
On the hardness of losing weight

ANDREI KROKHIN

Durham University, UK

and

DÁNIEL MARX

Tel Aviv University, Israel

We study the complexity of local search for the Boolean constraint satisfaction problem (CSP), in
the following form: given a CSP instance, that is, a collection of constraints, and a solution to it,
the question is whether there is a better (lighter, i.e., having strictly less Hamming weight) solution
within a given distance from the initial solution. We classify the complexity, both classical and
parameterized, of such problems by a Schaefer-style dichotomy result, that is, with a restricted
set of allowed types of constraints. Our results show that there is a considerable amount of such
problems that are NP-hard, but fixed-parameter tractable when parameterized by the distance.

Categories and Subject Descriptors: F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Constraint satisfaction problem, local search, complexity,
fixed-parameter tractability

1. INTRODUCTION

Local search is one of the most widely used approaches to solving hard optimization
problems [Aarts and Lenstra 2003; Michiels et al. 2007]. The basic idea of local
search is that one tries to iteratively improve a current solution by searching for
better solutions in its (k-)neighborhood (i.e., within distance k from it). Eventu-
ally, the iteration gets stuck in a local optimum, and our hope is that this local
optimum is close to the global optimum. Metaheurestic techniques such as simu-
lated annealing are more elaborate variants of this simple scheme, but iteration of

Preliminary version of parts of this paper was published in the Proceedings of ICALP’08. The first
author is supported by UK EPSRC grants EP/C543831/1 and EP/C54384X/1; the second author
is partially supported by the Magyary Zoltán Felsőoktatási Közalaṕıtvány, Hungarian National
Research Fund grant OTKA 67651, and ERC Advanced Grant DMMCA. Part of the work was
done during Dagstuhl Seminar 07281 and while the second author was affiliated with Budapest
University of Technology and Economics, Hungary.
Authors’ addresses: A. Krokhin, School of Engineering and Computing Sciences, Durham Univer-
sity, Durham, DH1 3LE, UK, email: andrei.krokhin@durham.ac.uk; D. Marx, School of Computer
Science, Tel Aviv University, Tel Aviv, Israel. email: dmarx@cs.bme.hu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2001 ACM 0000-0000/2001/0000-1110000111 $5.00

ACM Journal Name, Vol. 2, No. 3, 09 2001, Pages 111–0??.



local improvements is an essential feature of these algorithms. Furthermore, any
optimization algorithm can be followed by a local search phase, thus the problem
of finding a better solution locally is of significant practical interest. As a brute
force search of a k-neighborhood is not feasible for large k, it is natural to study
the complexity of searching the k-neighborhood.

There exists complexity theory for local search, with specialized complexity
classes such as PLS (see [Johnson et al. 1988; Michiels et al. 2007]). However, it was
recently suggested in [Fellows 2001; Marx 2008a] that the hardness of searching the
k-neighborhood (for any optimization problem) can be studied very naturally in the
framework of parameterized complexity [Downey and Fellows 1999; Flüm and Grohe
2006]; such a study was very recently performed for the traveling salesperson prob-
lem (TSP) [Marx 2008b], for two variants of the stable marriage problem [Marx and
Schlotter 2009a; 2009b], for some graph-theoretic problems [Fellows et al. 2009],
and for the Max Sat problem [Szeider 2009]. The primary goal of this paper is
to contribute towards this line of research. Parameterized complexity studies hard-
ness in finer detail than classical complexity. Consider, for example, two standard
NP-complete problems Minimum Vertex Cover and Maximum Clique. Both
have the natural parameter k: the size of the required vertex cover/clique. Both
problems can be solved in time nO(k) on n-vertex graphs by complete enumeration.
Notice that the degree of the polynomial grows with k, so the algorithm becomes
useless for large graphs, even if k is as small as 10. However, Minimum Vertex
Cover can be solved in time O(2k · n2) [Downey and Fellows 1999; Flüm and
Grohe 2006]. In other words, for every fixed cover size there is a polynomial-time
(in this case, quadratic in the number of vertices) algorithm solving the problem
where the degree of the polynomial is independent of the parameter. Problems with
this property are called fixed-parameter tractable. The notion of W[1]-hardness in
parameterized complexity is analogous to NP-completeness in classical complexity.
Problems that are shown to be W[1]-hard, such as Maximum Clique [Downey
and Fellows 1999; Flüm and Grohe 2006], are very unlikely to be fixed-parameter
tractable.

The constraint satisfaction problem (CSP) provides a framework in which it is
possible to express, in a natural way, many combinatorial problems encountered in
artificial intelligence and computer science. A CSP instance is represented by a set
of variables, a domain of values for each variable, and a set of constraints on the
values that certain collections of variables can simultaneously take. The basic aim
is then to find an assignment of values to the variables that satisfies the constraints.
Boolean CSP (when all variables have domain {0, 1}) is a natural generalization of
k-Sat allowing that constraints are given by arbitrary relations, not necessarily by
clauses. Local search methods for Sat and CSP are very extensively studied (see,
e.g., [Dantsin et al. 2002; Gu et al. 2000; Hirsch 2000; Hoos and Tsang 2006]).

Complexity classifications for various versions of (Boolean) CSP have recently
attracted massive attention from researchers, and one of the most popular directions
here is to characterise restrictions on the type of constraints that lead to problems
with lower complexity in comparison with the general case (see [Cohen and Jeavons
2006; Creignou et al. 2001]). Such classifications are sometimes called Schaefer-
style because the first classification of this type was obtained by T.J. Schaefer in

112



his seminal work [Schaefer 1978]. A local-search related Schaefer-style classification
for Boolean Max CSP was obtained in [Chapdelaine and Creignou 2005], in the
context of complexity classes such as PLS. A Schaefer-style classification of the basic
Boolean CSP with respect to parameterized complexity (where the parameter is the
required Hamming weight of the solution) was obtained in [Marx 2005].

In this paper, we give a Schaefer-style complexity classification for the follow-
ing problem: given a collection of Boolean constraints, and a solution to it, the
question is whether there is a better (i.e., with smaller Hamming weight) solution
within a given (Hamming) distance k from the initial solution. We obtain classi-
fication results both for classical (Theorem 5.1) and for parameterized complexity
(Theorem 4.1). However, we would like to point out that it makes much more
sense to study this problem in the parameterized setting. Intuitively, if we are able
to decide in polynomial time whether there is a better solution within distance k,
then this seems to be almost as powerful as finding the best solution (although
there are technicalities such as whether there is a feasible solution at all). Our clas-
sification confirms this intuition: searching the k-neighborhood is polynomial-time
solvable only in cases where finding the optimum is also polynomial-time solvable.
On the other hand, there are cases (for example, 1-in-3 Sat or affine constraints
of fixed arity) where the problem of finding the optimum is NP-hard, but search-
ing the k-neighborhood is fixed-parameter tractable. This suggests evidence that
parameterized complexity is the right setting for studying local search.

The paper is organized as follows. Section 2 reviews basic notions of parameter-
ized complexity and Boolean CSP. Section 3 contains auxiliary technical results.
Section 4 presents the classificiation with respect to fixed-parameter tractability,
while Section 5 deals with polynomial-time solvability.

2. PRELIMINARIES

Boolean CSP. A formula φ is a pair (V, C) consisting of a set V of variables
and a set C of constraints. Each constraint ci ∈ C is a pair 〈si, Ri〉, where si =
(xi,1, . . . , xi,ri) is an ri-tuple of variables (the constraint scope) and Ri ⊆ {0, 1}ri

is an ri-ary Boolean relation (the constraint relation). A function f : V → {0, 1}
is a satisfying assignment of φ if (f(xi,1), . . . , f(xi,ri)) is in Ri for every ci ∈ C.
Let Γ be a set of Boolean relations. A formula is a Γ-formula if every constraint
relation Ri is in Γ. In this paper, Γ is always a finite set containing only non-empty
relations. For a fixed finite Γ, every Γ-formula φ = (V, C) can be represented with
length polynomial in |V | and |C|: each constraint relation can be represented by
constant number of bits (depending only on Γ). The (Hamming) weight w(f) of
assignment f is the number of variables x with f(x) = 1. The distance dist(f1, f2)
of assignments f1, f2 is the number of variables x where the two assignments differ,
i.e., f1(x) 6= f2(x).

Given an r-ary boolean relation R and a set of indices J = {i1, . . . , iq} ⊆
{1, . . . , r}, the projection of R onto J , denoted prJ(R), is the relation defined as
follows: {(yi1 , . . . , yiq ) | there is (x1, . . . , xr) ∈ R with yij = xij , 1 ≤ j ≤ q}.

We recall various standard definitions concerning Boolean constraints (cf. [Creignou
et al. 2001]):

—R is 0-valid if (0, . . . , 0) ∈ R.
113



—R is 1-valid if (1, . . . , 1) ∈ R.
—R is Horn or weakly negative if it can be expressed as a conjunction of clauses

such that each clause contains at most one positive literal. It is known that R is
Horn if and only if it is min-closed: if (a1, . . . , ar) ∈ R and (b1, . . . , br) ∈ R, then
(min(a1, b1), . . . , min(ar, br)) ∈ R.

—R is affine if it can be expressed as a conjunction of constraints of the form
x1 + x2 + · · · + xt = b, where b ∈ {0, 1} and addition is modulo 2. The number
of tuples in an affine relation is always an integer power of 2. We denote by
EVENr the r-ary relation x1 +x2 + · · ·+xr = 0 and by ODDr the r-ary relation
x1 + x2 + · · ·+ xr = 1.

—R is width-2 affine if it can be expressed as a conjunction of constraints of the
form x = y and x 6= y.

—R is IHS-B− (or implicative hitting set bounded) if it can be represented by a
conjunction of clauses of the form (x), (x → y) and (¬x1 ∨ . . . ∨ ¬xn), n ≥ 1.

—The relation Rp-in-q (for 1 ≤ p ≤ q) has arity q and Rp-in-q(x1, . . . , xq) is true if
and only if exactly p of the variables x1, . . . , xq have value 1.

The following definition is new in this paper. It plays a crucial role in character-
izing the fixed-parameter tractable cases for local search.

Definition 2.1. Let R be a Boolean relation and (a1, . . . , ar) ∈ R. A set S ⊆
{1, . . . , r} is a flip set of (a1, . . . , ar) (with respect to R) if (b1, . . . , br) ∈ R where
bi = 1 − ai for i ∈ S and bi = ai for i 6∈ S. We say that R is flip separable if
whenever some (a1, . . . , ar) ∈ R has two flip sets S1, S2 with S1 ⊂ S2, then S2 \ S1

is also a flip set for (a1, . . . , ar).

It is easy to see that R1-in-3 is flip separable: every flip set has size exactly 2, hence
S1 ⊂ S2 is not possible. Moreover, Rp-in-q is also flip separable for every p ≤ q.
To see this, assume that S1, S2 are flip sets of (a1, . . . , aq). Define X ⊆ {1, . . . , q}
such that i ∈ X if and only if ai = 1. From the fact that (a1, . . . , aq) ∈ Rp-in-q

and S1, S2 are flip sets, we have that |X| = |X 4 S1| = |X 4 S2| = p (where 4
denotes the symmetric difference). With a straightforward calculation, it follows
that |X4 (S2 \S1)| = p, i.e., S2 \S1 is also a flip set. Affine constraints are also flip
separable: to see this, it is sufficient to verify the definition only for the constraints
EVENr and ODDr, since a conjunction of flip separable relations is again such a
relation.

The basic problem in CSP is to decide if a formula has a satisfying assignment:

CSP(Γ)

Input: A Γ-formula φ.
Question: Does φ have a satisfying assignment?

Schaefer completely characterized the complexity of CSP(Γ) for every finite set
Γ of Boolean relations [Schaefer 1978]. In particular, every such problem is either
in PTIME or NP-complete, and there is a very clear description of the boundary
between the two cases.

Optimization versions of Boolean CSP were investigated in [Creignou et al. 2001;
Crescenzi and Rossi 2002; Khanna et al. 2001]. A straightforward way to obtain an

114



optimization problem is to relax the requirement that every constraint is satisfied,
and ask for an assignment maximizing the number of satisfied constraints. Another
possibility is to ask for a solution with minimum/maximum weight. In this paper,
we investigate the problem of minimizing the weight. As we do not consider the
approximability of the problem, we define here only the decision version:

Min-Ones(Γ)

Input: A Γ-formula φ and an integer W .
Question: Does φ have a satisfying assignment f with w(f) ≤ W?

The characterization of the approximability of finding a minimum weight satis-
fying assignment for a Γ-formula can be found in [Creignou et al. 2001; Khanna
et al. 2001]. Here we state only the classification of polynomial-time solvable and
NP-hard cases:

Theorem 2.2 [Creignou et al. 2001; Khanna et al. 2001]. Let Γ be a
set of Boolean relations. Min-Ones(Γ) is solvable in polynomial time if one of the
following holds, and NP-complete otherwise:

—Every R ∈ Γ is 0-valid.
—Every R ∈ Γ is Horn.
—Every R ∈ Γ is width-2 affine.

A Schaefer-style characterization of the approximability of finding two satisfy-
ing assignments to a formula with a largest distance between them was obtained
in [Crescenzi and Rossi 2002], motivated by the blocks world problem from knowl-
edge representation, while a Schaefer-style classification of the problem of deciding
whether a given satisfying assignment to a given CSP instance is component-wise
minimal was presented in [Kirousis and Kolaitis 2003], motivated by the circum-
scription formalism from artificial intelligence.

The main focus of the paper is the local search version of minimizing weight. Fol-
lowing [Marx and Schlotter 2009a; 2009b], we consider two variants of the problem:
“strict” and “permissive,” defined as follows:

sLS-CSP(Γ)

Input: A Γ-formula φ, a satisfying assignment f , and an integer k.
Goal: Find a satisfying assignment f ′ to φ with w(f ′) < w(f) and

dist(f, f ′) ≤ k or report that no such assignment exists.

pLS-CSP(Γ)

Input: A Γ-formula φ, a satisfying assignment f , and an integer k.
Goal: Find a satisfying assignment f ′ to φ with w(f ′) < w(f) or report

that there is no such assignment with dist(f, f ′) ≤ k.

LS in the above problems stands for both “local search” and “lighter solution.”
The difference between the variants is that strict local search is strictly restricted to
the neighborhood of the given satisfying assignment, while permissive local search

115



allows one to produce an arbitrary better solution (even if there is no better solution
in the given neighborhood). Observe that any algorithm for the strict version is
a valid algorithm for the permissive version as well, thus it might happen that
the strict version is hard while the permissive version is easy. However, from the
viewpoint of local-search based optimization techniques, having a permissive local
search algorithm is at least as useful as the strict version.

We distinguish between the two variants mainly for the following reason: there are
situations when it easy to find an optimal solution to an instance despite strict local
search being hard. Thus the study of strict local search can give counterintuitive
results by showing hardness for problems that are actually easy. On the other hand,
an algorithm that finds an optimum solution for Min-Ones(Γ) would also solve
pLS-CSP(Γ), i.e., permissive local search is always easy if the optimum can be
found easily.

Note that sLS-CSP(Γ) and pLS-CSP(Γ) are defined as search problems, not as
decision problems. Recall that a search problem is NP-hard if there is a polynomial-
time Turing reduction from some NP-complete problem to it, i.e., given a polynomial-
time subroutine for solving the search problem, we can solve an NP-hard decision
problem in polynomial time. W[1]-hardness is interpreted analogously for search
problems. To prove hardness of pLS-CSP(Γ), we will use the following decision
problem. We say that a satisfying assignment f to a formula is suboptimal if it is
not optimal, i.e., the formula has a satisfying assignment with less weight than f .

LImp(Γ)

Input: A Γ-formula φ, a satisfying assignment f , and an integer
k such that either f is optimal or else there is a satisfying
assignment f ′ to φ with w(f ′) < w(f) and dist(f, f ′) ≤ k.

Question: Is f suboptimal?

In other words, this (promise) problem is to distinguish between optimal satis-
fying assignments and those that can be improved locally. It is easy to see that
an algorithm for pLS-CSP(Γ) would solve LImp(Γ). Hence, NP-hardness or W[1]-
hardness of LImp(Γ) implies hardness in the same sense of pLS-CSP(Γ) and of
sLS-CSP(Γ). When reducing a decision problem P to LImp(Γ), we have to provide
a mapping with the following two properties: (1) every yes-instance of P is mapped
to an instance (φ, f, k) where f can be improved locally, and (2) every no-instance
of P is mapped to an instance (φ, f, k) where f cannot be improved at all. Usually
we will prove the contrapositive of (2): if an instance x of P is mapped to (φ, f, k)
such that f is suboptimal, then x is a yes-instance. Note that (1) and (2) together
imply that every constructed instance (φ, f, k) satisfies the requirement that if f is
suboptimal, then it can be improved locally.

Observe that the satisfying assignments of an (x ∨ y)-formula correspond to the
vertex covers of the graph where the variables are the vertices and the edges are
the constraints. Thus sLS-CSP({x ∨ y}) is the problem of reducing the size of a
(given) vertex cover by including and excluding a total of at most k vertices. As
we shall see (Proposition 4.7), this problem is W[1]-hard, even for bipartite graphs.
Since the complement of an independent set is a vertex cover and vice versa, a
similar W[1]-hardness result follows for increasing an independent set. This might

116



be of independent interest.
Parameterized complexity. In a parameterized problem, each instance con-

tains an integer k called the parameter. A parameterized problem is fixed-parameter
tractable (FPT) if it can be solved by an algorithm with running time f(k) · nc,
where n is the length of the input, f is an arbitrary (computable) function depend-
ing only on k, and c is a constant independent of k.

A large fraction of NP-complete problems is known to be FPT. On the other hand,
analogously to NP-completeness in classical complexity, the theory of W[1]-hardness
can be used to give strong evidence that certain problems are unlikely to be fixed-
parameter tractable. We omit the somewhat technical definition of the complexity
class W[1], see [Downey and Fellows 1999; Flüm and Grohe 2006] for details. Here
it will be sufficient to know that there are many problems, including Maximum
Clique, that were proved to be W[1]-hard. To prove that a parameterized problem
is W[1]-hard, we have to present a parameterized reduction from a known W[1]-hard
problem. A parameterized reduction from problem L1 to problem L2 is a function
that transforms a problem instance x of L1 with parameter k into a problem instance
x′ of L2 with parameter k′ in such a way that

—x′ is a yes-instance of L2 if and only if x is a yes-instance of L1,
—k′ can be bounded by a function of k, and
—the transformation can be computed in time f(k) · |x|c for some constant c and

some computable function f(k).

It is easy to see that if there is a parameterized reduction from L1 to L2, and L2 is
FPT, then it follows that L1 is FPT as well.

The most important difference between parameterized reductions and classical
polynomial-time many-to-one reductions is the second requirement: in most NP-
completeness proofs the new parameter is not a function of the old parameter.
Therefore, finding parameterized reductions is usually more difficult, and the con-
structions have somewhat different flavor than classical reductions. In general, a
parameterized reduction is not necessarily a polynomial-time reduction (since the
third requirement is weaker than polynomial-time). However, the reductions pre-
sented in Section 3 are both parameterized and polynomial-time. Hence they will
be used in both Section 4 (to prove W[1]-hardness) and Section 5 (to prove NP-
hardness).

3. SOME BASIC REDUCTIONS

This section contains auxiliary technical results that will be used in subsequent
sections.

Let C0 and C1 denote the unary relations {0} and {1}, respectively.

Lemma 3.1. For any Γ, sLS-CSP(Γ)and sLS-CSP(Γ∪{C0}) are equivalent via
polynomial-time parameterized reductions. The same holds for problems LImp(Γ)
and LImp(Γ ∪ {C0}).

Proof. Let us describe a reduction from sLS-CSP(Γ ∪ {C0}) to sLS-CSP(Γ).
Let (φ, f, k) be an instance of the former problem. Order the variables in φ so that
x1, . . . , x` are all variables xi such that φ contains the constraint C0(xi). Now pro-
duce a new instance φ′ of sLS-CSP(Γ) as follows: remove all constraints involving

117



C0, introduce a new variable y and replace all occurrences of x1, . . . , x` in φ by y.
Then, introduce k+1 new variables y1, . . . , yk+1, and replace, in φ′, every constraint
involving y by k + 1 copies of the constraint such that the i-th copy contains yi

instead of y and all other variables unchanged. Call the resulting instance φ′′. Con-
sider the solution f ′′ to φ′′ that maps each yi to 0 and coincides with f everywhere
else. It is not hard to see that the instance (φ′′, f ′′, k) of sLS-CSP(Γ) is equivalent
to (φ, f, k) because any solution g to φ′′ with w(g) < w(f ′′) and dist(g, f ′′) ≤ k
maps at least one yi, 1 ≤ i ≤ k + 1, to 0.

Furthermore, it is easy to see that this reduction is also a reduction from LImp(Γ∪
{C0}) to LImp(Γ).

Lemma 3.2. For any Γ containing a relation that is not 0-valid, LImp(Γ) and
LImp(Γ ∪ {C0, C1}) are equivalent via polynomial-time parameterized reductions.

Proof. By Lemma 3.1, we can assume that C0 ∈ Γ. If R ∈ Γ is non-0-valid
then we can without loss of generality assume that R(x, . . . , x, 0, . . . , 0) holds if and
only if x = 1. Now the reduction from LImp(Γ ∪ {C0, C1}) to LImp(Γ) is obvious:
for a given instance, introduce a new variable z together with constraint C0(z) and
replace each constraint of the form C1(xi) by R(xi, , . . . , xi, z, . . . , z). The given
solution is transformed in the obvious way, and the parameter stays the same.

Lemma 3.3. For any Γ containing a relation that is not Horn, sLS-CSP(Γ)
and sLS-CSP(Γ ∪ {C0, C1}) are equivalent via polynomial-time parameterized re-
ductions.

Proof. By Lemma 3.1, we can assume that C0 ∈ Γ. Let R ∈ Γ be non-Horn.
Since R is not min-closed, we can assume (by permuting the variables) that for
some r1, r2 ≥ 1, r3, r4 ≥ 0, if we define

R′(x, y, w0, w1) = R(
r1︷ ︸︸ ︷

x, . . . , x,

r2︷ ︸︸ ︷
y, . . . , y,

r3︷ ︸︸ ︷
w0, . . . , w0,

r4︷ ︸︸ ︷
w1, . . . , w1),

then (0, 1, 0, 1), (1, 0, 0, 1) ∈ R′, but (0, 0, 0, 1) 6∈ R′. Since R′ is obtained from R
by identifying variables, we can use the relation R′ when specifying instances of
sLS-CSP(Γ).

Let (φ, f, k) be an instance of sLS-CSP(Γ∪{C0, C1}). Let us construct a formula
φ′ that has every variable of V and new variables q0, qj

1 for 1 ≤ j ≤ k + 1 (these
new variables will play the role of the constants). First, for every variable x ∈
V such that φ contains constraint C1(x), we remove the constraint from φ and
replace all other occurrences of x in φ by q1

1 . Then we add constraints C0(q0) and
R′(qa

1 , q0, q0, q
b
1) for 1 ≤ a, b ≤ k + 1. Call the obtained formula φ′. We define

assignment f ′ for φ′ by setting f ′(x) = f(x) for x ∈ V , f ′(q0) = 0 and f2(q
j
1) = 1

for 1 ≤ j ≤ k + 1. Clearly, f ′ satisfies φ′. Moreover, by the choice of R′, any
satisfying assignment to φ′ that maps one of the variables qj

1 to 0 would have to
map all of such variables to 0. Therefore, any solution to φ′ within distance k from
f ′ must coincide with f ′ on all variables not in V . Moreover, it is easy to see that
such solutions are in one-to-one correspondence with solutions to φ within distance
k from f . Thus, the instances (φ, f, k) and (φ′, f ′, k) are equivalent.

Lemma 3.4. If R is a non-Horn relation then, by identifying coordinates and
substituting constants in R, it is possible to express at least one of the relations

118



x ∨ y and x 6= y.

Proof. Consider the relation R′ obtained as in the previous proof. It is easy to
see that the relation R′(x, y, 0, 1) is one of the required relations.

Lemma 3.5. Let R be the set of solutions to a Γ-formula φ, and let R′ =
prJ(R) where J ⊇ {j | prj(R) = {0, 1}}. Then the problems sLS-CSP(Γ) and
sLS-CSP(Γ ∪ {R′}) are equivalent via polynomial-time parameterized reductions.
The same holds for LImp(Γ) and LImp(Γ ∪ {R′}).

Proof. Note that, for any fixed j 6∈ J , each solution to φ takes the same value
on the corresponding variable. In every instance of sLS-CSP(Γ ∪ {R′}), every
constraint of the form c = R′(s) can be replaced by the constraints from φ where
variables from s keep their places, while all other variables are new and do not
appear elsewhere. This transformation (with the distance k unchanged) is the
required polynomial-time parameterized reduction.

The following corollary is a special case of Lemma 3.5:

Corollary 3.6. If C0, C1 ∈ Γ and R′ can be obtained from some R0 ∈ Γ by
substitution of constants, then the problems sLS-CSP(Γ) and sLS-CSP(Γ ∪ {R′})
are equivalent via polynomial-time parameterized reductions. The same holds for
LImp(Γ) and LImp(Γ ∪ {R′}).

For an n-ary tuple s = (a1, . . . , an) and 1 ≤ i ≤ n, we define the (n + 1)-ary
tuple αi(s) = (a1, . . . , an, 1 − ai) and the n-ary tuple βi(s) = (a1, . . . , ai−1, 1 −
ai, ai+1, . . . , an). For an n-ary relation R, let αi(R) denote the (n + 1)-ary relation
defined by s ∈ R ⇔ αi(s) ∈ αi(R) and let βi(R) denote the n-ary relation defined
by s ∈ R ⇔ βi(s) ∈ βi(R). Note that a constraint α(R)(x1, . . . , xn, xn + 1) is
equivalent to two constraints: R(x1, . . . , xn), xi 6= xn+1.

Lemma 3.7. For any R, the following pairs of problems are equivalent via polynomial-
time parameterized reductions:

(1 ) the problems sLS-CSP({R, 6=}) and sLS-CSP({αi(R), 6=}), and
(2 ) the problems sLS-CSP({R, 6=}) and sLS-CSP({βi(R), 6=}).
The same holds for the problem LImp.

Proof. It is clear that sLS-CSP({αi(R), 6=}) reduces to sLS-CSP({R, 6=}),
by simply replacing each constraint involving αi(R) by its definition via R and
6=. Since R = βi(βi(R)), the two directions of the second statement are equiva-
lent. Thus all we have to show is that sLS-CSP({R, 6=}) can be reduced to both
sLS-CSP({αi(R), 6=}) and sLS-CSP({βi(R), 6=}).

Let (φ, f, k) be an instance of sLS-CSP({R, 6=}) where φ is over a set V of vari-
ables. For each variable x ∈ V , introduce two new variables x′, x′′ along with con-
straints x 6= x′, x′ 6= x′′. Replace every constraint of the form R(xj1 , . . . , xjn) in φ
by αi(R)(xj1 , . . . , xjn , x′ji

) or βi(R)(xj1 , . . . , xji−1 , x
′
ji

, xji+1 , . . . , xjn), and leave all
other constraints in φ unchanged. Let φ′ be the obtained instance of CSP({αi(R), 6=})
or CSP({βi(R), 6=}). Clearly, f has a unique extension to a solution f ′ to φ′

and if f ′1 and f ′2 are the extensions of f1 and f2, respectively, then dist(f ′1, f
′
2) =

3dist(f1, f2). It is clear that the instance (φ′, f ′, 3k) of sLS-CSP({αi(R), 6=}) or
119



pLS-CSP({βi(R), 6=}) is equivalent to (φ, f, k). The same reduction works for
LImp.

4. CHARACTERIZING FIXED-PARAMETER TRACTABILITY

In this section, we completely characterize those finite sets Γ of Boolean relations
for which problems sLS-CSP(Γ) and pLS-CSP(Γ) are fixed-parameter tractable.

Theorem 4.1. Let Γ be a set of Boolean relations. The problem sLS-CSP(Γ)
is in FPT if one of the following holds, and W[1]-hard otherwise:

—Every R ∈ Γ is Horn.
—Every R ∈ Γ is flip separable.

Theorem 4.2. Let Γ be a set of Boolean relations. The problem pLS-CSP(Γ)
is in FPT if one of the following holds, and W[1]-hard otherwise:

—Every R ∈ Γ is 0-valid.
—Every R ∈ Γ is Horn.
—Every R ∈ Γ is flip separable.

First we handle the fixed-parameter tractable cases (Lemmas 4.3 and 4.5) in
Theorem 4.1. It is easy to see that the FPT part of Theorem 4.2 follows from the
FPT part of Theorem 4.1 and (for the 0-valid case) from Theorem 2.2.

Lemma 4.3. If every R ∈ Γ is Horn, then sLS-CSP(Γ) is FPT.

Proof. If there is a solution f ′ for the sLS-CSP(Γ) instance (φ, f, k), then we
can assume f ′(x) ≤ f(x) for every variable x: by defining f ′′(x) := min{f(x), f ′(x)},
we get that f ′′ is also satisfying (as every R ∈ Γ is min-closed) and dist(f ′′, f) ≤
dist(f ′, f). Thus we can restrict our search to solutions that can be obtained from
f by changing some 1’s to 0’s, but every 0 remains unchanged.

Since w(f ′) < w(f), there is a variable x with f(x) = 1 and f ′(x) = 0. For every
variable x with f(x) = 1, we try to find a solution f ′ with f ′(x) = 0 using a simple
bounded-height search tree algorithm. For a particular x, we proceed as follows. We
start with initial assignment f . Change the value of x to 0. If there is a constraint
〈(x1, . . . , xr), R〉 that is not satisfied by the new assignment, then we select one of
the variables x1, . . . , xr that has value 1, and change it to 0. Thus at this point we
branch into at most r−1 directions. If the assignment is still not satisfying, the we
branch again on the variables of some unsatisfied constraint. The branching factor
of the resulting search tree is at most rmax − 1, where rmax is the maximum arity
of the relations in Γ. By the observation above, if there is a solution, then we find
a solution on the first k levels of the search tree. Therefore, we can stop the search
on the k-th level, implying that we visit at most (rmax − 1)k+1 nodes of the search
tree. The work to be done at each node is polynomial in the size n of the input,
hence the total running time is (rmax − 1)k+1 · nO(1).

If every R ∈ Γ is not only Horn, but IHS-B− (which is a subset of Horn), then the
algorithm of Lemma 4.3 actually runs in polynomial time:

Corollary 4.4. If every R ∈ Γ is IHS-B−, then sLS-CSP(Γ) is in PTIME.

120



Proof. We can assume that every constraint is either (x), (x → y), or (x̄1 ∨
· · · ∨ x̄r). If a constraint (x̄1 ∨ · · · ∨ x̄r) is satisfied in the initial assignment f ,
then it remains satisfied after changing some 1’s to 0. Observe that if a constraint
(x) or (x → y) is not satisfied, then at most one of its variables has the value 1.
Thus there is no branching involved in the algorithm of Lemma 4.3, making it a
polynomial-time algorithm.

For flip separable relations, we give a very similar branching algorithm. However,
in this case the correctness of the algorithm requires a nontrivial argument.

Lemma 4.5. If every R ∈ Γ is flip separable, then sLS-CSP(Γ) is FPT.

Proof. Let (φ, f, k) be an instance of sLS-CSP(Γ). If w(f ′) < w(f) for some
assignment f ′, then there is a variable x with f(x) = 1 and f ′(x) = 0. For every
variable x with f(x) = 1, we try to find a solution f ′ with f ′(x) = 0 using a simple
bounded-height search tree algorithm. For each such x, we proceed as follows.
We start with the initial assignment f and set the value of x to 0. Iteratively do
the following: (a) if there is a constraint in φ that is not satisfied by the current
assignment and such that the value of some variable in it has not been flipped yet
(on this branch), then we select one of such variables, and flip its value; (b) if there
is no such constraint, but the current assignment is not satisfying then we move to
the next branch; (c) if every constraint is satisfied, then either we found a required
solution (if the weight of the assignment is strictly less than w(f)) or else we move
to the next branch. If a required solution is not found on the first k levels of the
search tree then the algorithm reports that there is no required solution.

Assume that (φ, f, k) is a yes-instance. We claim that if f ′ is a required solution
with minimal distance from f , then some branch of the algorithm finds it. Let X be
the set of variables on which f and f ′ differ, so |X| ≤ k. We now show that on the
first k levels of the search tree, the algorithm finds some satisfying assignment f0

(possibly heavier than f) that differs from f only on a subset X0 ⊆ X of variables.
To see this, assume that at some node of the search tree, the current assignment
differs from the initial assignment only on a subset of X; we show that this remains
true for at least one child of the node. If we branch on the variables (x1, . . . , xr)
of an unsatisfied constraint, then at least one of its variables, say xi, has a value
different from f ′(xi) (as f ′ is a satisfying assignment). It follows that xi ∈ X:
otherwise the current value of xi is f(xi) (since so far we changed variables only in
X) and f(xi) = f ′(xi) (by the definition of X), contradicting the fact that current
value of xi is different from f(xi). Thus if we change variable xi, it remains true
that only variables from X are changed. Since |X| ≤ k, this branch of the algorithm
has to find some satisfying assignment f0.

If w(f0) < w(f), then, by the choice of f ′, we must have f0 = f ′. Otherwise, let
X0 ⊆ X be the set of variables where f and f0 differ and let f ′′ be the assignment
that differs from f exactly on the variables X \ X0. From the fact that every
constraint is flip separable, it follows that f ′′ is a satisfying assignment. We claim
that w(f ′′) < w(f). Indeed, if changing the values of the variables in X decreases
the weight and changing the values in X0 does not decrease the weight, then the
set X \ X0 has to decrease the weight. This contradicts the assumption that f ′

is a solution whose distance from f is minimal: f ′′ is a solution with distance
121



|X \ X0| < |X|. Thus it is sufficient to investigate only the first k levels of the
search tree. As in the proof of Lemma 4.3, the branching factor of the tree is at
most rmax − 1, and the algorithm runs in time (rmax − 1)k+1 · nO(1).

All the hardness proofs in this section are based on the fact that LImp({x ∨ y}) is
W[1]-hard , which we show in the following lemma. Note that Min-Ones({x∨ y})
corresponds to the Minimum Vertex Cover problem: the variables represent
the vertices and constraint (x ∨ y) corresponds to an edge xy, representing the
requirement that at least one of x and y has to be in the vertex cover. Thus the
following hardness proof shows also that it is W[1]-hard to find a smaller vertex
cover in the k-neighborhood of a given vertex cover.

Lemma 4.6. The problem LImp({x ∨ y}) is W[1]-hard.

Proof. The proof is by reduction from Maximum Independent Set: given a
graph G(V,E) and an integer t, we have to decide whether G has an independent
set of size t. Let n be the number of vertices of G and let m be the number of
edges. We construct a formula as follows. The variables x1, . . . , xn correspond to
the vertices of G and there are t − 1 additional variables y1, . . . , yt−1. For every
edge vi1vi2 of G, we add the constraint xi1 ∨xi2 on the corresponding two variables.
Furthermore, we add all the constraints xi ∨ yj for 1 ≤ i ≤ n, 1 ≤ j ≤ t− 1. Let us
define the assignment f such that f(xi) = 1 for every 1 ≤ i ≤ n and f(yj) = 0 for
every 1 ≤ j ≤ t− 1.

Set k := 2t − 1. Suppose first that G has an independent set of size t. Set the
corresponding t variables xi to 0 and set the variables y1, . . . , yt−1 to 1. This
gives a satisfying assignment of weight w(f)− 1: if some constraint xi1 ∨ xi2 is not
satisfied, then this would mean the there is an edge vi1vi2 . Thus f is suboptimal
and there is a lighter solution at distance at most k from f .

Suppose now that there is a solution f ′ with w(f ′) < w(f) and dist(f, f ′) ≤ k.
If some variable xi is 0 in f ′, then every variable yj has value 1. Thus the only way
to decrease the weight of f is to set all the variables yj to 1 and set at least t of
the variables x1, . . . , xn to 0. The at least t variables that were set to 0 correspond
to an independent set of size at least t in G: if there were an edge vi1vi2 between
two such vertices, then the constraint xi1 ∨ xi2 would not be satisfied. Thus if f is
suboptimal, then G has an independent set of size t.

Lemma 4.6 shows that (both strict and permissive) local search for Minimum
Vertex Cover is W[1]-hard. Since the complement of a vertex cover is an in-
dependent set (and vice versa), this result implies that local search for Maximum
Independent Set is also W[1]-hard. For bipartite graphs, both problems are
polynomial-time solvable, thus (trivially) permissive local search can be done in
polynomial time. However, as the following proposition shows, strict local search
for these problems is W[1]-hard in case of bipartite graphs. Although we do not
use this result in the rest of the paper, it might be of independent interest, as it
gives a natural example where the complexity of strict and permissive local search
differs.

Proposition 4.7. The problem sLS-CSP({x ∨ y}) is W[1]-hard, even if the
instance is bipartite, i.e., the variables can be partitioned into two sets X, Y such
that every constraint x ∨ y satisfies x ∈ X and y ∈ Y .

122



Proof. The proof is by reduction from a variant of Maximum Clique: given
a graph G(V, E) with a distinguished vertex x and an integer t, we have to decide
whether G has a clique of size t that contains x. It is easy to see that this problem
is W[1]-hard. Furthermore, it can be assumed that t is odd. Let n be the number
of vertices of G and let m be the number of edges. We construct a formula φ on
m+n(t−1)/2−1 variables and a satisfying assignment f such that G has a clique of
size t containing x if and only if φ has a satisfying assignment f ′ with w(f ′) < w(f)
and distance at most k := t(t− 1)− 1 from f .

Let d := (t− 1)/2 (note that t is odd). The formula φ has d variables v1, . . . , vd

for each vertex v 6= x of G and a variable ue for each edge e of G. The distinguished
vertex x has only d− 1 variables x1, . . . , xd−1. If a vertex v is the endpoint of an
edge e, then for every 1 ≤ i ≤ d (or 1 ≤ i ≤ d− 1, if v = x), we add the constraint
ue ∨ vi. Thus each variable ue is in 2d− 1 or 2d constraints (depending on whether
x is the endpoint of e or not). Set f(ue) = 1 for every e ∈ E and f(vi) = 0 for
every v ∈ V , 1 ≤ i ≤ d. Clearly, f is a satisfying assignment.

Assume that G has a clique K of size t that includes x. Set f ′(vi) = 1 for every
v ∈ K (1 ≤ i ≤ d) and set f ′(ue) = 0 for every edge e in K; let f ′ be the same
as f on every other variable. Observe that f ′ is also a satisfying assignment: if a
variable ue was changed to 0 and there is a constraint ue∨vi, then v ∈ K and hence
f ′(vi) = 1. We have w(f ′) < w(f): dt − 1 variables were changed to 1 (note that
x ∈ K) and t(t− 1)/2 = dt variables were changed to 0. Moreover, the distance of
f and f ′ is exactly dt− 1 + t(t− 1)/2 = t(t− 1)− 1 = k.

Assume now that f ′ satisfies the requirements. Let K be the set of those vertices
v in G for which f ′(vi) = 1 for every i. We claim that K is a clique of size
t in G and x ∈ K. Observe that there are at least d|K| − 1 variables vi with
f ′(vi) > f(vi) and f ′(ue) < f(ue) is possible only if both endpoints of e are in K,
i.e., e is in the set E(K) of edges in K. Thus w(f ′) < w(f) implies d|K| − 1 <
|E(K)| ≤ |K|(|K| − 1)/2, which is only possible if |K| ≥ 2d + 1 = t. If |K| > t,
then f ′(vi) > f(vi) for at least (t + 1)d − 1 variables, hence there must be more
than that many variables ue with f ′(ue) < f(ue). Thus the distance of f and f ′

is at least 2(t + 1)d − 1 > t(t − 1) − 1. Therefore, we can assume |K| = t. Now
dt−1 < |E(K)| ≤ |K|(|K|−1)/2 = t(t−1)/2 is only possible if |E(K)| = t(t−1)/2
(i.e., K is a clique) and it follows that there are exactly dt − 1 variables vi with
f ′(vi) > f(vi) (i.e., x ∈ K).

Now we are ready to present the main hardness proof of the section:

Lemma 4.8. (1 ) If Γ contains a relation that is not Horn and a relation that is
not flip separable, then sLS-CSP(Γ) is W[1]-hard.

(2 ) If Γ contains a relation that is not Horn, a relation that is not flip separable
and a relation that is not 0-valid, then LImp(Γ) is W[1]-hard.

Proof. We prove the second item first, by reduction from LImp({x ∨ y}). By
Lemmas 3.1 and 3.2, we can assume that Γ contains both C0 and C1. Moreover,
Lemma 3.4 implies that it is possible to identify variables and substitute constants
in the non-Horn relation to obtain x ∨ y or x 6= y. Since C0, C1 ∈ Γ, we may by
Corollary 3.6 assume that Γ contains x ∨ y or x 6= y. In the former case, we are
done by Lemma 4.6, so assume that the disequality relation is in Γ.

123



Let R ∈ Γ be an r-ary relation that is not flip separable. This means that there
is a tuple s = (s1, . . . , sr) ∈ R that has flip sets S1 ⊂ S2, but S2 \ S1 is not a flip
set. We can assume that S2 = {1, . . . , r}: otherwise, for every coordinate i 6∈ S2,
let us substitute into R the constant si. Since C0, C1 ∈ Γ, by Corollary 3.6 we can
assume that the resulting relation is in Γ and it is clear that now we can choose s,
S1, S2 such that S2 contains all the coordinates of the relation.

We show that LImp({R, 6=}) is W[1]-hard. Note that if a set S is flip set of s
with respect to R, then S is a flip set of βi(s) with respect to βi(R) (where βi is
as defined before Lemma 3.7). By repeated applications of the operations βi, we
can obtain a relation R′ such that there is a tuple s′ ∈ R′ having the same flip sets
with respect to R′ as s has with respect to R and s′ is 0 at every coordinate in S1

and 1 at every coordinate in S2 \ S1. Let R′′(x, y) be the binary relation obtained
by substituting x into R′ at every coordinate in S1 and y at every coordinate in
S2 \S1. It is easy to verify that R′′ is exactly the relation x∨y. Indeed, (0, 1) ∈ R′′

since s′ ∈ R′, (1, 1) ∈ R′′ since S1 is a flip set of s′, (1, 0) ∈ R′′ since S2 is a flip
set of s′, and (0, 0) 6∈ R′′ since S2 \ S1 is not a flip set of s′. Thus by Lemma 4.6,
LImp({R′, 6=}) is W[1]-hard, and, by Lemma 3.7, LImp({R, 6=}) is also W[1]-hard.

To prove the first claim of the lemma, simply notice that, by Lemma 3.3, we can
again assume that Γ contains C0 and C1, in which case the first claim follows from
the second claim.

5. CHARACTERIZING POLYNOMIAL-TIME SOLVABILITY

In this section, we completely characterize those finite sets Γ of Boolean relations
for which sLS-CSP(Γ) and pLS-CSP(Γ) are polynomial-time solvable.

Theorem 5.1. Let Γ be a set of Boolean relations. The problem sLS-CSP(Γ)
is in PTIME if one of the following holds, and NP-hard otherwise:

—Every R ∈ Γ is IHS-B−.
—Every R ∈ Γ is width-2 affine.

Theorem 5.2. Let Γ be a set of Boolean relations. The problem pLS-CSP(Γ)
is in PTIME if one of the following holds, and NP-hard otherwise:

—Every R ∈ Γ is 0-valid.
—Every R ∈ Γ is Horn.
—Every R ∈ Γ is width-2 affine.

Note that the tractability part of Theorem 5.2 trivially follows from that of
Theorem 2.2. We now prove the tractability part of Theorem 5.1.

Lemma 5.3. If every relation in Γ is IHS-B− or every relation in Γ is width-2
affine then sLS-CSP(Γ) is in PTIME.

Proof. If every relation in Γ is IHS-B−, then Corollary 4.4 gives a polynomial-
time algorithm. If every relation in Γ is width-2 affine then the following simple
algorithm solves sLS-CSP(Γ): for a given instance (φ, f, k), compute the graph
whose vertices are the variables in φ and two vertices are connected if there is a
constraint = or 6= in φ imposed on them. If there is a connected component of
this graph which has at most k vertices and such that f assigns more 1’s in this

124



component than 0’s, then flipping the values in this component gives a required
lighter solution. If such a component does not exists, then there is no lighter
solution within distance k from f .

We begin our hardness proofs in this section by showing (Lemma 5.4) that sLS-
CSP({R}) is NP-hard whenever R is Horn, but not IHS-B−. Then we reason as
follows. We can now assume that Γ contains a relation that is not Horn and a
relation that is not width-2 affine (and in case of Theorem 5.2, also a relation that
is not 0-valid). By Lemmas 3.1, 3.2, 3.3, we may assume that C0, C1 ∈ Γ, and
we can also assume that the disequality relation is in Γ, by Lemmas 3.5 and 4.6.
Note that Lemma 4.8 actually gives a polynomial-time reduction from an NP-hard
problem. Therefore, we will prove both Theorem 5.1 and Theorem 5.2 if we show
that LImp({R, 6=, C0, C1}) is NP-hard whenever R is flip separable, but not width-2
affine. We do this in Proposition 5.5.

Lemma 5.4. The problem sLS-CSP({R}) is NP-hard whenever R is Horn, but
not IHS-B−.

Proof. It is shown in the proof of Lemma 5.27 of [Creignou et al. 2001]
that R is at least ternary and one can permute the coordinates in R and then
substitute 0 and 1 in R in such a way that the ternary relation R′(x, y, z) =
R(x, y, z, 0, . . . , 0, 1, . . . , 1) has the following properties:

(1) R′ contains tuples (1, 1, 1), (0, 1, 0), (1, 0, 0), (0, 0, 0), and
(2) R′ does not contain the tuple (1, 1, 0).

Note that if (0, 0, 1) ∈ R′ then R′(x, x, y) is x → y. If (0, 0, 1) 6∈ R′ then, since
R (and hence R′) is Horn (i.e., min-closed), at least one of of the tuples (1, 0, 1)
and (0, 1, 1) is not in R′. Then it is easy to check that at least one of the relations
R′(x, y, x) and R′(y, x, x) is x → y. Hence, we can use constraints of the form
x → y when specifying instances of sLS-CSP({R′}).

We reduce Minimum Dominating Set to sLS-CSP({R′}). Let G(V, E) be a
graph with n vertices and m edges where a dominating set of size at most t has
to be found (a dominating set is a subset D of the vertices such that every vertex
is either in D or has a neighbor in D). Let v1, . . . , vn be the vertices of G. Let
S = 3m. We construct a formula with nS + 2m + 1 variables as follows:

—There is a special variable x.
—For every 1 ≤ i ≤ n, there are S variables xi,1, . . . , xi,S . There is a constraint

xi,j → xi,j′ for every 1 ≤ j, j′ ≤ n.
—For every 1 ≤ i ≤ n, if vs1 , . . . , vsd

are the neighbors of vi, then there are d vari-
ables yi,1, . . . , yi,d and the following constraints: xs1,1 → yi,1, R′(xs2,1, yi,1, yi,2),
R′(xs3,1, yi,2, yi,3), . . . , R′(xsd,1, yi,d−1, yi,d), R′(xi,1, yi,d, x).

—For every variable z, there is a constraint x → z.

Observe that the number of variables of type yi,j is exactly 2m. Setting every
variable to 1 is a satisfying assignment. Set k := St + S − 1.

Assume that there is a satisfying assignment where the number of 0’s is at most
k (but positive). Variable x has to be 0, otherwise every other variable is 1. If xi,1

is 0, then xi,j is 0 for every 1 ≤ j ≤ S. Thus k < S(t + 1) implies that there are
125



at most t values of i such that xi,1 is 0. Let D consist of all vertices vi such that
xi,1 is 0. We claim that D is a dominating set. Suppose that some vertex vi is
not dominated. This means that if vs1 , . . . , vsd

are the neighbors of vi, then the
variables xs1,1, . . . , xsd,1, xi,1 all have the value 1. However, this means that these
variables force variables yi,1, . . . , yi,d and variable x to value 1, a contradiction.
Thus D is a dominating set of size at most t.

The reverse direction is also easy to see. Assume that G has a dominating set
D of size at most t. For every 1 ≤ i ≤ n and 1 ≤ j ≤ S, set variable xi,j to 1 if
and only vi is not contained in D. Set x to 0. It is easy to see that this assignment
can be extended to the variables yi,j to obtain a satisfying assignment: indeed, if
vs1 , . . . , vsd

are the neighbors of vi and none of them is in D then vi ∈ D, and
we set yi,1 = . . . = yi,d = 1. Otherwise, if j is minimal such that vsj ∈ D, we set
yi,1 = . . . = yi,j−1 = 1 and yi,q = 0 for q ≥ j. This satisfying assignment contains
at most St + 2m + 1 ≤ k variables with value 0, as required.

Finally, we reduce sLS-CSP({R′}) to sLS-CSP({R}) (and so to sLS-CSP(Γ)).
Take an instance (φ, f, k) of sLS-CSP({R′}), let V be the variables of φ and
c1, . . . , cp the constraints of φ. We build an instance φ′ of sLS-CSP({R}) as follows.

(1) For each 1 ≤ i ≤ max(p, k + 1), introduce new variables xi
0, x

i
1.

(2) For each constraint ci = R′(x, y, z) in formula φ, replace it by the constraint
R(x, y, z, xi

0, . . . , x
i
0, x

i
1, . . . , x

i
1).

(3) For each ordered pair (i, j) where 1 ≤ i, j ≤ max(p, k + 1), add the constraints
R(xi

0, x
i
0, x

j
0, x

j
0, . . . , x

j
0, x

j
1, . . . , x

j
1) and R(xj

1, x
j
1, x

i
1, x

j
0, . . . , x

j
0, x

j
1, . . . , x

j
1).

Finally, extend f so that, for all i, we have xi
0 = 0 and xi

1 = 1. It is clear that the
obtained mapping f ′ is a solution to the new instance. Note that, by the choice of
R′, the tuple (1, 1, 0, 0, . . . , 0, 1, . . . , 1) does not belong to R. Hence, the constraints
added in step (3) above ensure that if a variable of the form xi

0 or xi
1 in f ′ is flipped

then, in order to get a solution to φ′ different from f ′, one must flip at least one of
xi

0 and xi
1 for each 1 ≤ i ≤ max(p, k + 1). Consequently, all solutions to φ′ that lie

within distance k from f ′ must agree with f ′ on all such variables. In other words,
searching for such a solution, it makes sense to flip only variables from V . Thus,
clearly, the instances (φ, f, k) and (φ′, f ′, k) are equivalent.

The following proposition completes the proofs of Theorems 5.1 and 5.2.

Proposition 5.5. If R is a flip separable relation that is not width-2 affine then
LImp({R, 6=, C0, C1}) is NP-hard.

This proposition will be proved through a sequence of lemmas, the main lemmas
being Lemma 5.7 and Lemma 5.9.

We consider affine constraints first.

Lemma 5.6. LImp({ODD3, 6=, C0, C1}) is NP-hard.

Proof. By using Lemma 3.5 with instance ODD3(x, y, z), C1(z), we may assume
that the equality relation is also available.

The hardness proof is by reduction from CSP(R1-in-3), which is known to be
NP-hard even if every variable appears in exactly 3 constraints and each constraint

126



contains 3 distinct variables [Moore and Robson 2001]. (This implies that the num-
ber of variables equals the number of constraints and the weight of every solution
is exactly n/3, where n is the number of variables.) Given a CSP(R1-in-3) formula
φ with n variables x1, . . . , xn, we construct a Γ-formula φ′ with variables

—xi,j for 1 ≤ i ≤ n, 1 ≤ j ≤ 2n,
—vt for every 1 ≤ t ≤ n,
—yj for every 0 ≤ j ≤ (2/3)n2 + 2.

For every 1 ≤ i ≤ n, 1 ≤ j, j′ ≤ 2n, we add the constraint xi,j = xi,j′ . For every
1 ≤ j, j′ ≤ (2/3)n2 + 2, we add the constraint yj = yj′ . For every 1 ≤ t ≤ n, if
the t-th constraint in φ is on variables xa, xb, xc, then let us add the constraints
ODD3(xa,1, xb,1, vt) and ODD3(xc,1, vt, y0). Finally, we add the constraint y0 6= y1.
Define assignment f such that f(vt) = 1 for 1 ≤ t ≤ n and f(yj) = 1 for 1 ≤ i ≤
(2/3)n2 +2, and every other variable is 0. The weight of f is (2/3)n2 +n+2. Set k
to be equal to the number of variables in φ′ (i.e., we do not care about how many
variables we flip in this case). This completes the description of the reduction.

Assume that φ has a solution f0. Define f ′ such that f ′(xi,j) = f0(xi) (1 ≤ i ≤ n,
1 ≤ j ≤ 2n), f ′(y0) = 1, f ′(yj) = 0 (1 ≤ j ≤ (2/3)n2 + 2). This assignment can be
extended to each vt in a unique way: if the t-th constraint in φ is on variables xa,
xb, xc, then exactly two of the variables xa,1, xb,1, xc,1, y0 have value 1, hence we can
set vt accordingly. Thus we can obtain a satisfying assignment f ′ this way. Observe
that the weight of f0 is exactly n/3: each variable with value 1 in f0 appears in
exactly 3 constraints and each constraint contains exactly one such variable. Thus
the weight of f ′ is at most 2n · n/3 + 1 + n, strictly less than the weight of f .

Assume now that φ′ has a satisfying assignment f ′ with w(f ′) < w(f) and prove
that φ is satisfiable. We claim that f ′(y0) = 1 and f ′(yi) = 0 (1 ≤ i ≤ (2/3)n2 + 2)
for any satisfying assignment f ′ with w(f ′) < w(f). Indeed, otherwise, w(f ′) <
w(f) would imply that f ′(vt) = 0 for at least one 1 ≤ t ≤ n. But this means that
there is at least one 1 ≤ i ≤ n such that f ′(xi,j) = 1 for every 1 ≤ j ≤ 2n. Thus
the weight of f ′ would be at least (2/3)n2 + 2n > (2/3)n2 + n + 2, a contradiction
(since n ≥ 3).

Define f0(xi) := f ′(xi,1) for every 1 ≤ i ≤ n. We cannot have w(f0) > n/3
because, otherwise, we have at least 2n(n/3+1) variables xi,j that are equal to 1 in
f ′, and w(f ′) ≥ 2n(n/3 + 1) ≥ w(f) would follow. Hence w(f0) ≤ n/3. Let xa, xb,
xc be the variables in the t-th constraint in φ. The facts f ′(xa,1)+f ′(xb,1)+f ′(vt) =
1, f ′(xc,1) + f ′(vt) + f ′(y0) = 1 and f ′(y0) = 1 imply that at least one of f ′(xa,1),
f ′(xb,1), f ′(xc,1) is 1. Thus if we denote by X the set of those variables of φ that
have value 1 in f0, then each constraint in φ contains at least one variable of X.
Moreover, it is not possible that a constraint contains more than one variables of X.
To see this, observe that each variable is contained in 3 constraints, thus |X| ≤ n/3
implies that the variables of X appear in at most n constraints. However, we have
seen that each constraint contains at least one variable of X, hence the variables
of X appear in exactly n constraints. Equality is possible only if any two variables
of X appear in disjoint constraints, that is, no constraint contains more than one
variables from X. Therefore, f0 is a solution for the instance φ.

Lemma 5.7. LImp({R, 6=, C0, C1}) is NP-hard if R is affine, but not of width 2.

127



Proof. Let R′ be a minimium arity relation which can be obtained from R by
substituting constants and identifying variables (note that such a relation is also
affine) and which is not of width 2. We claim that R′ can be obtained from ODD3

using the operations αi and βi of Lemma 3.7. By Lemma 5.6 and Lemma 3.7,
establishing this claim would finish the proof of the present lemma.

Note that by the minimality of (the arity of) R′, none of the projections of R′

onto a single coordinate can be one-element, and none of the projections of R′ onto
a pair of coordinates can be the equality relation. Thus every binary projection
is either the disequality relation or {0, 1}2 (note that the binary projection cannot
contain exactly 3 tuples, since R′ is affine). Furthermore, if two different binary
projections of R′ are disequality relations then the corresponding pairs of coordi-
nates are disjoint (since otherwise two coordinates would be always equal). Let
R′′ be a largest arity projection of R′ such that every binary projection of R′′ is
{0, 1}2. Note that, to prove the lemma, it is sufficient to show that R′′ is ternary
and is either EVEN3(x1, x2, x3) or ODD3(x1, x2, x3). It is easy to see that then
the relation R′ can be obtained from ODD3 using the operations αi and βi: every
variable of R′ not in {x1, x2, x3} forms a disequality relation with one of x1, x2, x3.

Suppose that the arity of R′′ is n+1. Consider the relations R′′0 = R′′(x1, . . . , xn, 0)
and R′′1 = R′′(x1, . . . , xn, 1). By the choice of R′, both of these relations are width-2
affine, that is each of them can be expressed by a system of equations of the form
xi + xj = a, a ∈ {0, 1}. Note that it is impossible that, for a pair of coordinates
i, j, exactly one of the projections of R′′0 and R′′1 onto i, j is the full relation {0, 1}2.
Indeed, this would imply that the size of the projection of R′′ onto {i, j, n + 1}
would not be a power of 2. Therefore, if, for a pair of indices i, j, one of the pro-
jections of R′′0 and R′′1 onto i, j is the equality relation then the other must be the
disequality relation (to ensure that the projection of R′′ onto {i, j} is {0, 1}2). It
follows that R′′ can be described by the following system of equations: for each
pair i, j such that pri,j(R′′0 ) is the equality relation the system contains the equa-
tion xi + xj + xn+1 = 0, and for each pair i, j such that pri,j(R′′0 ) is the disequality
relation the system contains the equation xi + xj + xn+1 = 1, and there are no
other equations in the system.

Note that if some xi with 1 ≤ i ≤ n participates in at least two equations in this
system (which also involve xj and xj′) then the projection of R′′ onto j, j′ would
not be {0, 1}2, which is a contradiction. Hence, the only variable that may appear
in more than one equation is xn+1. Assume that the system contains at least two
equations, say, x1 + x2 + xn+1 = a and x3 + x4 + xn+1 = b. Then, by identifying
x4 with xn+1 in R′, we would be able to obtain a relation which is affine but not
width-2 (because of the equation x1 + x2 + xn+1 = a), and has arity smaller than
the arity of R′, which is a contradiction.

The lemma is proved.

It remains to consider the case when R is flip separable, but not affine. Again,
we first consider one particular relation.

Lemma 5.8. LImp({R1-in-3, 6=}) is NP-hard.

Proof. Let R = β1(β2(R1-in-3)). We show that LImp({R, 6=}) is NP-hard; by
Lemma 3.7, this implies hardness for LImp({R1-in-3, 6=}) as well. Observe that the

128



projection of R(x1, x2, x3) to {x1, x2} is x1 ∨ x2.
The proof is by reduction from LImp({x ∨ y}). Let (φ1, f1, k1) be an instance

of LImp({x ∨ y}) with n variables and m constraints. Formula φ2 contains each
variable of φ1 and, for each i = 1 . . . m, two new variables yi, ȳi corresponding to
the i-th constraint of φ1. If the i-th constraint of φ1 is, say, x1 ∨ x2, then we add
the constraints R(x1, x2, yi) and yi 6= ȳi.

There is a one-to-one mapping between the satisfying assignments of φ1 and φ2:
a satisfying assignment of φ1 can be extended to φ2 in a unique way. Let f2 be the
extension of f1 and set k2 := k1 + 2m. The total weight of the 2m variables yi,
ȳi (1 ≤ i ≤ m) is exactly m in every satisfying assignment of φ2, thus extending
a satisfying assignment of φ1 to φ2 increases the weight exactly by m. It follows
that if f1 has a better solution in its k1-neighborhood, then f2 has a better solution
in its (k1 + 2m)-neighborhood. Furthermore, if f2 is suboptimal, then this is only
possible if f1 is suboptimal as well. This proves the correctness of the reduction.

Lemma 5.9. LImp({R, 6=, C0, C1}) is NP-hard if R is flip separable but not affine.

Proof. It is shown in the proof of Lemma 5.30 of [Creignou et al. 2001] that
there exist an instance of CSP({R, 6=, C0, C1}) such that if R′ is the set of all
solutions to this instance and R′′ = prI(R′) where I = {j | prj(R′) = {0, 1}} then
R′′ has the following property. Either R′′ is a ternary relation such that

—the tuples (0, 0, 0), (0, 1, 1), (1, 0, 1) belong to R′′, and
—the tuple (1, 1, 0) does not belong to R′′,

or else R′′ is obtained from such a relation by using operations αi (see Lemma 3.7).
By Lemmas 3.5 and 3.7, it suffices to show LImp({R′′, 6=}) is NP-hard when R′′

is a ternary relation satisfying the two properties. Note that, since all relations in
{R, 6=, C0, C1} are flip separable, R′′ is also a flip separable relation.

Since R′′ is flip separable, it is easy to see that if one of the tuples from R1-in-3

belongs to R′′ then all of them do (consider the tuple (0, 0, 0) and its flip sets of
size 1 and 2). However, in this case (1, 0, 0) ∈ R′′ has flip sets {1} and {1, 2}, and
therefore {2} should also be a flip set for this tuple, which is impossible because
(1, 1, 0) 6∈ R′′. It follows that R′′∩R1-in-3 = ∅. If the tuple (1, 1, 1) was in R′′ then it
would have flip sets {1, 2, 3} and {1}, and hence {2, 3} as well, which is impossible.
It follows that R′′ = {(0, 0, 0), (0, 1, 1), (1, 0, 1)} = β1(β2(R1-in-3)). The lemma now
follows from Lemmas 3.7 and 5.8.

6. CONCLUSIONS

We have completed a Schaefer-style study of Boolean CSP with respect to the
complexity of decreasing the weight of a solution by doing at most k flips. We
analyized both the polynomial-time solvability and the fixed-parameter tractability
of the problem. As expected, the problem is polynomial-time solvable only in trivial
cases, when finding an optimum solution is easy anyway. On the other hand, we
have discovered nontrivial classes of constraints for which the problem is fixed-
parameter tractable, which shows that this line of investigation (parameterized
complexity of local search) is worthwhile, as it can lead to positive results that are
not obvious at first sight.

129



Following [Marx and Schlotter 2009b], we made a distinction between “strict”
and “permisive” local search and obtained a classification for both variants. Inves-
tigating permissive local search leads to results that are more natural: strict local
search can be hard even if the problem can be solved optimally, for example, in
the case of 0-valid constraints. However, in our study, every problem that is hard
for strict local search but easy for permissive local search actually turned out to be
trivial to solve optimally. It would be interesting to see a problem (related to CSP
or to some other problem domain) where finding the optimum is hard, strict local
search is hard, but permissive local search is fixed-parameter tractable.

REFERENCES

Aarts, E. and Lenstra, J., Eds. 2003. Local Search in Combinatorial Optimization. Princeton
University Press.

Chapdelaine, P. and Creignou, N. 2005. The complexity of Boolean constraint satisfaction
local search problems. Annals of Mathematics and Artificial Intelligence 43, 51–63.

Cohen, D. and Jeavons, P. 2006. The complexity of constraint languages. In Handbook of
Constraint Programming, F. Rossi, P. van Beek, and T. Walsh, Eds. Elsevier, Chapter 8.

Creignou, N., Khanna, S., and Sudan, M. 2001. Complexity Classifications of Boolean Con-
straint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications,
vol. 7.

Crescenzi, P. and Rossi, G. 2002. On the Hamming distance of constraint satisfaction problems.
Theoretical Computer Science 288, 1, 85–100.

Dantsin, E., Goerdt, A., Hirsch, E., Kannan, R., Kleinberg, J., Papadimitriou, C., Ragha-
van, P., and Schöning, U. 2002. A deterministic (2 − 2

k+1
)n algorithm for k-SAT based on

local search. Theoretical Computer Science 289, 69–83.

Downey, R. and Fellows, M. 1999. Parameterized Complexity. Springer.

Fellows, M. 2001. Parameterized complexity: new developments and research frontiers. In
Aspects of Complexity (Kaikura, 2000). de Gruyter Series in Logic and Applications, vol. 4.
51–72.

Fellows, M., Fomin, F., Lokshtanov, D., Rosamond, F., Saurabh, S., and Villanger, Y.
2009. Local search: Is brute force avoidable? In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI). 486–491.

Flüm, J. and Grohe, M. 2006. Parameterized Complexity Theory. Springer.

Gu, J., Purdom, P., Franko, J., and Wah, B. 2000. Algorithms for the Satisfiability Problem.
Cambridge University Press, Cambridge, MA.

Hirsch, E. 2000. SAT local search algorithms: worst-case study. Journal of Automated Reason-
ing 24, 127–143.

Hoos, H. and Tsang, E. 2006. Local search methods. In Handbook of Constraint Programming,
F. Rossi, P. van Beek, and T. Walsh, Eds. Elsevier, Chapter 5.

Johnson, D., Papadimitriou, C., and Yannakakis, M. 1988. How easy is local search? Journal
of Computer and Systems Sciences 37, 79–100.

Khanna, S., Sudan, M., Trevisan, L., and Williamson, D. 2001. The approximability of
constraint satisfaction problems. SIAM Journal on Computing 30, 6, 1863–1920.

Kirousis, L. and Kolaitis, P. 2003. The complexity of minimal satisfiability problems. Infor-
mation and Computation 187, 20–39.

Marx, D. 2005. Parameterized complexity of constraint satisfaction problems. Computational
Complexity 14, 153–183.

Marx, D. 2008a. Local search. Parameterized Complexity News, pages 7–8, vol. 3.

Marx, D. 2008b. Searching the k-change neighborhood for TSP is W[1]-hard. Operations Research
Letters 36, 31–36.

Marx, D. and Schlotter, I. 2009a. Parameterized complexity and local search approaches for
the stable marriage problem with ties. Algorithmica. To appear.

130



Marx, D. and Schlotter, I. 2009b. Stable assignment with couples: Parameterized complexity
and local search. In Proceedings of 4th International Workshop on Exact and Parameterized
Computation (IWPEC). To appear.

Michiels, W., Aarts, E., and Korst, J. 2007. Theoretical Aspects of Local Search. EATCS
Series: Monographs in Theoretical Compter Science. Springer.

Moore, C. and Robson, J. M. 2001. Hard tiling problems with simple tiles. Discrete Comput.
Geom. 26, 4, 573–590.

Schaefer, T. 1978. The complexity of satisfiability problems. In STOC’78. 216–226.

Szeider, S. 2009. The parameterized complexity of k-flip local search for SAT and MAX SAT. In
Proceedings of 12th Conference on Theory and Applications of Satisfiability Testing, SAT’09.
276–283.

131


