
Minicourse on parameterized
algorithms and complexity

Part 3: Randomized techniques

Dániel Marx

November 3, 2016

1

Why randomized?

A guaranteed error probability of 10−100 is as good as a
deterministic algorithm.
(Probability of hardware failure is larger!)
Randomized algorithms can be more efficient and/or
conceptually simpler.
Can be the first step towards a deterministic algorithm.

2

Polynomial-time vs. FPT randomization

Polynomial-time randomized algorithms

Randomized selection to pick a typical, unproblematic,
average element/subset.
Success probability is constant or at most polynomially small.

Randomized FPT algorithms
Randomized selection to satisfy a bounded number of
(unknown) constraints.
Success probability might be exponentially small.

3

Randomization

There are two main ways randomization appears:
Algebraic techniques

Schwartz-Zippel Lemma
Linear matroids

This lecture: combinatorial techniques.

4

Randomization as reduction

Problem A
(what we want to

solve)

Randomized magic
Problem B

(what we can solve)

5

Color Coding

k-Path
Input: A graph G , integer k .
Find: A simple path of length k .

Note: The problem is clearly NP-hard, as it contains the
Hamiltonian Path problem.

Theorem [Alon, Yuster, Zwick 1994]

k-Path can be solved in time 2O(k) · nO(1).

6

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

7

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

7

Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

44

3

54

3 2

21

Check if there is a path colored 1− 2− · · · − k ; output “YES”
or “NO”.

If there is no k-path: no path colored 1− 2− · · · − k exists ⇒
“NO”.
If there is a k-path: the probability that such a path is colored
1− 2− · · · − k is k−k thus the algorithm outputs “YES” with
at least that probability.

7

Error probability

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk

repetitions.
Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the
probability of a wrong answer is at most 1/e100.

8

Error probability

Useful fact
If the probability of success is at least p, then the probability that
the algorithm does not say “YES” after 1/p repetitions is at most

(1− p)1/p <
(
e−p

)1/p
= 1/e ≈ 0.38

Thus if p > k−k , then error probability is at most 1/e after kk

repetitions.
Repeating the whole algorithm a constant number of times
can make the error probability an arbitrary small constant.
For example, by trying 100 · kk random colorings, the
probability of a wrong answer is at most 1/e100.

8

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

9

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

9

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

9

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

9

Finding a path colored 1− 2− · · · − k

2

2

5

5

5

5

4

3

3

3

3

2

22

1

1

1

1

4

4

4

Edges connecting nonadjacent color classes are removed.
The remaining edges are directed towards the larger class.
All we need to check if there is a directed path from class 1 to
class k .

9

Color Coding

k-PATH

Color Coding
success probability:

k−k Finding a
1− 2− · · · − k
colored path

polynomial-time
solvable

10

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.

11

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Check if there is a colorful path where each color appears
exactly once on the vertices; output “YES” or “NO”.

If there is no k-path: no colorful path exists ⇒ “NO”.
If there is a k-path: the probability that it is colorful is

k!

kk
>

(ke)
k

kk
= e−k ,

thus the algorithm outputs “YES” with at least that probability.

11

Improved Color Coding

Assign colors from [k] to vertices V (G) uniformly and
independently at random.

2

4544

3 3 2

21

Repeating the algorithm 100ek times decreases the error
probability to e−100.

How to find a colorful path?
Try all permutations (k! · nO(1) time)
Dynamic programming (2k · nO(1) time)

11

Finding a colorful path
Subproblems:
We introduce 2k · |V (G)| Boolean variables:

x(v ,C) = TRUE for some v ∈ V (G) and C ⊆ [k]
m

There is a path P ending at v such that each color in
C appears on P exactly once and no other color

appears.

Answer:
There is a colorful path ⇐⇒ x(v , [k]) = TRUE for some vertex v .

Initialization & Recurrence:
Exercise.

12

Improved Color Coding

k-PATH

Color Coding
success probability:

e−k

Finding a
colorful path

Solvable in time
2k · nO(1)

13

Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S | = k , there is an h ∈ H such
that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions [n]→ [k] having size
2O(k) log n (and can be constructed in time polynomial in the size
of the family).

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G)→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).

14

Derandomization

Definition
A family H of functions [n]→ [k] is a k-perfect family of hash
functions if for every S ⊆ [n] with |S | = k , there is an h ∈ H such
that h(x) 6= h(y) for any x , y ∈ S , x 6= y .

Theorem [Alon, Yuster, Zwick 1994]

There is a k-perfect family of functions [n]→ [k] having size
2O(k) log n (and can be constructed in time polynomial in the size
of the family).

Instead of trying O(ek) random colorings, we go through a
k-perfect family H of functions V (G)→ [k].

If there is a solution S
⇒ The vertices of S are colorful for at least one h ∈ H
⇒ Algorithm outputs “YES”.
⇒ k-Path can be solved in deterministic time 2O(k) · nO(1).

14

Derandomized Color Coding

k-PATH

k-perfect family
2O(k) log n functions

Finding a
colorful path

Solvable in time
2k · nO(1)

15

Bounded-degree graphs

Meta theorems exist for bounded-degree graphs, but randomization
is usually simpler.

Dense k-vertex Subgraph
Input: A graph G , integers k , m.
Find: A set of k vertices inducing ≥ m edges.

Note: on general graphs, the problem is W[1]-hard parameterized
by k , as it contains k-Clique.

Theorem
Dense k-vertex Subgraph can be solved in randomized time
2k(d+1) · nO(1) on graphs with maximum degree d .

16

Dense k-vertex Subgraph

Remove each vertex with probability 1/2 independently.

17

Dense k-vertex Subgraph

Remove each vertex with probability 1/2 independently.

With probability 2−k no vertex of the solution is removed.
With probability 2−kd every neighbor of the solution is
removed.
⇒ We have to find a solution that is the union of connected
components!

17

Dense k-vertex Subgraph

Remove each vertex with probability 1/2 independently.

With probability 2−k no vertex of the solution is removed.
With probability 2−kd every neighbor of the solution is
removed.
⇒ We have to find a solution that is the union of connected
components!

17

Dense k-vertex Subgraph

Remove each vertex with probability 1/2 independently.

k1 vertices

m1 edges
. . .

k2 vertices

m2 edges

k3 vertices

m3 edges

ki vertices

mi edges

Select connected components with
at most k vertices and
at least m edges.

What problem is this?

17

Dense k-vertex Subgraph

Remove each vertex with probability 1/2 independently.

k1 vertices

m1 edges
. . .

k2 vertices

m2 edges

k3 vertices

m3 edges

ki vertices

mi edges

Select connected components with
at most k vertices and
at least m edges.

What problem is this?

KNAPSACK!
17

Dense k-vertex Subgraph

Select connected components with
at most k vertices and
at least m edges.

This is exactly KNAPSACK!
(I.e., pick objects of total weight at most S and value at least V .)

We can interpret
number of vertices = weight of the items
number of edges = value of the items

If the weights are integers, then DP solves the problem in time
polynomial in the number of objects and the maximum weight.

18

Dense k-vertex Subgraph

DENSE
k-VERTEX
SUBGRAPH

Random deletions
success probability:

2−k(d+1)

KNAPSACK

Polynomial time

19

Balanced Separation

Useful problem for recursion:

Balanced Separation
Input: A graph G , integers k , q.
Find:

A set S of at most k vertices such that G \ S has
at least two components of size at least q each.

Theorem
Balanced Separation can be solved in randomized time
2O(q+k) · nO(1).

20

Balanced Separation

C1 C2S

Remove each vertex with probability 1/2 independently.

With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.
⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .

21

Balanced Separation

C1 C2S

T1 T2

Remove each vertex with probability 1/2 independently.

With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.
⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .

21

Balanced Separation

C1 C2S

T1 T2

Remove each vertex with probability 1/2 independently.
With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.

⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .

21

Balanced Separation

C1 C2S

T1 T2

Remove each vertex with probability 1/2 independently.
With probability 2−k every vertex of the solution is removed.
With probability 2−q no vertex of T1 is removed.
With probability 2−q no vertex of T2 is removed.
⇒ The reduced graph G ′ has two components of size ≥ q that
can be separated in the original graph G by k vertices.
For any pair of large components of G ′, we find a minimum
s − t cut in G .

21

Balanced Separation

BALANCED
SEPARATION

Random deletions
success probability:

2−(k+2q)

MINIMUM s − t
CUT

Polynomial time

22

Conclusions

Randomization gives elegant solution to many problems.
Derandomization is sometimes possible (but less elegant).
Small (but f (k)) success probability is good for us.
Reducing the problem we want to solve to a problem that is
easier to solve.

23

