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Treewidth

Treewidth: a notion of “treelike” graphs.
Some combinatorial properties.
Algorithmic results.

Algorithms on graphs of bounded treewidth.
Applications for other problems.
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The Party Problem
Party Problem

Problem: Invite some colleagues for a party.
Maximize: The total fun factor of the invited people.

Constraint: Everyone should be having fun.
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Input: A tree with
weights on the vertices.
Task: Find an
independent set of
maximum weight.
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Solving the Party Problem

Dynamic programming paradigm:
We solve a large number of subproblems that depend on each
other. The answer is a single subproblem.

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv

that does not contain v

Goal: determine A[r ] for the root r .
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Solving the Party Problem

Subproblems:
Tv : the subtree rooted at v .

A[v ]: max. weight of an independent set in Tv

B[v ]: max. weight of an independent set in Tv

that does not contain v

Recurrence:
Assume v1, . . . , vk are the children of v . Use the recurrence
relations

B[v ] =
∑k

i=1 A[vi ]

A[v ] = max{B[v ] , w(v) +
∑k

i=1 B[vi ]}

The values A[v ] and B[v ] can be calculated in a bottom-up order
(the leaves are trivial).
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Treewidth
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Generalizing trees
How could we define that a graph is “treelike”?

1 Number of cycles is bounded.

good bad bad bad
2 Removing a bounded number of vertices makes it acyclic.

good good bad bad
3 Bounded-size parts connected in a tree-like way.

bad bad good good
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.

Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

dcb
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e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

Each bag is a separator.
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Treewidth — a measure of “tree-likeness”
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.
treewidth: width of the best decomposition.

hgfe

a

b c d

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f

A subtree communicates with the outside world
only via the root of the subtree.
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Treewidth

Fact: treewidth = 1 ⇐⇒ graph is a forest

aa

b

d

c

f ge

h

aa

b

d

c

f ge

h

a,b a,c

b,d b,e c,g

e,h

⇒
c,f

Exercise: A cycle cannot have a tree decomposition of width 1.
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Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications
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Finding tree decompositions

Hardness:

Theorem [Arnborg, Corneil, Proskurowski 1987]

It is NP-hard to determine the treewidth of a graph (given a graph
G and an integer w , decide if the treewidth of G is at most w).

Fixed-parameter tractability:

Theorem [Bodlaender 1996]

There is a 2O(w3) · n time algorithm that finds a tree decomposition
of width w (if exists).

Consequence:
If we want an FPT algorithm parameterized by treewidth w of the
input graph, then we can assume that a tree decomposition of
width w is available.
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Finding tree decompositions — approximately

Sometimes we can get better dependence on treewidth using
approximation.

FPT approximation:

Theorem [Robertson and Seymour]

There is a O(33w · w · n2) time algorithm that finds a tree
decomposition of width 4w + 1, if the treewidth of the graph is at
most w .

Polynomial-time approximation:

Theorem [Feige, Hajiaghayi, Lee 2008]

There is a polynomial-time algorithm that finds a tree
decomposition of width O(w

√
logw), if the treewidth of the graph

is at most w .
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Weighted Max Independent Set and treewidth
Theorem
Given a tree decomposition of width w , Weighted Max
Independent Set can be solved in time O(2w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

Generalizing our solution for trees:

Instead of computing 2 values A[v ], B[v ]
for each vertex of the graph, we compute
2|Bx | ≤ 2w+1 values for each bag Bx .

M[x , S ]:
the max. weight of an independent set
I ⊆ Vx with I ∩ Bx = S .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

∅ =? bc =?
b =? cf =?
c =? bf =?
f =? bcf =?

How to determine M[x , S ] if all the values are known for
the children of x?
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Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w

13



Nice tree decompositions

Definition
A rooted tree decomposition is nice if every node x is one of the
following 4 types:

Leaf: no children, |Bx | = 1
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

Forget: 1 child y with Bx = By \ {v} for some vertex v

Join: 2 children y1, y2 with Bx = By1 = By2

Theorem
A tree decomposition of width w and n nodes can be turned into a
nice tree decomposition of width w and O(wn) nodes in time
O(w2n).
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Weighted Max Independent Set
and nice tree decompositions

Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v

m[x ,S ] =


m[y ,S ] if v 6∈ S ,

m[y ,S \ {v}] + w(v) if v ∈ S but v has no
neighbor in S ,

−∞ if S contains v and its neighbor.

Forget JoinIntroduceLeaf

u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x ,S ] = max{m[y ,S ],m[y ,S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x ,S ] = m[y1,S ] + m[y2, S ]− w(S)

Forget JoinIntroduceLeaf
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Weighted Max Independent Set
and nice tree decompositions

Forget: 1 child y with Bx = By \ {v} for some vertex v

m[x ,S ] = max{m[y ,S ],m[y ,S ∪ {v}]}

Join: 2 children y1, y2 with Bx = By1 = By2

m[x ,S ] = m[y1,S ] + m[y2, S ]− w(S)

There are at most 2w+1 · n subproblems m[x ,S ] and each
subproblem can be solved in wO(1) time

(assuming the children are already solved).
⇓

Running time is O(2w · wO(1) · n).
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3-Coloring and tree decompositions
Theorem
Given a tree decomposition of width w , 3-Coloring can be
solved in O(3w · wO(1) · n).

Bx : vertices appearing in node x .
Vx : vertices appearing in the subtree rooted at x .

For every node x and coloring c : Bx →
{1, 2, 3}, we compute the Boolean value
E [x , c], which is true if and only if c can
be extended to a proper 3-coloring of Vx .

c, d , f

b, c, f d , f , g

a, b, c b, e, f g , h

bcf=T bcf=F
bcf=T bcf=F
. . . . . .

How to determine E [x , c] if all the values are known for
the children of x?
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3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

Forget JoinIntroduceLeaf
u, v ,w

u,w u, v ,w

u,wv u, v ,w

u, v ,wu, v ,w
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3-Coloring and nice tree decompositions
Leaf: no children, |Bx | = 1
Trivial!
Introduce: 1 child y with Bx = By ∪ {v} for some vertex v
If c(v) 6= c(u) for every neighbor u of v , then
E [x , c] = E [y , c ′], where c ′ is c restricted to By .
Forget: 1 child y with Bx = By \ {v} for some vertex v
E [x , c] is true if E [y , c ′] is true for one of the 3 extensions of c
to By .
Join: 2 children y1, y2 with Bx = By1 = By2

E [x , c] = E [y1, c] ∧ E [y2, c]

There are at most 3w+1 · n subproblems E [x , c] and each subprob-
lem can be solved in wO(1) time (assuming the children are already
solved).

⇒ Running time is O(3w · wO(1) · n).

⇒ 3-Coloring is FPT parameterized by treewidth.
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Monadic Second Order Logic

Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∃v0 ∈ C∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if . . .
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Extended Monadic Second Order Logic (EMSO)

A logical language on graphs consisting of the following:
Logical connectives ∧, ∨, →, ¬, =, 6=
quantifiers ∀, ∃ over vertex/edge variables
predicate adj(u, v): vertices u and v are adjacent
predicate inc(e, v): edge e is incident to vertex v

quantifiers ∀, ∃ over vertex/edge set variables
∈, ⊆ for vertex/edge sets

Example:
The formula

∃C ⊆ V∃v0 ∈ C∀v ∈ C ∃u1, u2 ∈ C(u1 6= u2 ∧ adj(u1, v) ∧ adj(u2, v))

is true on graph G if and only if G has a cycle.
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Courcelle’s Theorem

Courcelle’s Theorem
If a graph property can be expressed in EMSO, then for every fixed
w ≥ 1, there is a linear-time algorithm for testing this property on
graphs having treewidth at most w .

Note: The constant depending on w can be very large (double,
triple exponential etc.), therefore a direct dynamic programming
algorithm can be more efficient.

If we can express a property in EMSO, then we immediately get
that testing this property is FPT parameterized by the treewidth w
of the input graph.

Can we express 3-Coloring and Hamiltonian Cycle in
EMSO?

18
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Using Courcelle’s Theorem

3-Coloring
∃C1,C2,C3 ⊆ V

(
∀v ∈ V (v ∈ C1 ∨ v ∈ C2 ∨ v ∈ C3)

)
∧
(
∀u, v ∈

V adj(u, v)→ (¬(u ∈ C1 ∧ v ∈ C1) ∧ ¬(u ∈ C2 ∧ v ∈ C2) ∧ ¬(u ∈
C3 ∧ v ∈ C3))

)

Hamiltonian Cycle
∃H ⊆ E

(
spanning(H) ∧ (∀v ∈ V degree2(H, v))

)
degree0(H, v) := ¬∃e ∈ H inc(e, v)

degree1(H, v) := ¬degree0(H, v) ∧
(
¬∃e1, e2 ∈ H (e1 6=

e2 ∧ inc(e1, v) ∧ inc(e2, v))
)

degree2(H, v) := ¬degree0(H, v) ∧ ¬degree1(H, v) ∧
(
¬∃e1, e2, e3 ∈

H (e1 6= e2 ∧ e2 6= e3 ∧ e1 6= e3 ∧ inc(e1, v) ∧ inc(e2, v) ∧ inc(e3, v)))
)

spanning(H) := ∀u, v ∈ V ∃P ⊆ H ∀x ∈ V
(
((x = u ∨ x =

v) ∧ degree1(P, x)) ∨ (x 6= u ∧ x 6= v ∧ (degree0(P, x) ∨ degree2(P, x)))
)
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Using Courcelle’s Theorem
Two ways of using Courcelle’s Theorem:

1 The problem can be described by a single formula (e.g,
3-Coloring, Hamiltonian Cycle).

⇒ Problem can be solved in time f (w) · n for graphs of
treewidth at most w , i.e., FPT parameterized by treewidth.

2 The problem can be described by a formula for each value of
the parameter k .

Example: For each k , having a cycle of length exactly k can
be expressed as

∃v1, . . . , vk ∈ V ((v1 6= v2) ∧ (v1 6= v3) ∧ . . . (vk−1 6= vk))
∧adj(vk−1, vk) ∧ adj(vk , v1)).

⇒ Problem can be solved in time f (k ,w) · n for graphs of
treewidth w , i.e., FPT parameterized with combined
parameter k and treewidth w .
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph of G isomorphic to H.
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph of G isomorphic to H.

For each H, we can construct a formula φH that expresses “G has a
subgraph isomorphic to H” (similarly to the k-cycle on the previous
slide).

⇒ By Courcelle’s Theorem, Subgraph Isomorphism can be
solved in time f (H,w) · n if G has treewidth at most w .
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Subgraph Isomorphism

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph of G isomorphic to H.

Since there is only a finite number of simple graphs on k vertices,
Subgraph Isomorphism can be solved in time f (k ,w) · n if H
has k vertices and G has treewidth at most w .

Theorem
Subgraph Isomorphism is FPT parameterized by combined
parameter k := |V (H)| and the treewidth w of G .
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MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using
the relation <, then L is regular.

Example: a∗bc∗ is defined by

∃x : Pb(x) ∧ (∀y : (y < x)→ Pa(y)) ∧ (∀y : (x < y)→ Pc(y)).
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MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using
the relation <, then L is regular.

Example: a∗bc∗ is defined by

∃x : Pb(x) ∧ (∀y : (y < x)→ Pa(y)) ∧ (∀y : (x < y)→ Pc(y)).

We prove a more general statement for formulas φ(w ,X1, . . . ,Xk)
and words over Σ ∪ {0, 1}k , where Xi is a subset of symbols of w .

Induction over the structure of φ:
FSM for ¬φ(w), given FSM for φ(w).
FSM for φ1(w) ∧ φ2(w), given FSMs for φ1(w) and φ2(w).
FSM for ∃Xφ(w ,X ), given FSM for φ(w ,X ).
etc.
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MSO on words

Theorem [Büchi, Elgot, Trakhtenbrot 1960]

If a language L ⊆ Σ∗ can be defined by an MSO formula φ using
the relation <, then L is regular.

Proving Courcelle’s Theorem:
Generalize from words to trees.
A width-k tree decomposition can be interpreted as a tree over
an alphabet of size f (k).
Formula ⇒ tree automata.
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Algorithms — overview

Algorithms exploit the fact that a subtree communicates with
the rest of the graph via a single bag.
Key point: defining the subproblems.
Courcelle’s Theorem makes this process automatic for many
problems.
There are notable problems that are easy for trees, but hard
for bounded-treewidth graphs.
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Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications
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Minor

An operation similar to taking subgraphs:

Definition
Graph H is a minor of G (H ≤ G ) if H can be obtained from G by
deleting edges, deleting vertices, and contracting edges.

deleting uv

vu w

u v
contracting uv
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Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of
the k × k grid is exactly k .

26



Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of
the k × k grid is exactly k .

26



Properties of treewidth

Fact: Treewidth does not increase if we delete edges, delete
vertices, or contract edges.

⇒ If F is a minor of G , then the treewidth of F is at most the
treewidth of G .

Fact: For every clique K , there is a bag B with K ⊆ B .

Fact: The treewidth of the k-clique is k − 1.

Fact: For every k ≥ 2, the treewidth of
the k × k grid is exactly k .

26



The Cops and Robber game
Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex
arbitrarily with helicopters.
The robber moves infinitely fast on the edges, and sees where
the cops will land.

Theorem [Seymour and Thomas 1993]

k+1 cops can win the game ⇐⇒ the treewidth of the graph
is at most k .
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Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex
arbitrarily with helicopters.
The robber moves infinitely fast on the edges, and sees where
the cops will land.

Theorem [Seymour and Thomas 1993]

k+1 cops can win the game ⇐⇒ the treewidth of the graph
is at most k .

Consequence 1: Algorithms

The winner of the game can be determined in time nO(k) using stan-
dard techniques (there are at most nk positions for the cops)

⇓

For every fixed k , it can be checked in polynomial-time if treewidth
is at most k .
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The Cops and Robber game
Game: k cops try to capture a robber in the graph.

In each step, the cops can move from vertex to vertex
arbitrarily with helicopters.
The robber moves infinitely fast on the edges, and sees where
the cops will land.

Theorem [Seymour and Thomas 1993]

k+1 cops can win the game ⇐⇒ the treewidth of the graph
is at most k .

Consequence 2: Lower bounds

Exercise 1:
Show that the treewidth of the k × k grid is at least k − 1.
(E.g., robber can win against k − 1 cops.)

Exercise 2:
Show that the treewidth of the k × k grid is at least k .
(E.g., robber can win against k cops.) 27



The Cops and Robber game

Example: 2 cops have a winning strategy in a tree.
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

(A kO(1) bound was achieved recently [Chekuri and Chuznoy 2014]!)
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

Observation: Every planar graph is the minor of a sufficiently large
grid.

Consequence
If H is planar, then every H-minor free graph has treewidth at most
f (H).
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Excluded Grid Theorem

Excluded Grid Theorem [Diestel et al. 1999]

If the treewidth of G is at least k4k2(k+2), then G has a k × k grid
minor.

A large grid minor is a “witness” that treewidth is large, but the
relation is approximate:

No k × k grid minor =⇒ tree decomposition
of width < f (k)

tree decomposition
of width < f (k)

=⇒ no f (k)× f (k) grid
minor

29



Planar Excluded Grid Theorem

For planar graphs, we get linear instead of exponential dependence:

Theorem [Robertson, Seymour, Thomas 1994]

Every planar graph with treewidth at least 5k has a k × k grid
minor.
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Outerplanar graphs

Definition
A planar graph is outerplanar if it has a planar embedding where
every vertex is on the infinite face.

Fact
Every outerplanar graph has treewidth at most 2.

⇒ Every outerplanar graph is subgraph of a series-parallel graph.
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k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.
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Fact
Every k-outerplanar graph has treewidth at most 3k + 1.
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k-outerplanar graphs
Given a planar embedding, we can define layers by iteratively
removing the vertices on the infinite face.

Definition
A planar graph is k-outerplanar if it has a planar embedding
having at most k layers.
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Fact
Every k-outerplanar graph has treewidth at most 3k + 1.
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Treewidth — outline

1 Basic algorithms
2 Combinatorial properties
3 Applications

The shifting technique
Bidimensionality
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Approximation schemes

Definition
A polynomial-time approximation scheme (PTAS) for a
problem P is an algorithm that takes an instance of P and a
rational number ε > 0,

always finds a (1 + ε)-approximate solution,
the running time is polynomial in n for every fixed ε > 0.

Typical running times: 21/ε · n, n1/ε, (n/ε)2, n1/ε2 .

Some classical problems that have a PTAS:
Independent Set for planar graphs
TSP in the Euclidean plane
Steiner Tree in planar graphs
Knapsack
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Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar
graphs.

Let D := 1/ε. For a fixed 0 ≤ s < D, delete every layer Li
with i = s (mod D)

The resulting graph is D-outerplanar, hence it has treewidth at
most 3D + 1 = O(1/ε).
Using the 2O(tw) · n time algorithm for Independent Set,
the problem on the D-outerplanar graph can be solved in time
2O(1/ε) · n.
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Baker’s shifting strategy for PTAS
Theorem
There is a 2O(1/ε) · n time PTAS for Independent Set for planar
graphs.

We do this for every 0 ≤ s < D:
for at least one value of s, we delete

at most 1/D = ε fraction of the solution

⇓

We get a (1 + ε)-approximate solution.
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Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.
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Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

We do this for every 0 ≤ s < k + 1:
for at least one value of s, we do not delete

any of the k vertices of the solution

⇓

We find a copy of H in G if there is one.
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⇓

We find a copy of H in G if there is one.
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Baker’s shifting strategy for FPT

Subgraph Isomorphism
Input: graphs H and G
Find: a subgraph G isomorphic to H.

Theorem
Subgraph Isomorphism for planar graphs is FPT parameterized
by k := |V (H)|.
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Baker’s shifting strategy for FPT

The technique is very general, works for many problems on
planar graphs:

Independent Set
Vertex Cover
Dominating Set
. . .

More generally: First-Order Logic problems.
But for some of these problems, much better techniques are
known (see the following slides).
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Bidimensionality
A powerful framework for efficient algorithms on planar graphs.

Setup:

Let x(G ) be some graph invariant (i.e., an integer associated
with each graph).
Given G and k , we want to decide if x(G ) ≤ k (or x(G ) ≥ k).
Typical examples:

Maximum independent set size.
Minimum vertex cover size.
Length of the longest path.
Minimum dominating set size.
Minimum feedback vertex set size.

Bidimensionality [Demaine, Fomin, Hajiaghayi, Thilikos 2005]

For many natural invariants, we can do this in time 2O(
√
k) · nO(1)

on planar graphs.
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Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:

39



Bidimensionality for Vertex Cover
Observation: If the treewidth of a planar graph G is at least 5

√
2k

⇒ It has a
√
2k ×

√
2k grid minor (Planar Excluded Grid Theorem)

⇒ The grid has a matching of size k
⇒ Vertex cover size is at least k in the grid.
⇒ Vertex cover size is at least k in G .

We use this observation to solve Vertex Cover on planar graphs:

Set w := 5
√
2k .

Find a 4-approximate tree
decomposition.

If treewidth is at least w : we
answer “vertex cover is ≥ k .”
If we get a tree decomposition of
width 4w , then we can solve the
problem in time
2O(w) · nO(1) = 2O(

√
k) · nO(1).
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Bidimensionality
Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Examples: minimum vertex cover, length of the longest path,
feedback vertex set are minor-bidimensional.
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Bidimensionality (cont.)

We can answer “x(G ) ≥ k?” for a minor-bidimensional invariant
the following way:

Set w := c
√
k for an appropriate constant c .

Use the 4-approximation tree decomposition algorithm.
If treewidth is at least w : x(G ) is at least k .
If we get a tree decomposition of width 4w , then we can solve
the problem using dynamic programming on the tree
decomposition.

Running time:
If we can solve the problem on tree decomposition of width w

in time 2O(w) · nO(1), then the running time is 2O(
√
k) · nO(1).

If we can solve the problem on tree decomposition of width w
in time wO(w) · nO(1), then the running time is
2O(
√
k log k) · nO(1).
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Contraction bidimensionality

Definition
A graph invariant x(G ) is minor-bidimensional if

x(G ′) ≤ x(G ) for every minor G ′ of G , and
If Gk is the k × k grid, then x(Gk) ≥ ck2

(for some constant c > 0).

Exercise: Dominating Set is not minor-bidimensional.

We fix the problem by allowing only contractions but not
edge/vertex deletions.
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Contraction bidimensionality

Theorem
Every planar graph with treewidth at least 5k can be contracted
to a partially triangulated k × k grid.

Example:
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Bidimensionality for Dominating Set

The size of a minimum dominating set is a contraction
bidimensional invariant: we need at least (k − 2)2/9 vertices to
dominate all the internal vertices of a partially triangulated k × k
grid (since a vertex can dominate at most 9 internal vertices).

Theorem
Given a tree decomposition of width w , Dominating Set can be
solved in time 3w · wO(1) · nO(1).

Solving Dominating Set on planar graphs:

Set w := 5(3
√
k + 2).

Use the 4-approximation tree decomposition algorithm.
If treewidth is at least w : we answer ’dominating set is ≥ k ’.
If we get a tree decomposition of width 4w , then we can solve
the problem in time 3w · nO(1) = 2O(

√
k) · nO(1).
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Treewidth
Tree decomposition: Vertices are arranged in a tree structure
satisfying the following properties:

1 If u and v are neighbors, then there is a bag containing both
of them.

2 For every v , the bags containing v form a connected subtree.
Width of the decomposition: largest bag size −1.

treewidth: width of the best decomposition.

dcb

a

e f g h

g , hb, e, fa, b, c

d , f , gb, c, f

c, d , f
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