Hliněný. 2005. A parametrized algorithm for matroid branch-width. SIAM J. Comput. 35, 2 (2005),
259–277.

Petr Hliněný and Sang-il Oum. 2008. Finding branch-decompositions and rank-decompositions. SIAM J.
Comput. 38, 3 (2008), 1012–1032.

Petr Hliněný and Geoff Whittle. 2006. Matroid tree-width. European J. Combin. 27, 7 (2006), 1117–1128.

Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. 2001. Which problems have strongly exponential
complexity? J. Comput. System Sci. 63, 4 (2001), 512–530.

Satoru Iwata. 2008. Submodular function minimization. Math. Program. 112, 1, Ser. B (2008), 45–64.

Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. 2001. A combinatorial strongly polynomial algorithm
for minimizing submodular functions. J. ACM 48, 4 (2001), 761–777 (electronic).

P. Jeavons, D. A. Cohen, and M. Gyssens. 1997. Closure properties of constraints. J. ACM 44, 4 (1997),
527–548.

Phokion G. Kolaitis and Moshe Y. Vardi. 2000a. Conjunctive-query containment and constraint satisfaction.
J. Comput. Syst. Sci. 61, 2 (2000), 302–332. DOI:http://dx.doi.org/10.1006/jcss.2000.1713

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

A:48 D. Marx

Phokion G. Kolaitis and Moshe Y. Vardi. 2000b. A Game-Theoretic Approach to Constraint Satisfaction.
In AAAI/IAAI. 175–181.

Dániel Marx. 2007. On the optimality of planar and geometric approximation schemes. In 48th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’07). 338–348.

Dániel Marx. 2010a. Approximating fractional hypertree width. ACM Trans. Algorithms 6, 2 (2010), 1–17.
DOI:http://dx.doi.org/10.1145/1721837.1721845

Dániel Marx. 2010b. Can You Beat Treewidth? Theory of Computing 6, 1 (2010), 85–112.
DOI:http://dx.doi.org/10.4086/toc.2010.v006a005

Dániel Marx. 2010c. Tractable hypergraph properties for constraint satisfaction and conjunctive queries. In
Proceedings of the 42nd ACM Symposium on Theory of Computing. 735–744.

Dániel Marx. 2011. Tractable Structures for Constraint Satisfaction with Truth Tables. Theory of Computing
Systems 48 (2011), 444–464.

Rolf Niedermeier. 2006. Invitation to fixed-parameter algorithms. Oxford Lecture Series in Mathematics and
its Applications, Vol. 31. Oxford University Press, Oxford. xii+300 pages.

Sang-il Oum. 2005. Approximating Rank-width and Clique-width Quickly. In Proceedings of the 31st In-
ternational Workshop on Graph-Theoretic Concepts in Computer Science. 49–58.

Sang-il Oum and Paul Seymour. 2007. Testing branch-width. J. Combin. Theory Ser. B 97, 3 (2007),
385–393.

Sang-il Oum and Paul Seymour. 2006. Approximating clique-width and branch-width. J. Combin. Theory
Ser. B 96, 4 (2006), 514–528.

Mihai Pǎtraşcu and Ryan Williams. 2010. On the Possibility of Faster SAT Algorithms. In Proc. 21st
ACM/SIAM Symposium on Discrete Algorithms (SODA). 1065–1075.

Francesco Scarcello, Georg Gottlob, and Gianluigi Greco. 2008. Uniform Constraint Satisfaction Problems
and Database Theory. In Complexity of Constraints. 156–195.

Thomas J. Schaefer. 1978. The complexity of satisfiability problems. In Conference Record of the Tenth
Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978). ACM, New York, 216–
226.

Alexander Schrijver. 2000. A combinatorial algorithm minimizing submodular functions in strongly poly-
nomial time. J. Combin. Theory Ser. B 80, 2 (2000), 346–355.

Mihalis Yannakakis. 1981. Algorithms for Acyclic Database Schemes. In VLDB. 82–94.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

