
Storage-Optimizing Clustering Algorithms for High-Dimensional Tick Data

Krisztian Buzaa, Gábor I. Nagya, Alexandros Nanopoulosb

aFaculty of Electrical Engineering and Informatics
Budapest University of Technology and Economics, Hungary

buza@cs.bme.hu, nagy.gabor.i@gmail.com
bUniversity of Eichstätt-Ingolstadt, Germany

alexandros.nanopoulos@ku.de

Abstract

Tick data are used in several applications that need to keep track of values changing over time,

like prices on the stock market or meteorological measurements. Due to the possibly very frequent

changes, the size of tick data tends to increase rapidly. Therefore, it becomes of paramount im-

portance to reduce the storage space of tick data while, at the same time, allowing queries to be

executed efficiently. In this paper, we propose an approach to decompose the original tick data

matrix by clustering their attributes using a new clustering algorithm called Storage-Optimizing

Hierarchical Agglomerative Clustering (SOHAC). We additionally propose a method for speeding

up SOHAC based on a new lower bounding technique that allows SOHAC to be applied to high-

dimensional tick data. Our experimental evaluation shows that the proposed approach compares

favorably to several baselines in terms of compression. Additionally, it can lead to significant

speedup in terms of running time.

Keywords: Tick data, Clustering, Storage

1. Introduction

Representing information about complex objects or phenomena requires a large set of attributes

(a.k.a. features). The values of these attributes may change rapidly over time; for instance, prices

on the stock market or meteorological measurements. Data with such characteristics, i.e., high

complexity/variety, large volume and change velocity, are nowadays being addressed within the

paradigm of big data. Beyond the challenges pertaining to the management of such data, analytical

tasks pose the crucial requirement of investigating their dynamics, i.e., how their attributes change

values over time. What is, therefore, necessary is to keep track of the changes of values, which results

in very large collections of rapidly changing data. This particular data type is being referred to as

tick data [13], which is the term we adopt in our study, too.

Preprint submitted to Elsevier December 23, 2013

One of the most important examples for tick data is the record of stock market transactions.

This type of data can be considered as a matrix: the columns of the matrix correspond different

properties of a transaction, such as price, volume of the trade, the symbol of an asset, etc. Every

time a transaction is executed or a quote is given for a stock, a row is appended to this matrix.

The speed of a transaction in liquid financial markets can be measured in the order of fractions of

milliseconds therefore, this matrix grows extremely rapidly. It is necessary to record all transactions

but this magnitude of data flow requires proprietary technology allowing efficient storage and quick

retrieval of data. Solutions are often built over column based database technology such as a KDB

database.1 However, as we will describe in more detail, a straightforward application of such

technology leads to suboptimal storage of tick data in the sense of occupied storage space on disk

or memory.

The primary reason for the sub-optimality of the aforementioned storage is the redundancy of

conventional techniques: in case of a straightforward solution, one would use orders of magnitudes

more storage space (either disk space or main memory) than required, therefore, storage, access,

search and analysis of the data becomes computationally more expensive than necessary. One way

to alleviate this problem is the usage of regular data compression methods (see e.g. [16] for an

excellent overview). This approach is well-suited for cheap storage of large, historical archives of

the data. However, it does not support quick access to the data: if the data is compressed, in

order to be able to execute an analytic or search query, a large archive (or at least some parts of

that) must be decompressed which might be computationally expensive and therefore the procedure

could become inefficient. This problem becomes crucial if many queries have to be executed which

is usually the case in real-life applications, such as stock market trading.

In this paper, we aim at developing a storage structure for tick data that reduces the storage

space required by the straightforward approach with the ability to execute search and analytic

queries efficiently in the same manor provided by the straightforward approach. In particular,

our approach is based on the decomposition of a large tick data matrix into a number of smaller

matrices. We achieve this decomposition by clustering the columns of the matrix. Each resulting

smaller matrix contains a subset of the original attributes and the corresponding values of all

rows of the original matrix for these attributes. Although, conventional clustering algorithms

achieve significant improvements, motivated by hierarchical clustering algorithms, we develop a

1http://kx.com/

2

new clustering algorithm that minimize storage space required for a tick data matrix. We call our

approach SOHAC, Storage-Optimizing Hierarchical Agglomerative Clustering.

In this paper, we focus on speeding up SOHAC and propose a new lower bounding technique

that allows SOHAC to be applied to high dimensional tick data; we refer to the resulting method

as QuickSOHAC. According to our experiments, the proposed lower bounding technique combined

with sampling leads to substantial speedup without significant loss of quality. We evaluate the

proposed approach on three real-world tick data tables provided by an investment bank. Further-

more, while the primary motivation of our work is to develop a storage schema that allows efficient

storage and quick access to the data, we show that conventional compression algorithms may also

substantially benefit from the proposed approach.

The remainder of this paper is organized as follows. Section 2 provides an overview of related

works. In Section 3 we present the SOHAC algorithm. In Section 4 we focus on efficient implemen-

tation of SOHAC and propose a lower bounding technique that allows to speed up the algorithm.

We devote Section 5 to the experimental evaluation of our approach. Finally, we conclude in

Section 6.

2. Related Work

The data describing transactions on financial markets, especially tick data (also known as tick-

by-tick data) allows thorough analysis of the markets and their dynamics. Recent works focused on

statistical properties [14] and analysis [17], [18] of currency exchange rates and stock market tick

data [13]. Dionne focused on risk analysis [8], while the dynamics of stock markets were studied

in [4], [15] and [21]. Based on tick data, Akram et al. empirically studied the law of one price

on different financial markets [2], while Cartea proposed to model stock price tick-by-tick data

via a non-explosive marked point process [7]. Blais and Protter studied various algorithms for

the recognition of whether a transaction in a tick-data set was initiated by the buyer or seller [5].

Barany et al. [3] aimed to detect market crashes based on high-frequency data. Yabuuchi and

Watada studied fuzzy autocorrelation models for forecasting problems related to tick data [23].

Although, storage of tick data is a core component of the systems performing the above analytic

tasks, none of the above works focused on how to develop storage structures for high dimensional tick

data. More closely related to our work is that of Ahmad et al. who focused on the summarization

of tick data time series [1]. However, instead of storing a summarized approximation of the time

series, we aim at storing the entire original tick data. As we will demonstrate it in Section 3.1, the

3

storage of tick data is a non-trivial task: conventional techniques result in redundant and therefore

suboptimal solutions.

Conventional data compression techniques, see e.g. [16], can efficiently compress the data, and

therefore they are well-suited for data archives. For tick data, however, we need storage structures

that allow efficient storage and quick access to the data simultaneously while they can be realized

in database systems. As we will demonstrate, large tick data tables can usually be decomposed

into several smaller ones, the total size of which being substantially less than that of the original

table. Simultaneously, this decomposition allows for quick querying of the data as we will discuss

in Section 3.5.

Clustering is well-known for its ability to summarize data by grouping similar objects together

which allows the user to consider the data at a higher level of abstraction [19]. Therefore, our

approach for the decomposition of tick data matrices is based on clustering. In the last decades,

very large number of clustering algorithms were developed for various tasks (see e.g. [6], [9], [10] and

[12]). We refer to [19] and [22] for excellent surveys of clustering algorithms. We will demonstrate

that one can achieve substantial improvements if one uses general-purpose clustering algorithms

for the decomposition of tick data matrices. However, such conventional clustering algorithms were

originally not designed for storage optimization of tick data and therefore they lead to suboptimal

decompositions in most cases.

In contrast, we propose a clustering algorithm, SOHAC, which directly minimize the required

storage space and therefore, as shown in large number of extensive experiments, SOHAC substan-

tially outperforms conventional clustering algorithms for the tick data storage problem. An initial,

but promising version of our algorithm was presented in [11]. However, due to its computational

complexity, the application of SOHAC to high-dimensional tick data still remained a challenge.

This is essential, as most of the tick data tables in real-world applications are high dimensional,

i.e., contain many columns. Therefore, after reviewing SOHAC, in this article, we focus on speeding

up the algorithm. The techniques we propose allow SOHAC to find the decomposition quickly, even

in case of high-dimensional tick data tables.

3. Decomposition of Tick Data Matrices based on Clustering

In this section, we explain how the decomposition of tick data matrices may lead to more

efficient storage. First, we motivate our approach with an illustrative example, then we review our

clustering algorithm, SOHAC, that supports efficient storage of tick data.

4

Figure 1: An illustrative example for tick data. Features describing the weather are monitored continuously. Whenever

the value of one of the features changes, a new row is inserted into the recordings (see the table in the top).

Decomposition of such tables by features (columns) that change their values simultaneously may substantially reduce

the required storage space (see the tables in the bottom of the figure).

3.1. An Illustrative Example

Suppose that a weather station monitors features of weather conditions. In this example, such

features are the temperature, humidity and pressure of the air, the velocity and direction of the

wind, the intensity of the radiation of the sun and the overall outlook (such as sunny, cloudy,

raining or snowing). These features are monitored continuously over the time. Whenever the value

of one of these features changes, a new raw is inserted into the recordings. This new row contains

the values of the features as well as a time-stamp indicating when the observations were made. See

the matrix in the top of Figure 1.

This representation, called tick data, is well-suited for queries: for example, if we are interested

for the features of the weather at 10:30 o’clock, we only need to find the raw corresponding the most

recent observation before 10:30, i.e., we have to consider the raw at 10:22. This raw describes the

”state of the world”, i.e., it contains the values of all the features that are relevant in the current

application. Such queries regarding the ”state of the world” at a given time can be effectively

supported by indexing techniques.

The only disadvantage of the representation shown in the top of Figure 1 is that the total size

of the matrix may become much larger than actually required. In order to illustrate this we stored

5

the same information in two smaller matrices in the bottom of Figure 1. In our approach such

decompositions are based on the clustering of columns: in the example, we consider two clusters

of columns. One of the clusters contains Humidity and Pressure, while the other cluster contains

the other columns, i.e., Temperature, Velocity of the wind, Direction of the wind, Radiation and

Outlook. As shown in the example, due to the decomposition, we can save storage space: the total

number of cells required to store the data was reduced from 7×7 = 49 to 3×2+5×5 = 31 (without

counting the cells in the column Time which acts like an index column). This corresponds to a

compression ratio of 31/49 ≈ 0, 633.

While the decomposition reduces the required storage space, in the worst case, the computa-

tional complexity of a query may increase moderately: if we are interested for all the features

describing the weather at 10:30, we have to execute two queries instead of one, however, both

queries are executed on much smaller datasets (and therefore the overall execution time is ex-

pected to grow only moderately compared to the previous case). Whereas if we are only interested

for the temperature and radiation we have to execute just one query on a dataset of reduced size

(and therefore the overall execution time is expected to be reduced).

The example in Figure 1 illustrates the decomposition of a tick data matrix in an intuitive

way. Next, we systematically study such decompositions and develop an algorithm that aims at

minimizing the storage space required after the decomposition.

3.2. Definitions and Problem Formulation

In general, a tick data matrix M is a matrix where columns correspond attributes or features

while rows correspond observations of the same features at different moments of time. Rows of

the matrix are ordered according to the order of observations, i.e., the values of the i-th row were

observed before the values of the j-th row if and only if i < j. While the observations are made,

a new row is added whenever the value of an attribute changes. However, as long as none of the

attribute-values changes no new row is added to the matrix, therefore two rows of a tick data matrix

differ in the value of at least one attribute. There is an additional column that is used to index

the rows of a tick data matrix. This additional index column may contain, for example, ascending

integer numbers (like the number of the corresponding row) or a time-stamp (see the Time column

in the example in Section 3.1). We use the term regular column for all the columns other than the

index column.

With decomposition of a tick data matrix M we mean the clustering of the regular columns of

6

M into k disjoint clusters Pi, 1 ≤ i ≤ k, i.e., for each regular column cj of M :

cj ∈ P1 ∨ cj ∈ P2 ∨ ... ∨ cj ∈ Pk

and for all i, j with i 6= j

Pi ∩ Pj = ∅.

Note that this clustering refers to the regular columns only, i.e., in this formulation, the index

column does not belong to any cluster. Then, for each cluster Pi, a matrix Mi is derived from M

by selecting the index column and those columns of M that belong to cluster Pi. Subsequent rows

of a derived matrix Mi may contain the same values in all the regular columns. In such cases we

only keep the first row. For example, in Figure 1,

P1 = {Humidity, Pressure},

P2 = {Temperature, Wind (velocity), Wind (direction), Radiation, Outlook}

and the corresponding matrices M1 and M2 are shown in the bottom left and bottom right of the

Figure 1.

We can easily see that the original matrix can be reconstructed from the decomposition described

above, and therefore, instead of the original matrix M , one can use this decomposition to calculate

the results of search and analytic queries.

In this paper, we target the problem of finding a decomposition so that the required storage space

is minimized. In particular, for a given number of clusters k, we aim at finding a decomposition so

that the total number of the cells in all the matrices Mi (without counting the cells in the index

column) is minimized. Our approach can simply be adapted for the case of more advanced storage

models, where we do not assume uniform storage cost for each cells and/or the storage costs of the

index cell is also taken into account.

We note that k is usually relatively small: for example, for the storage of tick data of financial

transactions, the user is most interested for the decomposition into k = 2 or k = 3 clusters (see

also Section 3.5).

3.3. Clustering of Columns of Tick Data Matrix

In the literature, there are many clustering algorithms that are able to produce non-overlapping

clusters in a way that these clusters together cover all the instances. Therefore, one solution for

the problem defined in the previous section is to cluster the columns of a tick data matrix.

7

Figure 2: Construction of a binary change indicator matrix from a tick data matrix. The tick data matrix is shown

in the top of the figure, while the corresponding indicator matrix is shown in the bottom. The index column is the

Time column in this example.

In the context of our problem, two regular columns are considered to be similar, if they often

change values togehter (i.e., in the same rows). Therefore, we define a binary change indicator

matrix I over a tick data matrix M . Except the entries of the index column, all the entries of the

binary change indicator matrix I are either 0 or 1 depending on whether or not the value of a cell

in the tick data matrix M is equal to the value of the cell in the same column and the previous row

of M :

I(i, j) =

M(i, j) if the j-th column is the index column in M

0 if i > 1 and M(i, j) = M(i− 1, j)

1 otherwise

where M(i, j) and I(i, j) denote the entries in the i-th row and j-th column of the tick data matrix

M and binary change indicator matrix I respectively.

As an example, Figure 2 shows how the binary change indicator matrix is derived from a tick

data matrix. The index column is the Time column in this example.

After constructing the binary change indicator matrix I, we can use its regular columns (i.e., all

the columns except the index column) as instances in almost any clustering algorithms. Despite the

fact that conventional clustering algorithms are not designed to produce optimal clusters in terms

of our problem defined in Section 3.2, as we have shown in [11], if we use the binary change indicator

matrix representation and a conventional clustering algorithm to find a decomposition of the tick

8

Algorithm 1 SOHAC: Storage-Optimizing Hierarchical Agglomerative Clustering for Tick Data

Require: Tick data matrix M , number of clusters k

Ensure: Clustering of the columns of M

1: Construct the binary change indicator matrix I from M

2: P = {{c1}, {c2}, ..., {cn}}

(Initially, each column cj of M is a separate cluster)

3: while |P | > k do

4: s←∞ (Storage size for the best clustering found so far)

5: for all pairs of clusters (Ci, Cj), with Ci ∈ P , Cj ∈ P do

6: C′i ← Ci ∪ Cj (Merge clusters Ci and Cj into the new cluster C′i)

7: P ′ ← P \ {Ci, Cj} ∪ {C′i}

8: s′ = storage size required to store the decomposition corresponding to P ′ (This can be

computed based on I.)

9: if s′ < s then

10: P ∗ ← P ′ (The best clustering found so far)

11: s← s′

12: end if

13: P ← P ∗

14: end for

15: end while

16: return P

data matrix we can already achieve notable improvements in terms of storage space compared

to the case of storing the original tick data matrix. In the next section, we review SOHAC, our

clustering algorithm that directly optimize the storage space and therefore substantially outperforms

conventional clustering algorithms for our problem.

3.4. SOHAC: Storage-Optimizing Hierarchical Agglomerative Clustering

SOHAC, Storage-Optimizing Hierarchical Agglomerative Clustering is designed for clustering

columns of a tick data matrix. The algorithm builds on the hierarchical agglomerative strategy.

Therefore, initially, all the objects belong to separate clusters. Then, clusters are iteratively merged

together as long as the current number of clusters is more than k, the user-defined number of

clusters. Therefore, at the end of this iterative process, k clusters are produced.

9

The key feature of our algorithm is that in each iteration it merges those two clusters that

lead to minimal storage size of the decomposed matrix. This storage size can simply be calculated

based on the binary change indicator matrix. For each examined clustering of the columns, we

decompose the binary change indicator matrix. Then, we consider the rows that contain only zeros

in the regular columns. The cells of such rows can be eliminated in the examined decomposition

without loss of information. Therefore, in order to determine the number of cells required for the

storage of the examined decomposition, we only need to count the cells in the rows that contain

only zeros in their regular columns. The pseudocode of our algorithm is shown in Algorithm 1.

3.5. Querying Decomposed Tick-Data Matrix

Two common type of queries over a decomposed tick-data matrix are the point queries and the

range queries. A point query retrieves the value of one or more features (columns) at a specific

time point. A range query retrieves the values of one or more features within a given time range.

In this section, we consider the cost to perform point and range queries, and how it is related to

the number of clusters k.

Let Cs
p denote the corresponding cost to perform a point query that retrieves the value of

a single feature at a specific time point. Also let m denote the number of rows in the original

(uncompressed) matrix and rs the compression ratio of the cluster containing the feature of interest.

The compression ratio rs is in the range [0, 1], i.e., after decomposition, the number of rows in the

cluster is rsm and thus smaller values of rs indicate better compression. It is easy to see that

Cs
p ∝ log(rsm), because the point query can retrieve the requested value by performing binary

search in the cluster that contains the single feature of the query.2 Each cluster already contains

values sorted in time, thus the cost is logarithmic to rsm, i.e., the number of rows in the cluster of

interest. An increase of the number of clusters k will tend to improve the compression, thus will

tend to reduce rs. In this case, the cost Cs
p tends to reduce with increasing k.

For a point query that retrieves the values of all features at a specific time point, let Ca
p the

corresponding cost to perform this query and ra the compression ratio of the tick data table, i.e.,

the number of rows in a cluster is ram on average (i.e., ra is the average compression ratio of

all compression ratios rs for each individual column). In this case, Ca
p ∝ k log(ram), because the

query can retrieve the requested values for all features by performing binary search in all clusters

2We do not consider that values within clusters are indexed, because the updating of such indices would incur

prohibitive overhead costs that are not feasible for rapidly changing tick data.

10

that contain the values of all features for the given point in time. As before, the query performs

binary search in each cluster and there are k clusters in total. Therefore, an increase in the number

of clusters k introduces a trade-off for Ca
p : larger k values cause a reduction of ra and, thus, a

reduction of Ca
p by a logarithmic factor (due to the log(ram) factor above); on the other hand,

however, larger k values increase Ca
p by a linear factor (due to the k factor above). Based on our

empirical results in Section 5.1 about the range of resulting ra values w.r.t. to increasing k values,

it can be derived that the reduction in Ca
p by a logarithmic factor due to smaller ra is substantially

outweighed by the increase by a linear factor due to larger k.

Similar conclusions can be made for range queries. Let Ca
r denote the cost of performing a

range query that retrieves the values of all features within a range in time. A range query can

be performed by performing binary searching in each cluster, in order to identify the starting

point (as done in the case of a point query) and then by performing sequential retrieval of all

subsequent values within the query range. If w is the average number of values retrieved during

such a sequential searching in each cluster, then Ca
r ∝ k log(ram) + kw. This results in a similar

trade-off as before. Moreover, for range queries with larger time ranges, w will tend to be large,

which makes the increase in Ca
r to become larger by an additional factor linear to k due to the

second term above (i.e., kw).

Therefore, in real-world applications, where very large matrices need to be decomposed, the

number of clusters k should not get high, because this will incur prohibitive query costs in case

of range and point queries that retrieve values for more features. As will be described during the

presentation of our experimental results, reasonable k values are usually in the range 2− 5.

4. Speeding up SOHAC

Algorithm 1 shows SOHAC as we presented it in our previous work [11]. Next, we describe

techniques that speed up SOHAC and allow its application to high-dimensional tick data.

4.1. Avoiding the recalculation of storage sizes

Note that, in each iteration, most of the clusters remain unchanged, except the ones that are

merged in that iteration. Furthermore, merging two clusters only changes the storage of the columns

belonging to the merged clusters. As most of the clusters remain unchanged in each iteration of

SOHAC, at the end of an iteration, we do not need to recalculate the storage size of a cluster pair

(Ci, Cj) if both Ci and Cj remained unchanged in that iteration.

11

4.2. Lower Bounding Storage Size

In each iteration of SOHAC, those two clusters are merged that lead to minimal storage size.

However, as we will show, in order to find out which pair of clusters lead to minimal storage size,

it is not necessary to calculate the exact storage size of all pairs of clusters. More importantly, for

many of those pairs that are affected by the merging steps at the end of the iteration (see line 13

in Algorithm 1), i.e., pairs for which the storage size changes, we can avoid the calculation of the

exact storage size via lower bounding as described below.

In particular, it is unnecessary to calculate the exact storage size resulting from merging the

clusters Ci and Cj if we know that merging Ci and Cj results in a storage size of s0 at least and there

is an other pair of clusters C′i and C′j so that merging C′i and C′j results in storage size of exactly s

and s0 > s. This is shown in Algorithm 2.

Next, we develop a computationally cheap lower bound of the storage size which allows to

speed up the SOHAC algorithm. Suppose we are given two clusters C1 and C2 containing columns

c1, . . . , cn and cn+1, . . . cn+m respectively. Assuming uniform storage costs for all the cells of all the

columns, the storage size resulting from merging C1 and C2 can not be less than 1
2(n + m)-times

the storage size of any pair (ci, cj), 1 ≤ i ≤ n, n+ 1 ≤ j ≤ m. With storage size of a pair (ci, cj) we

mean the storage size associated with merging the two clusters that contain the single columns ci

and cj respectively. According to the above observation, a lower bound of the storage size is

StorageSize(C1, C2) ≥ max
ci∈C1,cj∈C2

1

2
· (n + m) · StorageSize(ci, cj). (1)

The calculation of this lower bound could still be computationally expensive when merging large

column clusters C1 and C2 because according to (1) we should take into account all the pairs (c1, c2),

c1 ∈ C1, c2 ∈ C2. In order to avoid it, in our current implementation, for each cluster we maintain

a variable that always contains the identifier of the most frequently changing column belonging to

that cluster and we calculate the lower bound according to those columns:

StorageSize(C1, C2) ≥
1

2
· (n + m) · StorageSize(mfcc(C1),mfcc(C2)), (2)

where mfcc(C) denotes the most frequently changing column of cluster C.

This lower bound is illustrated in the example shown in Figure 3. We want to calculate the lower

bound for merging the column clusters { Wind (direction), Humidity } and { Pressure, Outlook }.

For the cluster {Wind (direction), Humidity }, both columns change twice, therefore, we can treat

any of them as the most frequently changing column. For this example we will consider Humidity

12

Algorithm 2 QuickSOHAC: SOHAC with Lower Bounding of Storage Sizes
Require: Tick data matrix M , number of clusters k

Ensure: Clustering of the columns of M

1: Construct the binary indicator matrix I from M

2: P =
{
{c1}, {c2}, ..., {cn}

}
3: Initialize all the values s[i][j] of a two-dimensional array as unknown, s[i][j] is the storage size resulting

from merging clusters Ci and Cj .

4: while |P | > k do

5: s←∞ (Storage size for the best clustering found so far)

6: for all pairs of clusters (Ci, Cj), with Ci ∈ P , Cj ∈ P do

7: C′i ← Ci ∪ Cj (Merge clusters Ci and Cj into the new cluster C′i)

8: P ′ ← P \ {Ci, Cj} ∪ {C′i}

9: if s[i][j] is unknown then

10: s0 ← lower bound of the storage size resulting from merging clusters Ci and Cj
11: if s0 < s then

12: calculate the exact storage size resulting from merging clusters Ci and Cj and set the value of

s[i][j] to the calculated storage size

13: if s[i][j] < s then

14: P ∗ ← P ′, s← s[i][j] , i∗ ← i , j∗ ← j

(The best clustering found so far)

15: end if

16: end if

17: else

18: if s[i][j] < s then

19: P ∗ ← P ′, s← s[i][j] , i∗ ← i , j∗ ← j

(The best clustering found so far)

20: end if

21: end if

22: P ← P ∗

23: Let the merged cluster be the new i∗-th cluster, while the j∗-th cluster is not used anymore:

Cnewi∗ = (Ci∗ ∪ Cj∗). Set the storage sizes to unknown for all the pairs that include the new cluster:

s[i∗][.]← unknown, s[.][i∗]← unknown

24: end for

25: end while

26: return P

13

Figure 3: Example illustrating lower bounding. According to the matrix shown in the top, the storage size for the

columns Humidity and Pressure is 3 · 2 = 6 (the number of cells that need to be stored when merging the clusters

containing these single columns). According to the matrix in the bottom, the actual storage size resulting from

merging the clusters { Wind (direction), Humidity } and { Pressure, Outlook } is 6 · 4 = 24 (without the index

column). This actual storage size is more than the resulting lower bound which is 1
2
· (2 + 2) · 6 = 12.

as the most frequently changing column of the cluster { Wind (direction), Humidity }. Regarding

the other cluster, Pressure changes twice, while Outlook changes only once, therefore, Pressure is

the most frequently changing column of cluster { Pressure, Outlook }. In the top of the Figure 3,

we see the storage size resulting from merging the columns Humidity and Pressure which is 3·2 = 6,

i.e., when merging the clusters that contain only the single columns Humidity and Pressure 6 cells

of the original tick data matrix need to be stored. For simplicity, the storage cost of the index

column (Time) is ignored throughout the example. According to (2), when merging the clusters

{ Wind (direction), Humidity } and { Pressure, Outlook }, the resulting storage size is at least

1
2 · (2 + 2) · 6 = 12. The actual storage size is 24, as shown in the Figure 3.

Note that in the first iteration of QuickSOHAC, i.e. when each cluster consists of a single

column, the lower bounds are exactly the same as the storage sizes. We take this into account in

our implementation: in the first iteration, we always set the value of s[i][j] in line 12 of Algorithm 2

independently of the outcome of the previous conditional statement.

14

Table 1: The tick data tables used in our experiments, together with the number of their rows and columns (without

the index column).

Data table Rows Columns

TD-1 408 042 30

TD-2 554 854 190

TD-3 50 000 000 33

4.3. Sampling

In order to further speed-up the approach, we can run SOHAC on a small sample, such as 5%

or 10% of the entire tick data matrix. While this results in substantial speed-up, according to

our observations presented in Section 5, the resulting compression ratios are only slightly worse

compared to the case of using the entire tick data table.

5. Experiments

We evaluated our algorithm on three real-world tick data tables provided by the world’s leading

investment bank. The basic properties of these tables, number of columns and rows are shown

in Table 1. First, we compare the decomposition produced by our approach and other clustering

algorithms in terms of compression ratio. Subsequently, we focus on the runtime of SOHAC and

QuickSOHAC, i.e., to which extent the proposed lower bounding technique allows to speed up the

algorithm. We also present results for the case when we sampled the data. Finally, we show that

our approach can be combined with conventional compression methods: in particular, we show

that compression of the tables with gzip3 may also benefit from the decomposition produced by

our approach.

5.1. Compression Ratio

In the first experiment, we compared the decomposition of a tick data matrix resulting from

the clusters produced by our approach, SOHAC, to the decomposition of the same tick data matrix

using existing and widely used clustering algorithms. We measured the quality of decompositions

in terms of compression ratio (CR), i.e., the ratio of the number of cells in regular columns after

3http://www.gzip.org/

15

the decomposition and the number of cells in regular columns in the original matrix:

CR =
number of cells in regular columns after decomposition

number of cells in regular columns in the original matrix

An example for the calculation of compression ratio can be found in Section 3.1.

As our approach, SOHAC, is built on hierarchical agglomerative clustering, in our experiments

we focused on comparing the clustering produced by SOHAC to the clustering produced by dif-

ferent variants of hierarchical agglomerative clustering algorithms. Additionally, we compared the

clustering produced by SOHAC to the clustering produced by k-Means [20]. We tested two variants

of k-Means, the first one used Euclidian distance, while the second one used Manhattan distance.

Regarding the variants of hierarchical agglomerative clustering algorithms, we tested Single

Linkage, Complete Linkage and Average Linkage with the following proximity measures: Euclidean

Distance, Cosine Similarity, Chebychev Distance and Manhattan Distance. We used the Weka-

implementations of all of the above baseline algorithms [20]. In total, taking all the examined

variants of the baselines into account, we compared our approach to 14 clustering algorithms from

the literature. To ensure fair comparison, all of the baselines, as well as our approach, used the

binary change indicator matrices as input.

First, we decomposed the entire TD-2 tick data table into k = 2, 3, 4 and 5 clustering using

SOHAC and the baselines. Table 2 shows the resulting compression ratios. As we can see, SOHAC

clearly outperforms the baselines for all the examined cases.

Subsequently, in order to be able to study whether the improvements are systematic and sta-

tistically significant, we split the entire tick data matrix into 10 disjoint sub-matrices, and we

repeated all the experiments 10 times. In each of the 10 rounds of the process, we used a differ-

ent sub-matrix, and clustered the columns of that sub-matrix. Therefore, we could calculate the

average and standard deviation of the compression ratio.

In the left of Figure 4, we show the compression ratio and its standard deviation resulting from

the decomposition into k = 2 clusters using our approach, SOHAC, and the baselines. In the figures,

SingleLink, CompleteLink and AverageLink are denoted by H-SL, H-CL and H-AL respectively. For

SingleLink, CompleteLink, AverageLink and k-Means, we only show the best-performing variants.

In the right of Figure 4, we show the compression ratios as function of the number of clusters.

SOHAC achieves the best compression ratio in all cases. Especially for TD-3, i.e., the largest

among the three data sets, the difference is substantial, which indicates the suitability of SOHAC

for tick data of very large size. With increasing k values, as expected, all methods converge to

16

Table 2: Compression ratios on the entire TD-2 tick data table for the decompositions using our approach, SOHAC,

and the baselines.

Approach Distance measure k = 2 k = 3 k = 4 k = 5

SingleLink Euclidean 0.999 0.842 0.694 0.692

Manhattan 0.999 0.842 0.694 0.692

Cosine 0.947 0.938 0.313 0.245

Chebyshev 0.590 0.580 0.574 0.522

CompleteLink Euclidean 0.999 0.693 0.532 0.528

Manhattan 0.999 0.693 0.532 0.528

Cosine 0.947 0.269 0.247 0.167

Chebyshev 0.590 0.580 0.575 0.522

AverageLink Euclidean 0.999 0.842 0.694 0.528

Manhattan 0.999 0.842 0.694 0.528

Cosine 0.947 0.323 0.311 0.189

Chebyshev 0.590 0.580 0.574 0.522

k-Means Euclidean 0.709 0.269 0.232 0.173

Manhattan 0.999 0.989 0.884 0.474

SOHAC 0.276 0.141 0.122 0.101

comparable compression ratios. Nevertheless, based on the discussion in Section 3.5, larger values

of k hinder the efficient execution of queries over the compressed tick data. For this reason, in

real-world application the focus is only on small values of k, usually equal to 2 or not much higher

(i.e., in the range 2−5). It is worth to notice that in these cases SOHAC presents a clear advantage

compared to all examined baselines.

5.2. Runtime

In order to evaluate the proposed lower bounding technique, we compared the runtimes of two

variants of our approach. By SOHAC we denote the variant that is implemented according to Algo-

rithm 1, but avoids the unnecessary recalculation of storage sizes (see Section 4.1). QuickSOHAC

additionally uses the proposed lower bounding technique (see Algorithm 2). The runtimes relative

to the runtime of QuickSOHAC are shown in Figure 5. We can see that, in terms of runtime,

SOHAC is comparable to the baselines even without the proposed lower bounding. The proposed

lower bounding leads to 4-6 fold speedup, and therefore QuickSOHAC is faster than the baselines

in the vast majority of the examined cases. This means that QuickSOHAC is overall the best

performing method, because not only it outperforms all baselines in terms of compression ratios,

but it also compares favorable in terms of running time, which makes it suitable for large scale

17

Figure 4: The compression ratio and its standard deviation resulting from the decomposition into k = 2 clusters

using our approach, SOHAC, and the baselines (in the left). The compression ratio as function of the number of

clusters using our approach, SOHAC, and the baselines (in the right). Note that the curves H-SL, H-CL and H-AL

overlap for the TD-2 dataset.

18

applications.

Figure 5: Relative runtimes compared to the runtime of QuickSOHAC. For the baselines, we only show the runtime

of the best performing variant w.r.t. compression ratio.

Furthermore, we examined the effect of sampling: in our experiments, we sampled the first 5%

and 10% of the tick data matrices, while the effect of sampling in terms of compression ratio is

shown in Figure 6. As shown, using a relatively small portion of the entire tick data table, such as

5% or 10%, allows for additional speedup, while maintaining almost as good compression ratios as

if we would use the entire tick data table.

5.3. Combination with conventional compression methods

In order to measure physical storage sizes, i.e., the amount of disk space occupied by the tables,

we stored both the original binary change indicator matrices and the decomposed ones both in

19

Figure 6: Compression ratio of SOHAC for the cases of using the entire tick data table, sampling 10% and 5% of the

table. 20

simple text files and gzip-compressed text files. The results are shown in Table 3. As we can

see, SOHAC outperforms the baselines in both contexts, i.e., storage as simple text file and gzip-

compressed storage. Furthermore, we emphasize that SOHAC with gzip leads to substantially

reduced physical storage size compared to the case of compressing the entire table with gzip. This

indicates that SOHAC may be able to decompose the table along such patterns which could not

be identified by gzip.

Table 3: The physical storage sizes (in kBytes) of the binary change indicator matrices and their standard deviation-

with and without the usage of gzip.

Data table Approach with gzip without gzip

TD-1 no decomposition 367 ± 20 4849 ± 32

Single Link 349 ± 21 3344 ± 451

Complete Link 466 ± 32 4743 ± 457

Average Link 372 ± 37 4210 ± 684

k-Means 367 ± 40 3416 ± 427

SOHAC 351 ± 23 3221 ± 78

TD-2 no decomposition 691 ± 5 23892 ± 10

Single Link 583 ± 5 14155 ± 2106

Complete Link 583 ± 5 14155 ± 2106

Average Link 583 ± 5 14155 ± 2106

k-Means 812 ± 61 23330 ± 3564

SOHAC 568 ± 25 9617 ± 1464

TD-3 no demcomposition 4326 ± 75 61436 ± 277

Single Link 4288 ± 82 54795 ± 340

Complete Link 4288 ± 82 54795 ± 340

Average Link 4288 ± 82 54795 ± 340

k-Means 5545 ± 366 61149 ± 6048

SOHAC 4045 ± 97 37610 ± 837

5.4. Discussion

As the experiments show, the proposed algorithm, SOHAC, performs favorably to conventional

clustering algorithms on the task it was designed for, i.e., decomposition of tick data matrices.

The proposed lower bounding allows to speed up the algorithm by a factor of 4-6. Due to the

ever-growing datasets, and the rate of growth in particular, this can be considered relevant even

in the light of Moore’s law which states that the computational performance doubles every 18

months. Finding the decomposition quickly may also be relevant in real-time applications. With

21

the significant speed up a lower utilization of current computing resources could be achieved.

Furthermore, our experiments illustrate that our approach can be successfully used together with

conventional compression algorithms, which is relevant in applications where the final compression

rate is more important than the execution time of queries.

Regarding the limitations of the proposed approach, we point out that SOHAC is clearly not a

general-purpose clustering algorithm, but it was designed for a particular task. While SOHAC (or

a modified version of it) might be applied to cluster non-tick data, due to its design, we only expect

SOHAC to perform well in cases when the data has at least some relevant aspects in common with

tick data, while the adaptation of SOHAC to such new data types is not trivial.

6. Conclusion

In this paper, we focused on the storage of tick data, a type of data appearing in various appli-

cations from finance to meteorological observations. Due to the rapid change of the values of the

observed features the size of tick data tables tends to increase substantially. We proposed a storage

scheme for tick data that reduces the storage space while, at the same time, it allows to efficiently

execute queries. The proposed approach performs a decomposition of the original tick data matrix

into a number of smaller matrices. We achieve this decomposition by clustering the columns of

original matrix based on a new clustering algorithm called Storage-Optimizing Hierarchical Ag-

glomerative Clustering (SOHAC). In this paper, we focused on the efficient implementation of

SOHAC. Our observation about the lower bound of storage sizes allowed to speed up SOHAC.

This is essential for the application of SOHAC to high-dimensional tick data. Our experimental

evaluation demonstrated that the proposed approach compares favorably to several baselines in

terms of compression, whereas the lower bounding technique can lead to substantial speedup.

The benefits due to the proposed approach are important, due to the several application domains

that are based on the ability to efficiently store and analyse tick data. For instance, major financial

institutions record historical stock-market values in the form of tick data, which can be even publicly

available and help analysts working in financial services in developing risk management, trading,

and quantitative analysis.4 Recording of such historical data is performed for many years and,

thus, is of massive volumes, since in order “to store decades of market data, the volume of disk

4See: http://www.xignite.com/market-data/nasdaq-historical-stock-tick-data/

22

space needed expands geometrically”5. Since uncompressed tick data is voluminous, in order to

perform useful analysis the proposed compression scheme offers the ability to reduce their storage

requirements and to enable their faster processing based on in-memory architectures. Moreover, an

appealing option nowadays for storing large volumes of tick data is to follow a cloud-based solution.

Storage as a service (STaaS) is increasingly being used by many organizations that manage such

large data collections. STaaS allows such organizations to reduce the total cost of ownership by

renting storage space from a service provider. However, the costs involved with STaaS usually

increase proportionally to the size of the data. Moreover, tick-data are of very large sizes and they

grow rapidly. Thus, the compression attained by the proposed scheme can attain significant cost

reductions by optimizing the storage of such large and rapidly-changing tick data.

The proposed approach is based on the premise that the “pattern of change” in the tick data

remains stable, which allows SOHAC to detect clusters over the entire tick-data matrix. In the long

term, however, this “pattern of change” may vary and may require to update the clustering scheme

of SOHAC. For this reason, in our future work we plan to investigate extensions of SOHAC that

will split the original matrix into clusters, each of which can be effectively represented by a single

clustering scheme. The detection of such clusters in a dynamic way, i.e., as new data are arriving,

is also an interesting point of future work. Instead of storing the exact signal, in many applications,

an approximation of the signal may be sufficient. Therefore, we aim to study SOHAC in context

of approximate storage of multivariate signals. Furthermore, we want to explore whether SOHAC

can be adapted for the clustering of (multivariate) time-series. The key of this application is a

technique that converts time-series into a binary vector reflecting at which positions substantial

changes happen. While a naive approach using a fixed threshold may not work well enough,

approaches based on machine learning, such as segmentation of the time-series by an appropriate

Hidden Markov Model could potentially provide such a representation. We hope to explore the

possibilities of the usage of QuickSOHAC clustering algorithm in more general datasets, that are

binary in nature, for example document-term matrices in text mining and extend the algorithm to

bi-cluster documents and frequently appearing terms in documents. We aim at comparing these

results to existing bi-clustering algorithms.

5See: http://marketsmedia.com/tick-tick/

23

Acknowledgment

We thank DAAD and MÖB for financially supporting a researcher exchange program with project number:

39859.

References

[1] S. Ahmad, T. Taskaya-Temizel, K. Ahmad, Summarizing time series: Learning patterns in

volatileseries, Intelligent Data Engineering and Automated Learning–IDEAL 2004 (2004) 523–

532.

[2] Q. Akram, D. Rime, L. Sarno, Does the law of one price hold in international financial markets?

evidence from tick data, Journal of Banking & Finance 33 (2009) 1741–1754.

[3] E. Barany, M.B. Varela, I. Florescu, I. Sengupta, Detecting market crashes by analysing long-

memory effects using high-frequency data, Quantitative Finance 12 (2012) 623–634.

[4] R. Bartiromo, Dynamics of stock prices, Physical Review E 69 (2004) 067108.

[5] M. Blais, P. Protter, Signing trades and an evaluation of the leeready algorithm, Annals of

Finance 8 (2012) 1–13.

[6] K. Buza, A. Buza, P. Kis, A distributed genetic algorithm for graph-based clustering, Man-

Machine Interactions 2 (2011) 323–331.

[7] Á. Cartea, Derivatives pricing with marked point processes using tick-by-tick data, Quantita-

tive Finance 13 (2013) 111–123.

[8] G. Dionne, P. Duchesne, M. Pacurar, Intraday value at risk (ivar) using tick-by-tick data with

application to the toronto stock exchange, Journal of Empirical Finance 16 (2009) 777–792.

[9] S. Guha, R. Rastogi, K. Shim, Rock: A robust clustering algorithm for categorical attributes,

Information Systems 25 (2000) 345–366.

[10] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, A. Wu, An efficient k-means

clustering algorithm: Analysis and implementation, Pattern Analysis and Machine Intelligence,

IEEE Transactions on 24 (2002) 881–892.

24

[11] G. Nagy, K. Buza, Sohac: Efficient storage of tick data that supports search and analysis,

in: P. Perner (Ed.), Advances in Data Mining. Applications and Theoretical Aspects, volume

7377 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2012, pp. 38–51.

[12] A. Nanopoulos, H. Gabriel, M. Spiliopoulou, Spectral clustering in social-tagging systems,

Web Information Systems Engineering-WISE 2009 (2009) 87–100.

[13] K. Oh, K. Kim, Analyzing stock market tick data using piecewise nonlinear model, Expert

Systems with Applications 22 (2002) 249–255.

[14] T. Ohnishi, T. Mizuno, K. Aihara, M. Takayasu, H. Takayasu, Statistical properties of the

moving average price in dollar–yen exchange rates, Physica A: Statistical Mechanics and its

Applications 344 (2004) 207–210.

[15] T. Qiu, G. Chen, L.X. Zhong, X.R. Wu, Dynamics of bid–ask spread return and volatility of

the chinese stock market, Physica A: Statistical Mechanics and its Applications 391 (2012)

2656–2666.

[16] D. Salomon, Data compression: the complete reference, Springer-Verlag New York Inc, 2004.

[17] N. Sazuka, Analysis of binarized high frequency financial data, The European Physical Journal

B-Condensed Matter and Complex Systems 50 (2006) 129–131.

[18] M. Takayasu, H. Takayasu, M. Okazaki, Transaction interval analysis of high resolution foreign

exchange data, Empirical Science of Financial Fluctuations-The Advent of Econophysics 18

(2002) 25.

[19] P. Tan, M. Steinbach, V. Kumar, et al., Introduction to data mining, Pearson Addison Wesley

Boston, 2006.

[20] I. Witten, E. Frank, Data Mining: Practical machine learning tools and techniques, Morgan

Kaufmann, 2011.

[21] Z. Wu, On the intraday periodicity duration adjustment of high-frequency data, Journal of

Empirical Finance 19 (2012) 282–291.

[22] R. Xu, D. Wunsch, et al., Survey of clustering algorithms, Neural Networks, IEEE Transactions

on 16 (2005) 645–678.

25

[23] Y. Yabuuchi, J. Watada, Formulation of possibility grade-based fuzzy autocorrelation model

and its application to forecasting, International Journal of Intelligent Technologies and Applied

Statistics 5 (2012) 321–335.

26

