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Block declarations

A block declaration causes a goal to suspend
when certain arguments are unbound
Multiple block declarations mean disjunctive conditions
Examples:
:- block p(-, ?, -, ?). suspends when 1st and 3rd arg is unbound.
:- block p(-, ?), p(?, -). suspends when 1st or 2nd arg is unbound.
When blocking condition(s) hold no more, the call executes immediately.
Example: safe append, with no infinite choice points:
:- block app(-, ?, -).
% app(L1, L2, L3): The concatenation of L1 and L2 is L3.
% Blocks if *both* L1 and L3 are unbound variables.
app([], L, L).
app([X|L1], L2, [X|L3]) :- app(L1, L2, L3).

| ?- app(L1, L2, L3). =⇒ user:app(L1,L2,L3) ? ; no
| ?- app(L1, L2, L3), L3 = [1|_].

=⇒ L1 = [], L2 = [1|_A], L3 = [1|_A] ? ;
=⇒ L1 = [1|_A], L3 = [1|_B], user:app(_A,L2,_B) ? ; no
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Further coroutining predicates

freeze(X, Goal): Goal is true. Suspends Goal until X is instantiated.
dif(X, Y): X and Y are different. Suspends until this can be decided.
when(Condition, Goal): Goal is true. Suspends Goal until Condition is
satisfied. Here Condition is a very simple Prolog goal:

Condition ::= nonvar(X) | ground(X) | ?=(X,Y) |
Condition, Condition |
Condition; Condition

For example, process/3 will execute only when T is ground and either
X is not a variable, or the unifiability of X and Y can be decided:

| ?- when( (ground(T),(nonvar(X);?=(X,Y))),
process(X,Y,T)).

frozen(X, Goals): Goals are the goals suspended because of variable X.
call_residue_vars(Goal, Vars): Vars is the list of variables because of
which goals were suspended during the execution of Goal.
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The N-queens problem

Place N queens on a NxN chessboard
so that no two queens attack each other
The Prolog list [Q1, ..., QN] represents the placement:
row i contains a queen in column Qi .
The “generate and test” approach for solving N-queens
:- use_module(library(between)).
:- use_module(library(lists),[select/3]).

queens_gt(N, Qs):-
findall(I, between(1, N, I), L), % L = [1,2,...N]
permutation(L, Qs),
safe(Qs). % Placement Qs has no queens attacking each other

% permutation(L, P): P is a permutation of L.
permutation([], P) :- !, P = [].
permutation(L0, [X|P]) :-

select(X, L0, L1), % select the 1st elem of permutation
permutation(L1, P). % permute the rest
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Safe placement of N-queens

The code to check if a placement is safe
% safe(Qs): Placement Q is safe from queens attacking each other
safe([]).
safe([Q|Qs]):-

no_attack(Qs, Q, 1), safe(Qs).

% no_attack(Qs, Q, I): Q is the placement of the queen in row n
% Qs are placements of queens in rows n+I, n+I+1, ...
% Queen in row n does not attack any of the queens described by Qs.
no_attack([], _, _).
no_attack([X|Xs], Y, I):-

no_threat(X, Y, I),
J is I+1, no_attack(Xs, Y, J).

% Queens placed in column X of row n, and in column Y of row n+I
% do not attack each other
no_threat(X, Y, I) :-

/* X =\= Y, */
Y =\= X-I, Y =\= X+I.
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Using coroutining for fusing generate and test

Add blocking conditions to the test for no_threat:
:- block no_threat_b(-,?,?), no_threat_b(?,-,?).
% Queens placed in column X of row n, and in column Y of row n+I
% do not attack each other. Wakes up when all args are instantiated.
no_threat_b(X, Y, I) :-

/* X =\= Y, */ Y =\= X-I, Y =\= X+I.

no_attack_b is the same as no_attack, but using no_threat_b,
safe_b is the same as safe, but using no_attack_b

“First” test, then generate:
queens_tg(N, Qs):-

length(Qs, N), Qs is a list of N vars
safe_b(Qs), set up blocked no_threat checks
findall(I, between(1, N, I), L),
permutation(L, Qs). When Qsi is bound, it is checked

immediately against queens placed earlier

The ratio of runtimes of gt and tg variants
N→ratio: 8→ 4, 9→ 8, 10→ 16, 11→ 32, 12→ 69, 13→ 154
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About CLP in general

The CLP(X ) schema

Prolog or some
other prog. lan-
guage, e.g. C++

+
“strong” reasoning capabilities on a re-
stricted domain X involving specific con-
straint (relation) and function symbols.

Examples for the domain X :
X = Q or R (rationals or reals) – cf. SICStus libraries clpq, clpr
constraints: linear equalities and inequalities
reasoning techniques: Gauß elimination and the simplex method
X = FD ( Finite Domains, e.g. of integers) – library(clpfd)
constraints: various arithmetic, logic, and combinatorial relationships
reasoning techniques: methods developed for solving Constraint
Satisfaction Problems (CSPs), a branch of Artificial Intelligence (AI)
X = B (Boole values true and false, or 1 and 0) – library(clpb)
constraints: relations of propositional calculus (negation, conj., etc.)
reasoning techniques: AI methods developed for solving SAT
(propositional satifiability) problems, e.g. binary Decision Diagrams.
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Constraint Satisfaction Problems

A CSP task is a triple (X ,D,C)
X = 〈 x1, . . . , xn 〉 – variables
D = 〈D1, . . . ,Dn 〉 – domains, i.e. nonempty finite sets
variable xi can take its values from the set Di , called the domain of xi
C is the set of constraints (primitive relations), with arguments from
X (e.g. C 3 c = r(x1, x3), r ⊆ D1 × D3)

The solution of a CSP task: the assignment, to each xi , of a value vi ∈ Di
in such a way that all c ∈ C constraints are simultaneously satisfied.
Definition: A value di ∈ Di of a variable xi is infeasible w.r.t. the
constraint c = r(. . . , xi , . . .), if no assignment can be found for the
remaining variables of c, which, taken with di , satisfies c.
Proposition: removing an infeasible value (domain pruning) does not
affect the set of solutions.
Definition: A constraint is arc-consistent, if no variable domain contains
an infeasible value. A CSP task is arc-consistent, if all constraints in it are
arc-consistent. (A task with binary constraints only can been seen as a
graph: var⇒ node, relation⇒ arc – hence the name arc-consistency.)
Arc-consistency can be ensured by repeated domain pruning.
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The process of solving CSP (CLPFD) problems

Modelling – transforming the problem to a CSP
defining the variables and their domains
identifying the constraints between the variables

Implementation – the structure of the CSP program
Set up variable domains: N in {1,2,3}, domain([X,Y], 1, 5).
Post constraints. Preferably, no choice points should be created.
Label the variables, i.e. systematically explore all variable settings.

Optimisation, e.g. redundant constraints, labeling heuristics, constructive
disjunction, shaving.
Generate-and-test (G&T) vs. the CSP (constrain-and-generate) approach
(4-queens example)

G&T: ?- between(1,4,A),between(1,4,B),between(1,4,C),...
A=\=B,A=\=B+1,A=\=B-1,A=\=C+2,...

CSP: ?- L=[A,B,C,D],domain(L,1,4),
A#\=B,A#\=B+1,A#\=B-1,A#\=C+2,...,labeling([ff],L).
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library(clpfd) – an overview

Domain: a finite set of integers (allowing the restricted use of infinite
intervalls for convenience)
Constraints:

membership, e.g. X in 1..5 (1 ≤ X ≤ 5)
arithmetic, e.g. X #< Y+1 (X < Y + 1)
reified, e.g. X#<Y+5 #<=> B (B is the truth value of X < Y + 5)
propositional, e.g. B1 #\/ B2

(at least one of the two Boolean values B1 and B2 is true)
combinatorial, e.g. all_distinct([V1,V2,...])

(variables [V1,V2,...] are pairwise different)
user-defined, e.g. indexicals and global constraints
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Some important constraints

Membership constraints
domain(+Vars, +Min, +Max) where
Min: 〈 integer 〉 or inf (−∞),
Max: 〈 integer 〉 or sup (+∞):
All elements of list Vars belong to the closed interval [Min,Max].

Example: domain([A,B,C], 1, sup) – variables A, B and C are
positive

X in +ConstRange: X belongs to the set ConstRange, where:
ConstantSet ::= {〈 integer 〉,...,〈 integer 〉}
Constant ::= 〈 integer 〉 | inf | sup
ConstRange ::= ConstantSet

| Constant .. Constant (interval)
| ConstRange /\ ConstRange (intersection)
| ConstRange \/ ConstRange (union)
| \ ConstRange (complement)

Examples: A in inf .. -1, B in \(0 .. sup), C in {1,4,7,2}.
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Some important constraints

Arithmetic formula constraints: Expr Relop Expr where
Expr ::= 〈 integer 〉 | 〈 variable 〉

| - Expr | Expr + Expr | Expr - Expr | Expr * Expr
| Expr / Expr % integer division
| Expr mod Expr | Expr rem Expr % differ only for ints < 0
| min(Expr,Expr) | max(Expr,Expr) | abs(Expr)

RelOp ::= #= | #\= | #< | #=< | #> | #>=

Global arithmetic constraints (global = having arbitrary number of args):
sum(+Xs, +RelOp, ?Value): Σ Xs Relop Value.
scalar_product(+Coeffs, +Xs, +RelOp, ?Value[, +Options])
(last arg. optional): Σ (Coeffs*Xs) RelOp Value.
minimum(?V, +Xs), maximum(?V, +Xs): V is the min/max of Xs.

Some combinatorial (global) constraints:
all_different([X1,...,Xn]): same as Xi #\= Xj for all 0 < i < j ≤ n.
all_distinct([X1,...,Xn]): same as all_different, but guarantees
arc-consistency between the n variables.

| ?- L=[A,B,C], domain(L, 1, 2), all_different(L).=⇒ A in 1..2, ...
| ?- L=[A,B,C], domain(L, 1, 2), all_distinct(L). =⇒ no
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Labeling

Labeling: search by systematic assignment of feasible values to vars.
indomain(?Var): Var is assigned feasible values in ascending order.
labeling(+Options, +Vars): assigns all Vars. Some useful options:

Variable selection: Select for assignment . . .
leftmost (default) – the leftmost unbound variable;
ff (first-fail) – the leftmost variable with the smallest domain;
ffc – the leftmost variable with the smallest domain which
participates in most constraints;
min/max – the leftmost variable with the smallest lower
bound/largest upper bound;
variable(Sel) – the var. prescribed by the user through Sel.

Direction: up(default)/down – assign in ascending/descending order.
Value selection: Create a choice-point distinguishing between . . .

step (default) – the lower/upper bound and the rest (2-way);
enum – all values in the domain (n-way, n is the domain size);
bisect (domain spliting) – the two halves of the domain (2-way);
value(Enum) – as prescribed by the user through Enum.
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The implementation of CLPFD

The main data structure: the backtrackable constraint store – maps
variables to their domains.
Simple constraints: e.g. X in 1..10 or X #< 10 just modify the store.
Composite constraints are implemented as daemons, which keep
removing infeasible values from argument domains, e.g., given the store
X in 1..6, Y in {1,6,7,8,9} the daemon for X+5 #= Y removes
=⇒ 5, 6 from X; 1 from Y, producing: X in 1..4, Y in 6..9. (*)
Composite constraints can provide reasoning of different strengths:

domain-consistency (≡ arc-cons.) – removes all infeasible values,
e.g. after (*), Y #\= 7 removes =⇒ 2 from X. (**)
(Cost: exponential in the number of variables.)
bound-consistency – (repeatedly) removes infeasible bounds only,
i.e. middle elements, as in (**), are not removed. E.g. after (*), Y #< 8
=⇒ remove 4 and then 3, the upper bounds of X, so that all bounds
become feasible. (Cost: linear in the # of vars)

A daemon may exit (die), when the constraint it represents is entailed by
(follows from) the constraint store; e.g. X #< Y may exit if the store
contains: X in 1..5 and Y in 7..9.
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The implementation of CLPFD (contd.)

To execute a constraint C:
Transform C (at compile time) to a series of primitive constraints,
e.g. X*X #> Y⇒ X*X #= Z, Z #> Y (formula constraints only).
Post C (or each of the primitive constraints obtained from C):

execute immediately (e.g. X #< 3); or
create a daemon for C:

tell the constraint engine when to wake me up (activation conditions)
prune the domains
until the termination condition becomes true do

go to sleep (wait for activation)
prune the domains

enduntil
An activation condition: the domain of a variable X changes in SOME way:
SOME = any; lower/upper bound change; instantiation; . . .
The termination condition is constraint specific; earliest: when the
constraint is entailed; latest: when all its variables are instantiated.
| ?- assert(clpfd:full_answer).
makes SICStus Prolog show the non-terminated constraints.
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The implementation of some constraints

A #\= B (arc-consistent)
Activation: when A or B is instantiated.
Pruning: remove the value of the instantiated variable from the
domain of the other.
Termination: when A or B is instantiated.

A #< B (arc-consistent)
Activation: when min(A) (the lower bound of A) or max(B) (the upper
bound of B) changes.
Pruning:
remove from the domain of A all x ’s such that x ≥ max(B),
remove from the domain of B all y ’s such that y ≤ min(A).
Termination: if one of the variables A and B becomes instantiated
(could be improved).
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The implementation of some constraints (contd.)

X+Y #< T (bound-consistent)
Activation: when the lower or upper bound changes for any of the
variables X, Y, T.
Pruning:
narrow the domain of T to (min(X)+min(Y))..(max(X)+max(Y));
narrow the domain of X to (min(T)-max(Y))..(max(T)-min(Y));
narrow the domain of Y to (min(T)-max(X))..(max(T)-min(X)).
Termination: if all three variables are instantiated.

all_distinct([A1,...]) (arc-consistent)
Activation: at any domain change of any variable.
Pruning: remove all infeasible values from the domains of all
variables (using an algorithm based on maximal paths in bipartite
graphs).
Termination: when at most one of the variables is uninstantiated.
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Consistency levels guaranteed by SICStus Prolog

Membership constraints (trivially) ensure arc-consistency.
Linear arithmetic constraints ensure at least bound-consistency.
Nonlinear arith. constraints do not guarantee bound-consistency.
For all constraints, when all the variables of the constraint are bound, the
constraint is guaranteed to deliver the correct result (success or failure).

| ?- X in {4,9}, Y in {2,3}, Z #= X-Y. =⇒ Z in 1..7 ?
=⇒ Bound consistent

| ?- X in {4,9}, Z #= X-2. =⇒ Z in{2}\/{7} ?
=⇒ Domain consistent

| ?- X in {4,9}, Y in {2,3},
scalar_product([1,-1], [X,Y], #=, Z, [consistency(domain)]).

=⇒ Z in(1..2)\/(6..7) ?
=⇒ Domain consistent

| ?- domain([X,Y],-9,9), X*X+2*X+1 #= Y.=⇒ X in-4..4, Y in-7..9 ?
=⇒ Not even bound consistent

| ?- domain([X,Y],-9,9), (X+1)*(X+1)#=Y.=⇒ X in-4..2, Y in 0..9 ?
=⇒ Bound consistent
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Reified constraints – an introduction

A speculative solution for counting the positive members of a list:
% pcount0(L, N): L has N positive elements.
pcount0([X|L], N) :- ( X #> 0, N1 #= N-1, pcount0(L, N1)

; X #=< 0, pcount0(L, N)
).

pcount0([], 0).

| ?- pcount0([A,B], 0). =⇒ A in inf..0, B in inf..0 ? ; no
| ?- pcount0([A,B], 1). =⇒ A in 1..sup, B in inf..0 ? ;

=⇒ B in 1..sup, A in inf..0 ? ; no

Speculative disjunction: ChPs made while posting constraints.
| ?- length(L, 20), pcount0(L, 0). takes ∼ 15 sec!

With reification a non-speculative solution is possible (no ChPs):
% pcount1(L, N): L has N positive elements.
pcount1([X|Xs], N) :-

(X #> 0) #<=> B, % (X > 0) iff (B = 1)
N1 #= N-B, pcount1(Xs, N1).

pcount1([], 0).
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Reification – obtaining the truth value of a constraint

The reification of an n-ary constraint C = r(x1, . . . , xn)

is a constraint rreif (x1, . . . , xn,b) defined as r(x1, . . . , xn)⇔ b = 1,
where b is a Boolean (0-1) variable;
denoted by C #<=> B
this means that B in 0..1 and B is 1 iff C is true.

A reified constraint is very much like an arithmetic constraint, and
sometimes can be replaced by an arithmetic one, e.g.

(X #> 0) #<=> B means: B is the truth value of X > 0.
If X has the domain 0..9, then B #= (X+9)/10 is the very same
constraint, just implemented differently

Which constraints can be reified?
Arithmetic formula constraints (#=, #=<, etc.)
Membership constraints (in)

Global constraints (e.g. all_distinct/1, sum/3) cannot be reified.
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Executing reified constraints

The execution of C #<=> B requires the following actions:
When B is instantiated:

if B=1, post C, if B=0, post ¬C,
When C is entailed (i.e. the store implies C), set B to 1.
When C is disentailed (i.e. ¬C is entailed), set B to 0.

The above three action types are delegated to three daemons.
Detecting entailment can be done with different levels of precision:

A reified membership constraint C detects domain-entailment, i.e. B
is set as soon as C is a consequence of the store
A linear arithmetic constraint C is guaranteed to detect
bound-entailment, i.e. B is set as soon as C is a consequence of the
interval closure of the store. (The interval closure is obtained by
removing the holes in the domains.) E.g. the store below implies the
constraint X+Y6=Z (odd+even6=even), but its interval closure does not:

| ?- X in{1,3}, Y in{2,4}, Z in{2,4}, X+Y#\=Z#<=>B.=⇒ B in 0..1,...

When a constraint becomes ground, its (dis)entailment is detected
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Propositional constraints

Propositional connectives allowed by SICStus Prolog CLPFD:
#\ Q negation op(710, fy, #\ ).
P #/\ Q conjunction op(720, yfx, #/\ ).
P #\ Q exclusive or op(730, yfx, #\ ).
P #\/ Q disjunction op(740, yfx, #\/ ).
P #=> Q implication op(750, xfy, #=> ).
Q #<= P implication op(750, yfx, #<= ).
P #<=> Q equivalence op(760, yfx, #<=>).

The operand of a propositional constraint can be
a variable B, whose domain automatically becomes 0..1; or
an integer (0 or 1); or
a reifiable constraint; or, recursively
a propositional constraint.

The propositional constraints are
built from vars, ints and reifiable constraints using above operators;
executed by transforming them to arith. and reified constraints, e.g.
(X#>0) #\/ (Y#<5). ⇐⇒ (X#>0)#<=>B1, (Y#<5)#<=>B2, B1+B2#>0.
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N-queens – a CLPFD variant

Recall: the Prolog list [Q1, ..., QN] represents the placement:
row i contains a queen in column Qi .

% queens(+Lab, +N, ?Q): Q is a safe placement i.e. no two queens
% attack each other, obtained using the labeling options Lab
queens(Lab, N, Qs) :-

length(Qs, N), domain(Qs, 1, N),
safe(Qs), labeling(Lab, Qs).

% safe(Qs): List Qs describes a safe placement of queens.
safe([]).
safe([Q|Qs]):- no_attack(Qs, Q, 1), safe(Qs).

% no_attack(Qs, Q, I): Q is the placement of the queen in row n
% Qs are placements of queens in rows n+I, n+I+1, ...
% Queen in row n does not attack any of the queens described by Qs.
no_attack([],_,_).
no_attack([X|Xs], Y, I):-

no_threat(X, Y, I), J is I+1, no_attack(Xs, Y, J).

% Queens in row n, col X and in row n+I, col Y do not attack each other.
no_threat(X, Y, I) :- Y #\= X, Y #\= X-I, Y #\= X+I.
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User-defined constraints

What should be specified when defining a new constraint:
Activation conditions: when should it wake up
Pruning: how should it prune the domains of its variables
Termination conditions: when should it exit

Additional issues for reifiable constraints:
How should its negation be posted?
How to decide its entailment?
How to decide its disentailment (the entailment of its negation)?
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Possibilities for defining constraints

Global constraints
Arbitrary number of arguments (variable lists as arguments)
Activation, pruning, termination is specified by arbitrary Prolog code.
No specific support for reification

FD predicates
Fixed number of arguments
Support for reification
Pruning and entailment is specified by so called indexicals (Pascal
van Hentenryck), using a set-valued functional language.
Activation and termination conditions deduced automatically from the
indexicals.
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FD predicates – a simple example

An FD predicate ’x=<y’(X,Y), implementing the constraint X #=< Y

FD clause with neck +: – the prunings for the constraint itself:
’x=<y’(X,Y) +:

X in inf..max(Y), % intersect X with inf..max(Y)
Y in min(X)..sup. % intersect Y with min(X)..sup

FD clause with neck -:– the prunings for the negated constraint:
’x=<y’(X,Y) -:

X in (min(Y)+1)..sup,
Y in inf..(max(X)-1).

FD clause with neck +? – the entailment condition:
’x=<y’(X,Y) +? % X=<Y is entailed if the domain of X

X in inf..min(Y). % becomes a subset of inf..min(Y)

FD clause with neck -? – the entailment condition for the negation:
’x=<y’(X,Y) -? % Negation X > Y is entailed when X’s

X in (max(Y)+1)..sup. % domain is a subset of (max(Y)+1)..sup
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Defining global constraints

The constraint is written as two pieces of Prolog code
The start-up code

an ordinary predicate with arbitrary arguments
should call fd_global/3 to set up the constraint

The wake-up code
written as a clause (of a hook predicate) to be called by SICStus
at activation
should return the domain prunings
should decide whether the constraint can exit (with success or
failure) or should fall asleep and keep pruning later
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Global constraints – a simple example

Defining the constraint X #=< Y as a global constraint
The start-up code
lseq(X, Y) :-

fd_global(lseq(X,Y), void, [min(X),max(Y)]).
% ^^^^^^^^^ constraint name
% ^^^^ initial state
% ^^^^^^^^^^^^^^^ wake-up conditions

The wake-up code
:- multifile clpfd:dispatch_global/4.
:- discontiguous clpfd:dispatch_global/4.
clpfd:dispatch_global(lseq(X,Y), St, St, Actions) :-

dispatch_lseq(X, Y, Actions).

dispatch_lseq(X, Y, Actions) :-
fd_min(X, MinX), fd_max(X, MaxX), % get min of X in MinX, etc.
fd_min(Y, MinY), fd_max(Y, MaxY),
( number(MaxX), number(MinY), MaxX =< MinY
-> Actions = [exit]
; Actions = [X in inf..MaxY,Y in MinX..sup]
).
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Shaving – a special case of constructive disjunction

Base idea: remove v from X if setting X = v fails immediately, i.e. without
labeling
Shaving a single value V off the domain of X is similar to a constructive
disjunction (X = v) ∨ (X 6= v) w.r.t. X
shave_value(V, X) :-

\+ X = V, !, X in \{V}.
shave_value(_, _).

Shaving all values in X ’s domain {v1, . . . , vn} is the same as performing
a constructive disjunction for (X = v1) ∨ . . . ∨ (X = vn) w.r.t. X
shave_all(X) :-

fd_set(X, FD), fdset_to_list(FD, L),
findall(X, member(X,L), Vs),
list_to_fdset(Vs, FD1), X in_set FD1.

Shaving may be applied repeatedly, until a fixpoint (may not pay off)
Shaving is normally done during labeling. To reduce its costs, one may:

limit it to variables with small enough domain (e.g. of size 2)
perform it only after each nth labelling step (requires global variables)
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An example for shaving, from a kakuro puzzle

Kakuro puzzle: like a crossword, but with distinct digits 1–9 instead of
letters; sums of digits are given as clues.
% L is a list of N distinct digits 1..9 with a sum Sum.
kakuro(N, L, Sum) :-

length(L, N), domain(L, 1, 9), all_distinct(L), sum(L,#=,Sum).
Example: a 4 letter “word” [A,B,C,D], the sum is 23, domains:
sample_domains(L) :- L = [A,_,C,D], A in {5,9}, C in {6,8,9}, D=4.
Only B gets pruned: 4, because of all_distinct, 9 because of sum
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L).

=⇒ A in{5}\/{9}, B in(1..3)\/(5..8), C in{6}\/(8..9) ?
Shaving 9 off C shows the value 9 for C is infeasible:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L),

shave_value(9,C). =⇒ ..., C in{6}\/{8} ?
Shaving off the whole domain of B leaves just three values:
| ?- L=[A,B,C,D], kakuro(4, L, 23), sample_domains(L), shave_all(B).

=⇒ ..., B in{2}\/{6}\/{8}, ... ?
These two shaving operations happen to achieve domain constistency:
| ?- kakuro(4, L, 23), sample_domains(L), labeling([], L).

=⇒ L = [5,6,8,4] ? ; L = [5,8,6,4] ? ; L = [9,2,8,4] ? ; no
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The domino puzzle

Consider a rectangle of size (n + 1)× (n + 2) covered by a full set of
n-dominoes with no overlaps and no holes.
The set has tiles of size 1× 2, marked with {〈 i , j 〉|0 ≤ i ≤ j ≤ n}
Input: a rectangle filled with integers 0..n (domino boundaries removed)
The task is to reconstruct the domino boundaries13

% A puzzle (n=3): % The (only) solution: % The solution matrix:
---------------------

1 3 0 1 2 | 1 | 3 0 | 1 | 2 | n w e n n
| |-------| | |

3 2 . 0 1 3 | 3 | 2 0 | 1 | 3 | s w e s s
|---------------|---|

3 3 0 0 1 | 3 3 | 0 0 | 1 | w e w e n
. |-------|-------| |

2 2 1 2 . 0 | 2 2 | 1 2 | 0 | w e w e s
---------------------

The input: a matrix of integers, the solution: a matrix of atoms n, w, s, e
(the given position is a northern, western, . . . part of a domino piece)

13Red dots show the 3 possible placements of the mid-line of domino 〈 0, 2 〉
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Modelling the domino puzzle

Selecting the variables14

Option a: A matrix of solution variables, each having a value which
encodes n, w, s, e – difficult to ensure that each domino is used once
Option b: for each domino in the set have variable(s) pointing to its place
on the board – makes difficult to describe the non-overlap constraint
Solution 1: use both sets of variables, with constraints linking them
Solution 2: Map each gap between (horiz. or vert.) adjacent numbers to
a 0-1 variable, whose value is 1, say, iff it is the mid-line of a domino

Selecting the constraints (for Solution 2):
Let Syx and Eyx be the variables for the southern and eastern boundaries
of the matrix element in row y, column x.
Non overlap constraint: the four boundaries of a matrix element sum up to
1, e.g. for the element in row 2, column 4: sum([S14,E23,S24,E24], #=, 1)
All dominoes used: Of all the possible placements of each domino
exactly one is used. E.g. for the domino 〈0,2 〉 (see red dots on the
previous slide): sum([E22,S34,E44], #=, 1)

14SICStus library(’clpfd/examples/dominoes’) contains a solution using the
geost/2 constraint.
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What else is there in (SICStus) Prolog?

Prolog features
Definite clause grammars,
e.g. expr –> term, ( ("+"|"-"), expr | "" ).
“Traditional” built-in predicates,
e.g. sorting, input/output, exception handling, etc.

Constraints
Further constraint libraries in SICStus:

CLPB – booleans
CLPQ/CLPR – linear (in/dis)equalities on rationals/reals
Constraint Handling Rules: generic constraints,
this package is also available for other host-languages, e.g.
Java.

Numerous other libraries
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Some applications of (constraint) logic programming

Boeing Corp.: Connector Assembly Specifications Expert (CASEy) – an
expert system that guides shop floor personnel in the correct usage of
electrical process specifications.
Windows NT: \WINNT\SYSTEM32\NETCFG.DLL contains a small Prolog
interpreter handling the rules for network configuration.
Experian (one of the largest credit rating companies): Prolog for checking
credit scores. Experian bought Prologia, the Marseille Prolog company.
IBM bought ILOG, the developer of many constraint algorithms (e.g. that
in all_distinct); ILOG develops a constraint programming / optimization
framework embedded in C++.
IBM uses Prolog in the Watson deep Question-Answer system for parsing
and matching English text
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