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Abstract

The well-known theorem of Erdős and Pósa says that a graph G has either k vertex-disjoint
cycles or a vertex set X of order at most f(k) such that G\X is a forest. Starting with this result,
there are many results concerning packing and covering cycles in graph theory and combinatorial
optimization.

In this paper, we generalize Erdős-Pósa’s result to cycles that are required to go through a set
S of vertices. Given an integer k and a vertex subset S (possibly unbounded number of vertices)
in a given graph G, we prove that either G has k vertex-disjoint cycles, each of which contains
at least one vertex of S, or G has a vertex set X of order at most f(k) = 40k2 log2 k such that
G \X has no cycle that intersects S.

1 Introduction

Packing and covering vertex-disjoint cycles are one of the central areas in both graph theory and
theoretical computer science. The starting point of this research area goes back to the following
well-known theorem due to Erdős and Pósa [1] in early 1960’s.

Theorem 1.1 (Erdős and Pósa [1]) For any integer k and any graph G, either G contains k
vertex-disjoint cycles or a vertex set X of order at most c · k log k (for some constant c ) such that
G \X is a forest.

In fact, Theorem 1.1 gives rise to the well-known Erdős-Pósa property. A family F of graphs
is said to have the Erdős-Pósa property, if for every integer k there is an integer f(k,F) such that
every graph G contains either k vertex-disjoint subgraphs each isomorphic to a graph in F or a set
C of at most f(k,F) vertices such that G \ C has no subgraph isomorphic to a graph in F . The
term Erdős-Pósa property arose because of Theorem 1.1 which proves that the family of cycles has
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this property. Other families of graphs having Erdős-Pósa property are the one of even cycles [9] and
the one of directed cycles in a digraph [5]. Furthermore, the family of the minors of a fixed planar
graph has Erdős-Pósa property [6].

Theorem 1.1 is about both “packing,” i.e., k vertex-disjoint cycles and “covering,” i.e., at most
f(k) vertices that hit all the cycles in G. Starting with this result, there is a host of results in this
direction. Packing appears almost everywhere in extremal graph theory, while covering leads to the
well-known concept “feedback set” in theoretical computer science. Also, the cycle packing problem,
which asks whether or not there are k vertex-disjoint cycles in an input graph G, is a well-known
problem, e.g., [3].

In addition to the feedback set problem, a natural generalization of the cycle packing problem
has been studied extensively in theoretical computer science. The problem called “S-cycle packing”
is that we are given a graph G and a subset S of its vertices, and the goal is to find among the
cycles that intersect S a maximum number of vertex-disjoint (or edge-disjoint) ones. See [3] for
more details. As pointed out there, this problem is rather close to the well-known “disjoint paths”
problem [7], and approximation algorithms to find an S-cycle packing have been studied extensively.
On the other hand, it seems that the Erdős-Pósa property for S-cycles has not been explored yet; our
main result is generalizing Theorem 1.1 to the “subset” version and thereby proving that Erdős-Pósa
property indeed holds for the S-cycles.

Let us formally define the S-cycle packing. Let G = (V,E) be an undirected graph with vertex
set V and edge set E. For S ⊆ V , an S-cycle is a cycle which has a vertex in S. We denote by νS(G)
the maximum k such that G has k S-cycles that are pairwise vertex-disjoint. The minimum size of
a vertex subset that meets all S-cycles is denoted by τS(G). Our main result is the following:

Theorem 1.2 Let k be a positive integer. Then any graph G = (V,E) with S ⊆ V satisfies νS(G) ≥
k or τS(G) ≤ 40k2 log2 k.

Very recently, Pontecorvi and Wollan [4] improved the bound to O(k log k). Their bound is tight:
for the case where S coincides with V , it is known that there exists a graph with τS(G) = Ω(k log k).

In the next section, we give some lemmas needed for the proof of Theorem 1.2. Our main proof
follows in Section 3.

2 Packing Paths through Prescribed Vertices

Let G = (V,E) be a graph, and let A,B ⊆ V . A separation in G is an ordered pair (X,Y ) of subsets
of V with X ∪ Y = V so that G has no edges between X \ Y and Y \X. Its order is |X ∩ Y |.

For S, T ⊆ V with S ∩ T = ∅, an S-path with respect to T is a path with end vertices in T such
that it has at least one vertex of S. The end vertices of an S-path are called the terminals. We
obtain the following theorem, which says that the family of S-paths has the Erdős-Pósa property.
This follows from the odd path theorem by Geelen et al. [2].

Theorem 2.1 Let G = (V,E) be a graph, and S, T ⊆ V with S ∩ T = ∅. Then, if G has no k
vertex-disjoint S-paths with respect to T , then there exists Z ⊆ V with |Z| ≤ 2k − 2 that intersects
every S-path with respect to T .

Theorem 2.2 (Geelen et al. [2]) Let G = (V,E) be a graph with T ⊆ V . Then, if G has no k
vertex-disjoint paths each of which has an odd number of edges and its end points in T , then there
exists Z ⊆ V with |Z| ≤ 2k − 2 that intersects every such path.
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Proof of Theorem 2.1: We construct a graph G′ from G as follows. We first subdivide every edge
of G with a new vertex. Moreover, for every vertex s in S, we add new edges between s and all its
original neighbors. Then, if a path connecting two vertices of T in G′ is odd, then the corresponding
path in G has to contain a vertex of S (otherwise it uses only the subdivided edges and hence its
length is even). Moreover, an S-path with respect to T in G gives rise to an odd path connecting two
vertices of T in G′. To see this, consider a path P in G of length ℓ that goes through a vertex s ∈ S.
Using the subdivided edges, there is a corresponding path of length 2ℓ in G′. We can make this path
one edge shorter by using one of the edges that connect s with its neighbor in P . Therefore, G′ has
k vertex-disjoint odd paths with end vertices in T if and only if G has k vertex-disjoint S-paths with
respect to T . Thus Theorem 2.1 follows from Theorem 2.2. □

3 Erdős-Pósa Property for Cycles through Prescribed Vertices

In this section, we shall prove Theorem 1.2. We first show in Lemma 3.1 below that if a long S-
cycle C has many vertex-disjoint S′-paths, where S′ = S \ V (C), then a graph has k vertex-disjoint
S-cycles.

Lemma 3.1 Let G = (V,E) be a graph with S ⊆ V . Let k be a positive integer with k ≥ 2, and
define K = 4k log2(k+10). Assume that G has a cycle C of length at least 2K and let S′ = S \V (C).
If G has K vertex-disjoint S′-paths with respect to V (C), then there exist k vertex-disjoint S-cycles.

Proof: Consider the subgraph G′ of G formed by C and by the K vertex-disjoint paths. It is
sufficient to show that G′ has k vertex-disjoint cycles. Indeed, since C is the only cycle of G′ which
may not be an S-cycle and C intersects every other cycle in G′, every cycle in a collection of k
vertex-disjoint cycles is an S-cycle. Clearly, G′ has 2K vertices of degree 3 and every other vertex
is of degree 2. Therefore, by a result of Simonovits [8], G′ has at least ⌊14(2K)/ log2(2K)⌋ vertex-
disjoint cycles. It can be checked that 2K ≤ (k + 10)2 for every k ≥ 1, thus ⌊14(2K)/ log2(2K)⌋ ≥
⌊K/(2 log2(k + 10)2)⌋ ≥ k, that is, there are k vertex-disjoint cycles in G′. □

We prove Theorem 1.2 by induction on k. If k = 1, νS(G) < 1 implies τS(G) = 0, and we are done.
We henceforth suppose that, for ℓ < k, any graph G satisfies either νS(G) ≥ ℓ or τS(G) ≤ 40·ℓ2 log2 ℓ.

To prove the statement for k, assume to the contrary that there exists a graph G with νS(G) < k
and τS(G) > 40k2 log2 k. Let C be an S-cycle that contains as few vertices of S as possible. We
denote S′ = S \ V (C).

Let K = 4k log2(k + 10). Note that K ≤ 15k log2 k, which follows from log2(k + 10) = log2 k +
log2(1+

10
k ) and log2(1+

10
k ) ≤ log2 6 log2 k for k ≥ 2. First suppose that C has length less than 2K.

Since νS(G \ V (C)) < k − 1 by νS(G) < k, the induction hypothesis implies that τS(G \ V (C)) ≤
40(k− 1)2 log2(k− 1). Therefore, τS(G) ≤ 2K+ τS(G \V (C)) ≤ 30k log2 k+40(k− 1)2 log2(k− 1) ≤
40k2 log2 k, which is a contradiction. Thus C has length at least 2K.

Since G has no k vertex-disjoint S-cycles, it follows from Lemma 3.1 that G has no K vertex-
disjoint S′-paths with respect to V (C). By Theorem 2.1 and S′ ∩ V (C) = ∅, there is a vertex subset
Z ⊆ V of size ≤ 2K − 2 such that G \Z has no S′-path with respect to T = V (C) \Z. Note that T
is nonempty by |V (C)| > |Z|.

Let Z ′ = Z ∪ {s} for an arbitrary vertex s of T ∩ S and let Z ′ = Z if T ∩ S = ∅. Since
|Z ′| ≤ |Z| + 1 ≤ 2K − 1 < τS(G), the graph G \ Z ′ has an S-cycle D. By the minimality of C, the
cycle D has a vertex v of S′. Otherwise the nonempty set D ∩ S would be a subset of C ∩ S, and as
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Z ′ contains an element of C ∩ S, we would have D ∩ S ⊂ C ∩ S. Since G \ Z has no two internally
disjoint paths from v to T , it follows from Menger’s theorem that G\Z has a separation (X,Y ) with
|X ∩Y | ≤ 1, T ⊆ X, v ∈ Y , and V (D) ⊆ Y . By letting A = X ∪Z and B = Y ∪Z, the graph G has
a separation (A,B) of order ≤ 2K − 1 such that both sides of the separation have S-cycles C and
D, respectively. Note that since G has such two disjoint S-cycles, we may assume k ≥ 3.

Since νS(G) < k, the existence of C and D implies νS(G \ A), νS(G \ B) < k − 1. More
precisely, by νS(G \ A) + νS(G \ B) < k, we have νS(G \ A) < i and νS(G \ B) < k − i + 1 for
some i ∈ {2, . . . , k − 1}. Hence the induction hypothesis implies that τS(G \ A) ≤ 40 · i2 log2 i and
τS(G \B) ≤ 40(k − i+ 1)2 log2(k − i+ 1). Since every S-cycle that is not a cycle of G \A or G \B
meets A ∩B, we have

τS(G) ≤ τS(G \A) + τS(G \B) + |A ∩B| ≤ 40
(
i2 log2 i+ (k − i+ 1)2 log2(k − i+ 1)

)
+ 2K − 1.

Let g(i) = i2 log2 i+ (k − i+ 1)2 log2(k − i+ 1). Since g is a convex function over 2 ≤ i ≤ k − 1, we
have g(i) ≤ max{g(2), g(k − 1)} = (k − 1)2 log2(k − 1) + 4. Therefore, by K ≤ 15k log2 k for k ≥ 2,
we have

τS(G) ≤ 40(k − 1)2 log2(k − 1) + 160 + 30k log2 k

≤ 40k2 log2 k + (−50k + 40) log2 k + 160.

Hence for k ≥ 3 we obtain τS(G) ≤ 40k2 log2 k. This completes the proof of Theorem 1.2.
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without k + 1 independent circuits. Acta Mathematica Academiae Scientiarum Hungaricae, 18
(1967), 191–206.

[9] C. Thomassen, On the presence of disjoint subgraphs of a specified type, J. Graph Theory, 12
(1988), 101–111.

5


