Parameterized complexity and kernelizability of
Max Ones and Exact Ones problems*

Stefan Kratsch!, Ddniel Marx?, and Magnus Wahlstrom?

! Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany
{skratsch,wahl}@mpi-inf.mpg.de
2 Tel Aviv University, Israel
dmarx@cs.bme.hu

Abstract. For a finite set I" of Boolean relations, Max Ones SAT(I")
and Exact Ones SAT(I") are generalized satisfiability problems where
every constraint relation is from I, and the task is to find a satisfying
assignment with at least/exactly k variables set to 1, respectively. We
study the parameterized complexity of these problems, including the
question whether they admit polynomial kernels. For Max Ones SAT(I"),
we give a classification into 5 different complexity levels: polynomial-time
solvable, admits a polynomial kernel, fixed-parameter tractable, solvable
in polynomial time for fixed k, and NP-hard already for kK = 1. For Exact
Ones SAT(I"), we refine the classification obtained earlier by having a
closer look at the fixed-parameter tractable cases and classifying the sets
I" for which Exact Ones SAT(I") admits a polynomial kernel.

1 Introduction

The constraint satisfaction problem (CSP) provides a framework in which it is
possible to express, in a natural way, many combinatorial problems encountered
in artificial intelligence and computer science. A CSP instance is represented by
a set of variables, a domain of values for each variable, and a set of constraints
on the values that certain collections of variables can simultaneously take. The
basic aim is then to find an assignment of values to the variables that satisfies
the constraints. Boolean CSP (when all variables have domain {0, 1}) generalizes
satisfiability problems such as 2SAT and 3SAT by allowing that constraints are
given by arbitrary relations, not necessarily by clauses.

As Boolean CSP problems are NP-hard in general, there have been intensive
efforts at finding efficiently solvable special cases of the general problem. One
well-studied type of special cases is obtained by restricting the allowed constraint
relations to a fixed set I'; we denote by SAT(I") the resulting problem. We expect
that if the relations in I" are simple, then SAT(I") is easy to solve. For example,
if I" contains only binary relations, then SAT(I") is polynomial-time solvable, as
it can be expressed by 2SAT. On the other hand, if I" contains all the ternary
relations, then SAT(I") is more general than 3SAT, and hence it is NP-hard.

* The second author is supported by ERC Advanced Grant DMMCA and the Hun-
garian National Research Fund (OTKA grant 67651).

A celebrated classical result of T.J. Schaefer [18] from 1978 characterizes
the complexity of SAT(I") for every finite set I': it shows that if I" has certain
simple combinatorial properties, then SAT(I") is polynomial-time solvable, and
if I' does not have these properties, then SAT(I") is NP-hard. This result is
surprising for two reasons. First, Ladner’s Theorem [14] states that if P # NP,
then there are problems in NP that are neither in P nor NP-complete. Therefore,
it is surprising that every SAT(I") problem is either in P or NP-complete, and
no intermediate complexity appears for this family of problems. Second, it is
surprising that the borderline between the P and NP-complete cases of SAT(I")
can be conveniently characterized by simple combinatorial properties.

Schaefer’s result has been generalized in various directions. Bulatov [3] gen-
eralized it from Boolean CSP to CSP over a 3-element domain and it is a major
open question if it can be generalized to arbitrary finite domains (see [4,10]).
Creignou et al. [6] classified the polynomial-time solvable cases of the problem
Exact Ones SAT(I"), where the task is to find a satisfying assignment such that
exactly k variables have value 1, for some integer k given in the input. Natu-
ral optimization variants of SAT(I") were considered in [5,7,12] with the goal
of classifying the approximability of the different problems. In Max SAT(I)
we have to find an assignment maximizing the number of satisfied constraints,
while in Min UnSAT(I") we have to find an assignment minimizing the number
of unsatified constraints. Min Ones SAT(I") and Max Ones SAT(I") ask for a
satisfying assignment minimizing and maximizing, respectively, the number of
variables having value 1.

Parameterized complexity. Recently, there have been investigations of
the hardness of CSP from the viewpoint of parameterized complexity [15,13].
This paradigm investigates hardness in finer detail than classical complexity,
which focuses mostly on polynomial-time algorithms. A parameterization of a
problem is assigning an integer k£ to each input instance. Consider, for example,
two standard NP-complete problems Vertex Cover and Clique. Both have the
natural parameter k: the size of the required vertex cover/clique. Both problems
can be solved in time n®*) on n-vertex graphs by complete enumeration. Notice
that the degree of the polynomial grows with k, so the algorithm becomes use-
less for large graphs, even if k is as small as 10. However, Vertex Cover can be
solved in time O(2% - n?) [11,9]. In other words, for every fixed cover size there
is a polynomial-time (in this case, quadratic in the number of vertices) algo-
rithm solving the problem where the degree of the polynomial is independent of
the parameter. Problems with this property are called fized-parameter tractable.
The notion of WJ[1]-hardness in parameterized complexity is analogous to NP-
completeness in classical complexity. Problems that are shown to be W([1]-hard,
such as Clique [11, 9], are very unlikely to be fixed-parameter tractable.

Kernelization. One of the most basic techniques for showing that a prob-
lem is fixed-parameter tractable is to show that the computationally hard “core”
of the problem can be extracted in polynomial time. Formally, kernelization
is a polynomial-time transformation that, given an instance I of problem P
with parameter k, creates an equivalent instance I’ of problem P with param-

eter k' < f(k) such that the size of I’ is at most g(k) for some functions f, g
(usually, &’ < k is achievable). For example, a classical result of Nemhauser and
Trotter [16] shows that every instance I of Vertex Cover with parameter k can
be transformed into an instance I’ with parameter k¥’ < k such that I’ has at
most g(k) = 2k vertices. Observe that the existence of a kernelization algorithm
for P immediately implies that P is FPT, assuming that P is decidable: per-
forming the kernelization and then doing a brute force solution on I’ clearly
takes only n®M) + f (k) time for some function f. From the practical point of
view, polynomial kernels, i.e., kernelization algorithms where g(k) is a polyno-
mial, are of particular interest. If a problem has this property, then this means
that there is an efficient preprocessing algorithm for the problem with a prov-
able bound on the way it shrinks the instance. Such a preprocessing can be an
invaluable opening step in any practical solution for the problem. Very recently,
however, it has been shown that under standard complexity assumptions, not
every FPT problem has a polynomial kernel: e.g., the k-Path problem can be
solved in (randomized) time 2% - n®() [19], but has no polynomial kernel unless
NP C co-NP/poly [1]. The negative toolkit developed in [1] has been successfully
applied to a number of other problems [2, §].

Results. The parameterized complexity of Exact Ones SAT(I") was studied
in [15], where it was shown that a property called weak separability characterizes
the complexity of the problem: Exact Ones SAT(I") is FPT if I' is weakly sepa-
rable, and W[1]-complete otherwise. The problem Min Ones SAT(I") is FPT for
every I' by a simple branching algorithm, but it is not obvious to see for which I
there is a polynomial kernel. This question has been resolved in [13] by showing
that (unless NP C co-NP/poly) Min Ones SAT(I") has a polynomial kernel if
and only if Min Ones SAT(I") is in P or I" has a property called mergebility.

We continue this line of research by considering the so far unexplored problem
Max Ones SAT(I") and revisit Exact Ones SAT(I"). We will characterize (under
standard complexity assumptions) parameterized Max Ones SAT(I") problems
for finite constraint languages I" as the following 5 types: solvable in polynomial
time; NP-hard, but having polynomial kernelization; being FPT but admitting
no polynomial kernelization; being W[1]-hard and in XP; and not being in XP.
The characterization uses results of Nordh and Zanuttini [17] on frozen co-clones.
For Exact Ones SAT(I"), we refine the classification of [15] by precisely charac-
terizing those weakly separable sets I" for which Exact Ones SAT(I") is not only
FPT, but admits a polynomial kernel. Table 1 shows some examples.

The kernelization lower bounds for both problems use reductions from a
maximization problem MULTIPLE COMPATIBLE PATTERNS, which is FPT but
admits no polynomial kernelization unless NP C co-NP /poly. This problem may
be useful for other hardness reductions as well.

2 Preliminaries and Notation

Boolean CSP. A formula ¢ is a pair (V,C) consisting of a set V of variables
and a set C of constraints. Each constraint ¢; € C is a pair (5;, R;), where

r Min Ones Exact Ones Max Ones
width-2 affine P P P
{ODD;} PK PK p
{EVEN;} P FPT PK
{EVENS, (z)} FPT FPT PK
{ODDy4}, general affine FPT FPT PK
{(zVvy), (z#y)} PK PK PK
(=Y A #£2)} PK FPT FPT
{(zVy),(z#y),(x—y)} PK W]1]-complete FPT
bijunctive PK W]/1]-complete = W[1]-hard, XP
{Rin-3} PK PK not in XP
{3, zi =p (mod q)} FPT FPT not in XP
general FPT WI1] not in XP

Table 1. Examples of sets of relations I" and the properties for Min Ones SAT(I"),
Exact Ones SAT(I"), and Max Ones SAT(I"). Problems marked PK have polynomial
kernels; problems marked FPT are FPT but admit no polynomial kernelization unless
NP C co-NP/poly.

5, = (zi1,...,Tip,) is an ri-tuple of variables (the constraint scope) and R; C
{0,1}" is an r;-ary Boolean relation (the constraint relation). A function f : V —
{0,1} is a satisfying assignment of ¢ if (f(z;1),..., f(zir,)) is in R; for every
¢; € C. Let I' be a set of Boolean relations. A formula is a I'-formula if every
constraint relation R; is in I'. In this paper, I" is always a finite set containing
only non-empty relations. For a fixed finite I", every I'-formula ¢ = (V, C') can be
represented with length polynomial in |V| and |C|: each constraint relation can
be represented by constant number of bits (depending only on I'). The weight
w(f) of an assignment f is the number of variables « with f(z) = 1.

We also use some definitions from [17]. Let ¢ = (V, C) be a formulaand x € V
a variable. Then z is said to be frozen in ¢ if x takes the same value in every
satisfying assignment of ¢. Further, let I" be a set of relations, and R an n-ary
relation. Then I freezingly implements R if there is a formula ¢ over I'U{=} such
that R(zq,...,z,) = 3X¢, where ¢ uses variables X U {z1,...,2,} only, and
all variables in X are frozen in ¢. If only relations of I" are used, then we have
a frozen implementation without equality. This will be our standard notion of
implementation in the paper, and as such is shortened to simply “implements”.

We recall some standard definitions concerning Boolean constraints (cf. [5]):

— Ris O-valid if (0,...,0) € R.

R is I-valid if (1,...,1) € R.

R is Horn or weakly negative if it can be expressed as a conjunction of

clauses such that each clause contains at most one positive literal. It is

known that R is Horn if and only if it is AND-closed: if (aq,...,a,) € R and

(bl, ey br) € R, then ((a1 A 61)7 ey (ar A b,«)) € R.

— R is anti-Horn or weakly positive if it can be expressed as the conjunction
of clauses such that each clause contains at most one negated literal. It is

known that R is anti-Horn if and only if it is OR-closed: if (a1,...,a,) € R
and (by,...,b,) € R, then ((a1 V b1),...,(ar Vb)) € R.

— R is bijunctive if it can be expressed as the conjunction of constraint such
that each constraint is the disjunction of two literals.

— R is affine if it can be expressed as a conjunction of constraints of the form
x14xo+---+x; = b, where b € {0, 1} and addition is modulo 2. The number
of tuples in an affine relation is always an integer power of 2. We denote by
EVEN,. the r-ary relation z; + z3 + --- + x, = 0 and by ODD,. the r-ary
relation x1 + 22 +--- +z, = 1.

— R is width-2 affine if it can be expressed as a conjunction of constraints of
the form z =y, ¢ # y, (z), and (—x).

— R is monotone if a € R and b > a implies b € R, where > is applied
component-wise. Such a relation is implementable by positive clauses, by
adding a clause over the false positions of every maximal false tuple.

— The relation R x.q (for 1 < p < ¢) has arity ¢ and Rp.nq(21,...,%4) is true
if and only if exactly p of the variables 1, ..., x4 have value 1.

The above is extended to properties of sets of relations, by saying that a set of
relations I is 0-valid (1-valid, Horn, ...) if this holds for every R € T.

Theorem 1 (Schaefer [18]). Let I be a set of Boolean relations. Then SAT(T")
isin P if I' has one of the following properties: 0-valid, 1-valid, Horn, anti-Horn,
bijunctive, or affine. Otherwise, SAT(I") is NP-complete.

Max Ones SAT(I") and Exact Ones SAT(I"). For a fixed set of relations I’
Max Ones SAT(I') is the following problem:

Input: A formula ¢ over I'; an integer k.

Parameter: k.

Task: Decide whether there is a satisfying assignment for ¢ of weight at
least k.

For example, Max Ones SAT(—x V —y) is equivalent to Independent Set, and is
thus W[1]-complete. Further examples can be found in Table 1. Similarly, Exact
Ones SAT(I"), for a fixed set of relations I', is the following problem.

Input: A formula ¢ over I'; an integer k.

Parameter: k.

Task: Decide whether there is a satisfying assignment for ¢ of weight
exactly k.

Parameterized complexity and kernelization. A parameterized problem Q
is a subset of X* x N; the second component is called the parameter. The
problem Q is fized-parameter tractable (FPT) if there is an algorithm that de-
cides (I,k) € Q in time f(k) - n°(), where f is some computable function. A
kernelization is a polynomial-time mapping K : (I, k) — (I’, k") such that (I,k)
and (I', k') are equivalent, ¥’ < f(k), and |I’| < g(k), for some functions f and g.
Usually, f can be taken as the identity function, i.e., ¥/ < k; this will be the

case throughout this paper. If |I’| is bounded by a polynomial in k, then K is
a polynomial kernelization. 1t is well-known that every decidable parameterized
problem is fixed-parameter tractable if and only if it has a (not necessarily poly-
nomial) kernelization [11]. A polynomial time and parameter reduction from Q
to @' is a polynomial-time mapping @ : (I, k) — (I', k') such that (I,k) € Q if
and only if (I, k") € Q and such that &’ is polynomially bounded in k; we denote
the existence of such a reduction by Q <p;, Q'. These reductions were intro-
duced by Bodlaender et al. [2], who also showed that they preserve polynomial
kernelizability.

The MCP problem. Our kernelization lower bounds will use the problem
MULTIPLE COMPATIBLE PATTERNS (MCP), defined as follows:

Input: A set of patterns from {0, 1, %}", where % (the wildcard char-
acter) matches 0 or 1; an integer k.

Parameter: r + k.

Task: Decide whether there is a string in {0,1}" that matches at least k
patterns.

A kernelization lower bound for MCP follows from the methods of [1]. Briefly,
we get NP-completeness by a reduction from CLIQUE, and compositionality by
adding logt bits to compose ¢ instances.

Lemma 2. MULTIPLE COMPATIBLE PATTERNS (MCP) is FPT, NP-complete,
and admits no polynomial kernelization unless NP C co-NP /poly.

3 Max Ones Characterization

This section contains the our characterization of the parameterized complexity
properties of Max Ones SAT(I") problems.

As a very first distinction, observe that if SAT(I") is NP-complete, then Max
Ones SAT(I") is NP-complete even for a parameter & = 0. Thus, we know by
Schaefer (Theorem 1) that I' has to fall in one of the classes 0-valid, 1-valid,
affine, Horn, anti-Horn, or bijunctive for the problem to be in XP. Of these, the
classes of 1-valid relations and anti-Horn relations are polynomial-time solvable,
leaving four classes to examine. The cases of affine, Horn, and 0-valid relations
can be characterized without too much difficulty, and will be treated summarily,
as we will focus on the more interesting cases that occur when I" is bijunctive.

We begin with the polynomial cases, as proven by Khanna et al. [12].

Theorem 3 ([12]). Max Ones SAT(I") is in P if I' is 1-valid, weakly positive
(i.e. anti-Horn), or width-2 affine, and APX-hard in all other cases.

The following lemma covers the properties of every set of relations I" except
the bijunctive cases; full proofs will be found in the full version.

Lemma 4. Let I' be a set of relations; the following hold.
1. If I is affine, then Max Ones SAT(I") has a kernel with O(k) variables.

2. If I' is Horn, but not anti-Horn and not 1-valid, then Max Ones SAT(I") is
W/1]-hard.

8. If I' is O-valid, but neither anti-Horn, 1-valid, affine, nor Horn, then Max
Ones SAT(I") is NP-hard for k = 1.

Proof (sketches). 1. We can check in polynomial time which variables have to be
set to false in every solution, and remove these. For the rest, we can by a greedy
procedure find a solution which sets at least half the remaining variables to be
true. Thus, we either find a solution with weight at least k, or leave a kernel
with at most 2k variables.

2. If I' is Horn, and the listed cases do not apply, then I" admits a reduction
from Independent Set by implementing (—z V —y); either directly, or, e.g., via
relations (x Ay — 2) and (—z).

3. Let I' be 0-valid such that no listed case applies. It can be shown that I’
implements R(z,y, z) = {(0,0,0),(1,1,0), (1,0, 1)}; we will show that Max Ones
SAT(R) is NP-hard for k& = 1. By a trick of splitting variables, we can adjust
a given formula to add a universal variable z; such that z; = 1 in any solution
where at least one variable is true. Relations R(z1,z,y) then become (z # y)
in any such solution, effectively constructing a reduction from SAT(R, (z # y)).
By Theorem 1, this problem is NP-complete, and the claim follows. a

3.1 Bijunctive cases

In this subsection we treat the cases of Max Ones SAT(I") where I is bijunctive
but not Horn, anti-Horn, or width-2 affine (or 0-valid, or 1-valid, but this follows
implicitly). This corresponds to the sets I which, using existentially quantified
variables, can implement all 2SAT clauses; see [17]. See also Table 1 for a sum-
mary of the maximal cases.

For the result, we will need the results of Nordh and Zanuttini [17]. Recall the
definition of a frozen implementation (with equality). The frozen partial co-clone
(I') ¢ generated by I' is the set of all relations that can be freezingly implemented
by I'. We will use the characterization of [17] of the frozen partial co-clones that
our I" can generate. The free use of equality constraints is somewhat more general
than what we wish to allow, but we will find that it causes no problems.

We need the following special cases.

1L I ={(zVy), (x£y)}
2. Ry =(—zV-wy)A(x#£2); Iy ={R}}

3. [P = {(xVy),(z#y),(z—y)}

Finally, we need a technical lemma to show that we can assume that we have
access to the constants. We refer to the full version for a proof.

Lemma 5. If I' is neither 0-valid, 1-valid, nor affine, but SAT(I") is not NP-
hard, then the constants can be implemented.

Let us now proceed with settling the remaining cases of Max Ones SAT(I').

Lemma 6. Assume that I' is bijunctive but not Horn or anti-Horn. Then the
following hold.

1. If ' C <F§'#>f,., where TF7 = {(x V), (z # y)}, then Max Ones SAT(I)
has a polynomial kernel (of O(k?) variables). Otherwise, Max Ones SAT(I")
admits no polynomial kernelization, unless NP C co-NP /poly.

2. IfI" C (Ff;ﬁi}fr, where TP = {(z Vy), (z #), (x — y)}, then Max Ones
SAT(I") is FPT (with running time O*(2%)). Otherwise, Max Ones SAT(I")
is W[1]-hard.

Proof. Let (¢, k) be a Max Ones SAT(I") instance. Assume throughout that the
instance is feasible (as otherwise, the problem is trivial). We split the proof into
proofs of feasibility (la, 2a), and lower bound proofs (1b, 2b).

la. By [17], every relation in I', and thus all of ¢, has a frozen implementation
over I} 7 U {=}. We will refer to this implementation when inferring a kernel,
but the kernelization will apply for the original I" as well. Let a set of at least
two variables which are connected by disequality or equality, with at least one
disequality, be referred to as a class of variables. If there are at least k variable
classes, then any solution will contain at least k true variables, and can be found
in polynomial time. If any class contains at least 2k variables, then either the
variables of this class have fixed values, in which case we make the corresponding
assignments, or we can find a solution with at least k true variables. Finally, if
any variable does not occur in a variable class, it can safely be set to 1. These
observations leave a kernel with O(k) variable classes and O(k?) variables in
total. Finally, as the only changes we made to the formula were assignments, we
can apply the kernelization using only relations in I' by replacing all assigned
variables by the constant variables z; or zj.

1b. By [17], there is an implementation of R} over I' U {=}. As the equal-
ity constraint will not be useful in such an implementation, there is also an
implementation directly over I', showing Max Ones SAT(I3") <py, Max Ones
SAT(I"); we will in turn show that MCP <p;,, Max Ones SAT(I§") (the problem
MCP was defined in Section 2).

Observe that, renaming variables, R} can be written as (z # y) A (z —).
Let (1, k) be an instance of MCP, with string length r. Create variables (z; # v;)
for 1 < i < r, coding the entries of the string; these variables contribute weight
exactly r to any solution. Now for every pattern i, create a variable z;, and for
every position j of pattern ¢ containing 0, add a constraint (x; # y;) A (z; — ;).
For positions containing 1, create the same constraint with an implication instead
to y;. Any solution with r 4 k true variables corresponds one-to-one to a string
in {0,1}" and k patterns matching it. Thus (by [2]), Max Ones SAT(I") admits
no polynomial kernelization unless NP C co-NP/poly.

2a. As before, there is an implementation of ¢ over Iy #U{:}. Again consider
the variable classes; if they number at least k, then find a solution in polyno-
mial time. Otherwise, we check all O(2*) assignments to variables of the variable
classes. For each such assignment, propagate assignments to the remaining vari-
ables. Any formula that remains after this is 1-valid.

2b. By [17], there is an implementation of (—~z V —y) over I'U{=}, and again
the equality constraint would not be useful. Thus there is an FPT reduction
from Independent Set to Max Ones SAT(I").

Our results for Max Ones SAT(I") summarize into the following picture.

Theorem 7. Let I' be a finite set of Boolean relations. Then Max Ones SAT(I")
falls into one of the following cases.

1. If I is 1-valid, anti-Horn, or width-2 affine, then Max Ones SAT(I") is in P;
i the remaining cases, it is NP-complete.

2. If I is affine, or if I' C ((z V y), (x # y))¢r, then Max Ones SAT(I") has a
polynomial kernel.

8 IfI' C ((xVy),(x # y),(x — y))sr, then Max Ones SAT(I") is in FPT,
with a running time of O*(2%), but if the previous case does not apply, then
there is no polynomial kernelization unless NP C co-NP /poly.

4. If none of these cases applies, then Max Ones SAT(I") is W[1]-hard; if ' is
Horn or bijunctive, then Max Ones SAT(I") is in XP.

5. Otherwise Max Ones SAT(I") is NP-complete for k = 1.

4 Exact Ones CSP

In this section we classify Exact Ones SAT(I') into admitting or not admit-
ting a polynomial kernelization depending on the set of allowed relations I". We
start from the characterization of its fixed-parameter tractability [15] as well
as the characterization of when Min Ones SAT(I") admits a polynomial ker-
nelization [13]. To this end we recall the invariants called weak separability and
mergeability used for the respective characterization. We also introduce a joined,
stronger version of the two partial polymorphisms defining weak separability; this
will be used to characterize kernelizability of Exact Ones SAT(I).

Definition 8. A t-ary partial polymorphism is a partially defined function f :
{0,1}* — {0,1}. For an r-ary relation R, we say that R is invariant under f
if for any t tuples aq,...,ar € R, such that f(ayi(i),...,a:(i)) is defined for
every i € [r], we have (f(a1(1),...,a4(1)),..., f(a1(r),...,a4(r))) € R.

We present partial polymorphisms in a matrix form, where the columns represent
the tuples for which f is defined, and the value below the horizontal line is the
corresponding value of f.

Definition 9 ([15,13]). Let FPT(1), FPT(2), and FPT(1 1 2) denote the
following partial polymorphisms:

FPT(1) FPT(2) FPT(1 > 2)
000 1 010 1 0100 1
0011 0111 01011
0101 0001 00101

0111 0011 00111

A boolean relation R is weakly separable if it is invariant under FPT(1) and
FPT(2). It is semi-separable if it is invariant under FPT(1 x 2). Finally, a
relation is mergeable if it is invariant under the following partial polymorphism.:

Mergeable
0101101
0100001
0011011
0010001
0101001

Theorem 10 ([15]). Exact Ones SAT(I") is fixed-parameter tractable if every
relation R € I' is weakly separable. In the remaining cases it is W[1]-complete.

Since any kernelization for a problem also implies fixed-parameter tractabil-
ity, we will only need to further classify the fixed-parameter tractable cases.

By a simple observation, Min Ones SAT(I") reduces to Exact Ones SAT(I")
by a polynomial time and parameter reduction. This allows us to transfer lower
bounds from the min ones to the exact ones setting.

Lemma 11. Min Ones SAT(I") reduces to Exact Ones SAT(I") by a polynomial
time and parameter reduction.

Thus, using the kernelization dichotomy for Min Ones SAT(I") [13], we may
exclude further cases.

Theorem 12 ([13]). Unless NP C co-NP/poly, Min Ones SAT(I") admits a
polynomial kernel if and only if every relation in I' is mergeable or Min Ones
SAT(I") is in P.

Corollary 13. If I' is not mergeable and Min Ones SAT(I") is NP-hard then
Exact Ones SAT(I") does not admit a polynomial kernel unless the polynomial
hierarchy collapses.

According to Khanna et al. [12] Min Ones SAT(I") is in P when I' is 0-valid,
weakly negative, or width-2 affine; in all other cases it is NP-hard (APX-hard).

Theorem 14. Let I' be a finite set of weakly separable relations.

1. If I is width-2 affine then Exact Ones SAT(I") is in P; this includes the cases
where I' is Horn, or both 0-valid and mergeable. In the remaining cases, the
problem is NP-complete.

2. If I' is anti-Horn, or both mergeable and semi-separable, then Exact Ones
SAT(I") admits a polynomial kernelization.

3. In all other cases Exact Ones SAT(I") does not admit a polynomial kernel-
ization unless NP C co-NP /poly.

We only give an outline of the proof; the full proof will be given in the full
version.

Proof (outline). We first consider the cases when Min Ones SAT(I") is in P,
i.e., when I" is zero-valid, Horn, or width-2 affine [12]. In all other cases, due to
Corollary 13, we may then use that I" is mergeable (since otherwise Exact Ones
SAT(I") does not admit a polynomial kernel).

If I is width-2 affine, then by Creignou et al. [6], Exact Ones SAT(I") is in P;
otherwise it is NP-complete. If I is Horn we show that it can be implemented
by {=,(x),(—-z)} and Exact Ones SAT(I") is in P. The same is true if I" is
zero-valid and mergeable.

If I is zero-valid but not mergeable then (unless I' is Horn) we are able to
reduce Exact Ones SAT(I") to Exact Ones SAT(I") where I' = I'U{(z), (—z)}
by a polynomial time and parameter reduction. Since I" is neither zero-valid,
Horn, nor width-2 affine we conclude that Min Ones SAT(I") is NP-hard. This
implies that Exact Ones SAT(I") does not admit a polynomial kernelization by
Corollary 13, which extends also to Exact Ones SAT(I") through our reduction.

For all further choices of I" (i.e., neither zero-valid, Horn, nor width-2 affine)
we have that Min Ones SAT(I") and Exact Ones SAT(I") are NP-hard. Therefore,
by Corollary 13, we assume that I" is mergeable.

If I is anti-Horn (and weakly separable) we show that it can be implemented
by equality, negative assignments, and positive clauses. This also means that I’
is semi-separable and mergeable. Now one of two cases applies. If I" is monotone,
then Exact Ones SAT(I") reduces to d-Hitting Set and we are done. Otherwise,
Exact Ones SAT(I"U{(z), (—z)}) reduces to Exact Ones SAT(I"), implying that
we have constants available. We will later show that for any semi-separable and
mergeable I" that contains (x) and (—z) Exact Ones SAT(I") admits a polynomial
kernel.

Otherwise, in particular, if I" is not Horn or anti-Horn, we show that Exact
Ones SAT(I" U {#, (x), (—z)}) reduces to Exact Ones SAT(I") by a polynomial
time and parameter reduction; i.e., as above we may assume to have disequality
and constants available in I'. Then if I" is not semi-separable, we show that Exact
Ones SAT(I") does not admit a polynomial kernel by a polynomial time and
parameter reduction from the MCP problem: The central fact is that we must
have a witness against semi-separability (i.e., invariant under FPT(1 1 2)), but
all relations in I" are weakly separable (i.e., invariant under FPT(1) and FPT(2)).
Using disequality this witness permits us to implement (z — y) A (y # 2); we
then use the reduction from MCP as in Lemma 6.

To conclude our proof it now suffices to give a polynomial kernelization for
the case that I' is mergeable, semi-separable, and contains positive and nega-
tive assignments. To this end we use a sunflower lemma for tuples to repeatedly
find and simplify sunflowers while there are too many non-zero-valid constraints.
The crucial part is that semi-separability allows us to essentially split constraints
that form a sunflower into a core constraint and independent petal constraints:
The core assignment and the petal assignment are independent for all feasible as-
signments to the core variables. Mergeability of I restricts zero-valid constraints
to be implementable by equality and assignments, which can be handled in a
straightforward way. a

Corollary 15. Let I' be a finite set of relations. Then Exact Ones SAT(I") is
FPT if and only if ' is weakly separable, unless FPT = W/[1]; and admits a
polynomial kernel if and only if I' is semi-separable and mergeable, unless NP
C co-NP/poly.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin. On problems
without polynomial kernels (extended abstract). In ICALP (1), volume 5125 of
LNCS, pages 563—-574. Springer, 2008.

. H. L. Bodlaender, S. Thomassé, and A. Yeo. Kernel bounds for disjoint cycles and

disjoint paths. In ESA, volume 5757 of LNCS, pages 635—-646. Springer, 2009.

A. A. Bulatov. A dichotomy theorem for constraints on a three-element set. In
Proc. 43th Symp. Foundations of Computer Science, pages 649-658. IEEE, 2002.
A. A. Bulatov. Tractable conservative constraint satisfaction problems. In LICS,
page 321. IEEE, 2003.

N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Con-
straint Satisfaction Problems, volume 7 of SIAM Monographs on Discrete Mathe-
matics and Applications. 2001.

N. Creignou, H. Schnoor, and I. Schnoor. Non-uniform boolean constraint satis-
faction problems with cardinality constraint. In CSL, volume 5213 of LNCS, pages
109-123. Springer, 2008.

P. Crescenzi and G. Rossi. On the Hamming distance of constraint satisfaction
problems. Theoretical Computer Science, 288(1):85-100, 2002.

. M. Dom, D. Lokshtanov, and S. Saurabh. Incompressibility through colors and

ids. In ICALP (1), volume 5555 of LNCS, pages 378-389. Springer, 2009.

R. G. Downey and M. R. Fellows. Parameterized Complezity. Monographs in
Computer Science. Springer, New York, 1999.

T. Feder and M. Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM J.
Comput., 28(1):57-104, 1999.

J. Flum and M. Grohe. Parameterized Complezity Theory. Springer, 2006.

S. Khanna, M. Sudan, L. Trevisan, and D. P. Williamson. The approximability of
constraint satisfaction problems. SIAM J. Comput., 30(6):1863-1920, 2000.

S. Kratsch and M. Wahlstrom. Preprocessing of min ones problems: A dichotomy.
In ICALP, 2010. To appear.

R. E. Ladner. On the structure of polynomial time reducibility. J. Assoc. Comput.
Mach., 22:155-171, 1975.

D. Marx. Parameterized complexity of constraint satisfaction problems. Compu-
tational Complexity, 14(2):153-183, 2005.

G. L. Nemhauser and L. E. Trotter, Jr. Vertex packings: structural properties and
algorithms. Math. Programming, 8:232-248, 1975.

G. Nordh and B. Zanuttini. Frozen boolean partial co-clones. In ISMVL, pages
120-125, 2009.

T. J. Schaefer. The complexity of satisfiability problems. In STOC, pages 216—226.
ACM, 1978.

R. Williams. Finding paths of length k in O*(2*) time. Inf. Process. Leit.,
109(6):315-318, 2009.

