
Declarative Programming with Prolog Further control constructs

Disjunctions – “happy” example

Disjunctions (i.e. subgoals separated by “or”) can appear as goals
A disjunction is denoted by semicolon (“;”), an xfy op. of priority 1100
Comma (priority 1000) has tighter binding, e.g. q, r; s ≡ (q , r) ; s

Enclose each disjunction in parentheses, align the characters (;)

happy :- % I’m happy if
(workday, % it’s a workday and

good_lecture % I’m at a good lecture;
; hot, swimming % or it’s hot and I’m swimming.
).

Disjunctions are just “syntactic sugar”, they can be easily eliminated:
t(X, Z) :- t(X, Z) :- p(X, Y), aux(Y, Z), v(X, Z).

p(X,Y),
(q(Y,U), r(U,Z) aux(Y, Z) :- q(Y,U), r(U,Z).
; s(Y, Z) =⇒ aux(Y, Z) :- s(Y, Z).
; t(Y), w(Z) aux(Y, Z) :- t(Y), w(Z).
),
v(X, Z).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 89 / 335

Declarative Programming with Prolog Further control constructs

The trace of “happy” with a disjunction

% happy: I’m happy.
happy :- % I’m happy if | ?- happy.

(workday, 1 1 Call: happy ?
% it’s a workday and 2 2 Call: workday ?
good_lecture 2 2 Exit: workday ?
% I’m at a good lecture; 3 2 Call: good_lecture ?

; hot, 3 2 Fail: good_lecture ?
% or it’s hot and 4 2 Call: hot ?
swimming 4 2 Exit: hot ?
% I’m swimming. 5 2 Call: swimming ?

). 5 2 Exit: swimming ?
1 1 Exit: happy ?

workday. yes

swimming.

hot.

good_lecture :- fail.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 90 / 335

Declarative Programming with Prolog Further control constructs

Negation by failure

As a modification of the previous variant of “happy” consider a person
who, on workdays, is happy only if attending a good lecture.
Thus the condition “It isn’t a workday” has to appear in the 2nd disjunct.
This can be achieved using the “\+” construct, called negation by failure:
happy :- % I’m happy if

(workday, % it’s a workday and
good_lecture % I’m attending a good lecture;

; \+ workday, % or it isn’t a workday and
hot, swimming % it’s hot and I’m swimming.

).

The goal “\+ G” is executed by first executing G.
If this fails “\+ G” succeeds, otherwise it fails.
Read “\+” as “not provable”, cf. 6` tilted slightly to the left.
Negation by failure has its limitations, to be discussed soon.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 91 / 335

Declarative Programming with Prolog Further control constructs

Executing the variant of “happy” with negation

As the “\+” construct is not shown in the trace, an auxiliary predicate
not_a_workday is introduced, to make the effect of “\+” visible:
happy :-

(workday, good_lecture
; not_a_workday, hot, swimming
).

| ?- happy.
workday. 1 1 Call: happy ?

2 2 Call: workday ?
swimming. 2 2 Exit: workday ?

3 2 Call: good_lecture ?
hot. 3 2 Fail: good_lecture ?

4 2 Call: not_a_workday ?
% It isn’t a workday. 5 3 Call: workday ?
not_a_workday :- 5 3 Exit: workday ?

\+ workday. 4 2 Fail: not_a_workday ?
1 1 Fail: happy ?

no

Note that predicate workday is called twice (calls number 2 and 5).
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 92 / 335

Declarative Programming with Prolog Further control constructs

The if-then-else construct

When the two branches of a disjunction exclude each other, use the
if-then-else construct (condition -> then-branch ; else-branch):
happy :- happy :-

(workday, (workday ->
good_lecture good_lecture

; \+ workday, =⇒ ;
hot, swimming hot, swimming

).).

The atom -> is a standard operator, of type xfy and priority 1050
The construct (Cond -> Then ; Else) is executed by first executing
Cond. If this succeeds, Then is executed, otherwise Else is executed.
Important: Only the first solution of Cond is used for executing Then. The
remaining solutions are discarded!
Note that (Cond -> Then ; Else) looks like a disjunction, but it is not
The else-branch can be omitted, it defaults to false.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 93 / 335

Declarative Programming with Prolog Further control constructs

The procedure box for if-then-else

happy(P, D) :-
(wd(D) -> gl(P, D)
; hot(D), sw(P, D)
).

wd(D)

Call

Fail

Exit

Redo

happy(P,D)

hot(D)

gl(P,D)

sw(P,D)

The 2nd etc. solutions of wd are not produced (cf. the dangling Redo port
of wd).
With uninstantiated vars in the condition, if-then-else may not work as
expected.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 94 / 335

Declarative Programming with Prolog Further control constructs

The if-then-else construct (contd.)

If-then-else can be transformed to a disjunction with a negation:
(cond -> then (cond, then
; else =⇒ ; \+ cond, else
))

These are equivalent only if cond succeeds at most once.
The if-then-else is more efficient (no choice point left).
Negation can be fully defined using if-then-else

(p -> false
\+ p ≡ ; true

)

The semicolon binds to the right, preferably avoid nested parentheses
when making multiple if-then-else branches:
(cond1 -> then1 (cond1 -> then1
; (cond2 -> then2 ; cond2 -> then2

; ((...)) ≡ ; (...)
)

; else ; else
))

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 95 / 335

Declarative Programming with Prolog Further control constructs

Pitfalls of Negation by Failure – declarative reading

Given some facts find an employer who is not an employee.
% emp(Employer, Employee): Employer employs Employee.
emp(a, b). (f1)
emp(a, c). (f2)
emp(d, a). (f3)

| ?- emp(E, X), \+ emp(Y, E). =⇒ E = d ? ; no (q1)

The meaning of query (q1): (∃X.emp(E, X)) ∧ (¬∃Y.emp(Y, E))

What happens when the two calls are switched?
| ?- \+ emp(Y, E), emp(E, X). =⇒ no { irresp. of the emp/2 facts} (q2)

Prolog first calls G = emp(Y, E). Since both arguments are unbound, this
succeeds if there is at least one emp/2 fact. =⇒ \+G fails.
Thus the meaning of query (q2): (¬∃Y, E.emp(Y, E)) ∧ (∃X.emp(E, X))

The meaning of \+G depends on which variables of G are unbound!
In general: the meaning of \+ G: ¬∃X1, . . . XnG ,
where Xi are the unbound variables in G at the time of invocation.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 96 / 335

Declarative Programming with Prolog Further control constructs

Pitfalls of Negation by Failure – open and closed worlds

Mathematical logic uses the open world assumption (OWA)
A statement S follows from a set of statements SS (premises),
if S holds in any world (interpretation) that satisfies SS.
¬ emp(_, d) is not a logical consequence of the facts (f1)–(f3).
(But, one can still deduce ¬ emp(_, d) using a rule:
Those receiving unemployment benefit are not employed by anyone)

Negation in database queries (and \+ in Prolog) uses closed world
assumption (CWA)

a single world is considered
in which the given facts, and only these are true
when something cannot be proved, it is considered false

Classical logic with OWA is monotonic:
the more you know, the more you can deduce

Negation by failure (CWA) is non-monotonic:
Add the fact “emp(b, d).” to (f1)–(f3) and query (q1) will fail

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 97 / 335

Declarative Programming with Prolog Further control constructs

Pitfalls of if-then-else

Can a predicate involving if-then-else be used in multiple I/O modes?
happy(P, D) :- (workday(D) -> good_lecture(P, D)

; hot(D), swimming(P, D)
).

It can be used in mode happy(?, +), but not in mode happy(?, -)

Reason: workday(-D) will bind D to the first workday only! Workarounds:
happy1(P, D) :- day(D), % ≡ member(D, [mon,...,sun])

happy(P, D).

happy2(P, D) :- (workday(D), good_lecture(P, D)
; weekend_day(D), % ≡ member(D, [sat,sun])

hot(D), swimming(P, D)
).

Don’t use unbound vars in IF conditions unless for expressing “there is”:
employer(E) :- % E is an employer if

(emp(E, _X) -> true). % there is an _X such that emp(E, _X)

For facts (f1)–(f3) employer(a) succeeds once, while emp(a,_) twice!
The control BIP once/1 does exactly this: employer(E) :- once(emp(E,_)).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 98 / 335

Declarative Programming with Prolog Further control constructs

The cut – the BIP underlying if-then-else and negation

The cut, denoted by ! is a BIP with no arguments, i.e. its functor is !/0.
happy(P, D) :- workday(D), !, good_lecture(P, D). (1)
happy(P, D) :- hot(D), swimming(P, D). (2)
Execution: succeeds unconditionally, but has the following side effects:

Restrict to first solution:
Remove all choice points created within the goals preceding the cut.
Commit to clause:
Remove the choice of any further clauses in the current predicate.

Definition: if q :- ..., p, then
the parent goal of p is the goal matching the clause head q
Effects of cut in the goal reduction model: removes all choice points up to
and including the node labelled with the query parent goal of the cut, . . .
In the procedure box model: Fail port of cut =⇒ Fail port of parent.
The behaviour is identical to the following if-then-else:
happy(P, D) :- (workday(D) -> good_lecture(P, D)

; hot(D), swimming(P, D)
).

In fact, SICStus transforms this to the predicate (1)–(2) above
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 99 / 335

Declarative Programming with Prolog Further control constructs

Choicepoints removed by the cut – pruning the search tree

% example without cut
q(X):- s(X).
q(X):- t(X).

s(a). s(b). t(c).

% same example with cut
r(X):- s(X), !.
r(X):- t(X).

% executing the example without cut
:- q(X), write(X), fail.

---> abc
% executing the example with cut
:- r(X), write(X), fail.

---> a

��h
hh

H
HH
�

��

,
,
,

,
,
,,

............

.........................

r(X)

t(X)
s(X),!

X=a
X=b

X=c
!

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 100 / 335

Declarative Programming with Prolog Further control constructs

Variants of cut

An example: firstp(+L, -FP): FP is the first positive element in list L
The computer scientist’s solution:
firstp_green([X|_], X) :- X > 0, !. (1)
firstp_green([X|L], FP) :- X =< 0, firstp_green(L, FP). (2)

The Prolog hacker’s (relies on the enumeration order of member/2):
firstp_hacker(L, FP) :- member(FP, L), FP > 0, !. (3)

The green cut: we know that there are no solutions, but the Prolog
implementation does not – semantically “harmless”.

X > 0 ≡ ¬ X =< 0, but Prolog does not “know” this
When a green cut is removed the set of solutions stays the same,
but the program may become less (space and time)-efficient

The red cut: we throw away solutions on purpose.
In (3) we throw away all solutions but the first
Also, a green cut may become red when an “unnecessary” condition,
such as X =< 0, is removed
When a red cut is removed, the set of solutions changes.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 101 / 335

Declarative Programming with Prolog Further control constructs

The dangers of using the cut – the base rule

Consider fp0 with the “unnecessary” X=<0 , and fp1 without it:
fp0([X|_], X) :- X > 0, !. fp1([X|_], X) :- X > 0, !. (1)
fp0([X|L], Y) :- X=<0, fp0(L, Y). fp1([X|L], Y) :- fp1(L, Y). (2)
In mode (+,-), fp0 and fp1 behave the same way. But:
| ?- Z = 2, fp0([1,2], Z). =⇒ no
| ?- Z = 2, fp1([1,2], Z). =⇒ yes % (1) does not match,

% (2) =⇒ fp1([2],2)
| ?- fp1([1,2], Z), Z = 2. =⇒ no % fp1 is not steadfast
Definition: p(+,?) is steadfast iff
“p(foo, X), X = bar” is equivalent to “X = bar, p(foo, X)”
Rewrite (1) to notice that output arg. unification is part of the condition:
fp1([X|_], Y) :- Y = X, X > 0, !. (1*)
The base rule of cut: unify output arguments after the cut!
Steadfast version, which observes the base rule and is faster:

fp3([X|L], Y) :-
fp2([X|_], Y) :- X > 0, !, Y = X. (X > 0 -> Y = X
fp2([_|L], Y) :- /*X=<0*/, fp2(L, Y). ; /*X=<0*/, fp3(L, Y))

)
If in doubt, use if-then-else instead of cut.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 102 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 103 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Built-in predicates – batch 1

Meta-predicates
term classification: var(X), number(X), . . .
composition and decomposition of compound terms:
a compound⇔ name + arguments
composition and decomposition of atoms and numbers:
an atom or a number⇔ list of characters
universal term comparison: comparing arbitrary Prolog terms

All-solutions predicates:
finding all solutions of a goal
Dynamic predicates:
adding and removing program clauses
from within a running Prolog program

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 104 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Classification of terms

Classification BIPs⇔ nodes of the Prolog term hierarchy (recap)

XXXX

!!! aaa

!!! HH

�� aaa

��

Term

float

var nonvar

atomic compound

number atom

integer

var(X) X is a variable
nonvar(X) X is not a variable
atomic(X) X is a constant (atom or number)
compound(X) X is a compound
number(X) X is a number
atom(X) X is an atom
float(X) X is a floating point number
integer(X) X is an integer

Some further SICStus-specific (non-standard) classification predicates:
simple(X): X is a non-compound term (i.e., constant or variable);
ground(X): X is ground, i.e. contains no unbound variables

All the above BIPs test the current state of the argument
E.g. number(X) checks that X is currently a number, rather than
imposing a constraint that X has to be a number.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 105 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Building and decomposing compounds: the univ predicate

BIP =.. /2 (pronounce univ) is a standard op. (xfx, 700; just as =, . . .)
Term =.. List holds if

Term = Fun(A1, ..., An) and List = [Fun,A1,... An],
where Fun is an atom and A1,... An are arbitrary terms; or
Term = C and List = [C], where C is a constant.
(Constants are viewed as compounds with 0 arguments.)

X = F(A1, ..., An) =⇒ syntax error, use X =.. [F,A1,...,An] instead
Call patterns for univ:

+Term =.. ?List – decomposing Term

-Term =.. +List – constructing Term
Examples
| ?- edge(a,b,10) =.. L. =⇒ L = [edge,a,b,10]
| ?- Term =.. [edge,a,b,10]. =⇒ Term = edge(a,b,10)
| ?- apple =.. L. =⇒ L = [apple]
| ?- Term =.. [1234]. =⇒ Term = 1234
| ?- Term =.. L. =⇒ error
| ?- f(a,g(10,20)) =.. L. =⇒ L = [f,a,g(10,20)]
| ?- Term =.. [/,X,2+X]. =⇒ Term = X/(2+X)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 106 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Building and decomposing compound structures: functor/3

functor(Term, Name, Arity):
Term has the name Name and arity Arity, i.e.
Term has the functor Name/Arity.

(A constant C is considered to have the name C and arity 0.)
Call patterns:
functor(+Term, ?Name, ?Arity) – decompose Term
functor(-Term, +Name, +Arity) – construct a most general Term (*)
If Term is output (*), it is unified with the most general term with the
given name and arity (with distinct new variables as arguments)

Examples:
| ?- functor(edge(a,b,1), F, N). =⇒ F = edge, N = 3
| ?- functor(E, edge, 3). =⇒ E = edge(_A,_B,_C)
| ?- functor(apple, F, N). =⇒ F = apple, N = 0
| ?- functor(Term, 122, 0). =⇒ Term = 122
| ?- functor(Term, edge, N). =⇒ error
| ?- functor(Term, 122, 1). =⇒ error
| ?- functor([1,2,3], F, N). =⇒ F = ’.’, N = 2
| ?- functor(Term, ., 2). =⇒ Term = [_A|_B]

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 107 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Building and decomposing compounds: arg/3

arg(N, Compound, A): the Nth argument of Compound is A

Call pattern: arg(+N, +Compound, ?A)
Execution: The Nth argument of Compound is unified with A.
If Compound has less than N arguments, or N = 0, arg/3 fails
Thus arg/3 can also be used for instantiating a variable argument of
the structure (as in the second example below).

Examples:
| ?- arg(3, edge(a, b, 23), Arg). =⇒ Arg = 23
| ?- T=edge(_,_,_), arg(1, T, a),

arg(2, T, b), arg(3, T, 23). =⇒ T = edge(a,b,23)
| ?- arg(1, [1,2,3], A). =⇒ A = 1
| ?- arg(2, [1,2,3], B). =⇒ B = [2,3]

Predicate univ can be implemented using functor and arg, and vice
versa, for example:
Term =.. [F,A1,A2] ⇐⇒ functor(Term, F, 2),

arg(1, Term, A1), arg(2, Term, A2)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 108 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Using univ for simplifying an earlier example

Polynomials: built from numbers and the atom ‘x’, using ops ‘+’ and ‘*’
Calculate the value of a polynomial for a given substitution of x
% value_of(Poly, X, V): Poly has the value V, if x=X
value_of(x, X, V) :- value_of1(x, X, V) :-

V = X. V = X.
value_of(Poly, _, V) :- value_of1(Poly, _, V) :-

number(Poly), V = Poly. number(Poly), V = Poly.
value_of(P1+P2, X, V) :-

value_of(P1, X, V1),
value_of(P2, X, V2),
V is V1+V2.

value_of(Poly, X, V) :- value_of1(Poly, X, V) :-
Poly = P1*P2, Poly =.. [Func,P1,P2],
value_of(P1, X, V1), value_of1(P1, X, V1),
value_of(P2, X, V2), value_of1(P2, X, V2),
VPoly = V1*V2, VPoly =.. [Func,V1,V2],
V is VPoly. V is VPoly.

Predicate value_of1 works for all binary functions supported by is/2.
| ?- value_of1(exp(100,min(x,1/x)), 2, V). −→ V = 10.0 ? ; no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 109 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Using univ for finding subexpressions (ADVANCED)

Given a term T0 with a (not necessarily proper) subterm Tn at depth n, the
position of Tn within T0 is described by a selector [I1,...,In] (n ≥ 0):
select_subterm(T0, [I1,...,In], Tn) :-

arg(I1, T0, T1), arg(I2, T1, T2), ..., arg(In, Tn−1, Tn).
E.g. within term a*b+f(1,2,3)/c, [1,2] selects b, [2,1,3] selects 3.
Given a term, enumerate number subterms and their selectors.
% number_subterm(?Term, ?N, ?Sel):
% N is a number which occurs as a subterm in Term at position Sel.
number_subterm(X, N, Sel) :-

number(X), !, N = X, Sel = [].
number_subterm(X, N, [I|Sel]) :-

compound(X), % it is important to exclude variables!
X =.. [_|L],
nth1(I, L, Y), % The Ith element of list L is Y.

% If L is proper, finitely enumerates I and Y.
% Defined in library(lists).

number_subterm(Y, N, Sel).

| ?- number_subterm(f(1,[b,2]), N, S). =⇒ S= [1], N= 1 ? ;
=⇒ S= [2,2,1], N= 2 ? ; no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 110 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Decomposing and building atoms

atom_codes(Atom, Cs): Cs is the list of character codes comprising Atom.
Call patterns: atom_codes(+Atom, ?Cs)

atom_codes(-Atom, +Cs)
Execution:

If Cs is a proper list of character codes then Atom is unified with
the atom composed of the given characters
Otherwise Atom has to be an atom, and Cs is unified with the list
of character codes comprising Atom

atom_chars(Atom, Chs): Chs is the list of characters (single character
atoms) comprising Atom.
Examples:
| ?- atom_codes(ab, Cs). =⇒ Cs = [97,98]
| ?- atom_chars(ab, Cs). =⇒ Cs = [a,b]
| ?- atom_codes(ab, [0’a|L]). =⇒ L = [98]
| ?- Cs="bc", atom_codes(Atom, Cs). =⇒ Cs = [98,99], Atom = bc
| ?- atom_codes(Atom, [0’a|L]). =⇒ error

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 111 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Decomposing and building numbers

number_codes(Number, Cs): Cs is the list of character codes of Number.
Call patterns: number_codes(+Number, ?Cs)

number_codes(-Number, +Cs)
Execution:

If Cs is a proper list of character codes which is a number
according to Prolog syntax, then Number is unified with the
number composed of the given characters
Otherwise Number has to be a number, and Cs is unified with the
list of character codes comprising Number

number_chars(Number, Chs): Chs is the list of characters comprising Number.
Examples:
| ?- number_codes(12, Cs). =⇒ Cs = [49,50]
| ?- number_chars(12, Cs). =⇒ Cs = [’1’,’2’]
| ?- number_codes(0123, [0’1|L]). =⇒ L = [50,51]
| ?- number_codes(N, " - 12.0e1"). =⇒ N = -120.0
| ?- number_codes(N, "12e1"). =⇒ error (no decimal point)
| ?- number_codes(120.0, "12e1"). =⇒ no (The first arg. is given :-)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 112 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Ordering all Prolog terms

Each Prolog term belongs to one of the five classes: var, float, integer,
atom, compound (cf. the leaves of the Prolog term hierarchy, page 105)
The relation “precedes” X ≺ Y is defined as follows:

1 If X and Y belong to different classes, then their class determines
the order, as listed above (e.g. all floats ≺ all integers); otherwise

2 If X and Y are variables, then their order is system-dependent
(normally variables are ordered according to their memory address)

3 If X and Y are numbers, then X ≺ Y ⇔ X < Y
4 If X and Y are atoms, then X ≺ Y ⇔ either X is a proper prefix of

Y , or Xi < Yi where i is the index of the first different char, (Ai is the
code of the i th char of A)

5 If both X and Y are compounds:
1 If their arities differ, X ≺ Y ⇔ X ’s arity < Y ’s arity
2 Otherwise (same arity), if their names differ, X ≺ Y ⇔ NX ≺ NY

(NA is the name of the compound A)
3 Otherwise (same name and arity): X ≺ Y ⇔ Xi ≺ Yi where i is

the index of the first non-identical argument, (Ai is the i th
argument of the compound A)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 113 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Built-in predicates for comparing Prolog terms

Comparing two Prolog terms:
Goal holds if
Term1 == Term2 Term1 6≺ Term2 ∧ Term2 6≺ Term1
Term1 \== Term2 Term1 ≺ Term2 ∨ Term2 ≺ Term1
Term1 @< Term2 Term1 ≺ Term2
Term1 @=< Term2 Term2 6≺ Term1
Term1 @> Term2 Term2 ≺ Term1
Term1 @>= Term2 Term1 6≺ Term2

The comparison predicates are not pure:
| ?- X @< 3, X = 4. =⇒ X = 4
| ?- X = 4, X @< 3. =⇒ no

Comparison uses, of course, the canonical representation:
| ?- [1, 2, 3, 4] @< s(1,2,3). =⇒ yes (rule 5.1)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 114 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Equality-like Prolog predicates – a summary

U = V : U unifies with V
No errors.

| ?- X = 1+2. =⇒ X = 1+2
| ?- 3 = 1+2. =⇒ no

U == V : U is identical to V .
No errors, no bindings.

| ?- X == 1+2. =⇒ no
| ?- 3 == 1+2. =⇒ no
| ?- +(1,2)==1+2 =⇒ yes

U =:= V : The value of U is
equal to that of V .
No bindings. Error if U or V is
not a (ground) arithmetic
expression.

| ?- X =:= 1+2. =⇒ error
| ?- 1+2 =:= X. =⇒ error
| ?- 2+1 =:= 1+2.=⇒ yes
| ?- 2.0 =:= 1+1.=⇒ yes

U is V : U is unified with the
value of V .
Error if V is not a (ground)
arithmetic expression.

| ?- 2.0 is 1+1. =⇒ no
| ?- X is 1+2. =⇒ X = 3
| ?- 1+2 is X. =⇒ error
| ?- 3 is 1+2. =⇒ yes
| ?- 1+2 is 1+2. =⇒ no

(U =..V : The “decomposition”
of term U is the list V).

| ?- 1+2 =.. X. =⇒ X = [+,1,2]
| ?- X =.. [f,1].=⇒ X = f(1)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 115 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Nonequality-like Prolog predicates – a summary

Nonequality-like Prolog predicates never bind variables.

U \= V : U does not unify with V .
No errors.

| ?- X \= 1+2. =⇒ no
| ?- +(1,2) \= 1+2. =⇒ no

U \== V : U is not identical to V .
No errors.

| ?- X \== 1+2. =⇒ yes
| ?- 3 \== 1+2. =⇒ yes
| ?- +(1,2)\==1+2 =⇒ no

U =\= V : The values of the
arithmetic expressions U and V
are different.
Error if U or V is not a (ground)
arithmetic expression.

| ?- X =\= 1+2. =⇒ error
| ?- 1+2 =\= X. =⇒ error
| ?- 2+1 =\= 1+2. =⇒ no
| ?- 2.0 =\= 1+1. =⇒ no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 116 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

(Non)equality-like Prolog predicates – examples

Unification Identical terms Arithmetic

U V U = V U \= V U == V U \== V U =:= V U =\= V U is V

1 2 no yes no yes no yes no

a b no yes no yes error error error

1+2 +(1,2) yes no yes no yes no no

1+2 2+1 no yes no yes yes no no

1+2 3 no yes no yes yes no no

3 1+2 no yes no yes yes no yes

X 1+2 X=1+2 no no yes error error X=3

X Y X=Y no no yes error error error

X X yes no yes no error error error

Legend: yes – success; no – failure.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 117 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Finding multiple solutions: enumeration vs. collection

Search problem: find values satisfying certain conditions.
Two approaches to solving search problems in Prolog:

collect solutions – e.g., return a list of all solutions;
enumerate solutions – return one solution at a time,
enumerate all solutions via backtracking

A simple example: find the even members of a list:

Collect solutions:
% even_members(L, Es): Es is the
% list of even members of L.
even_members([], []).
even_members([X|L], Es) :-

X mod 2 =\= 0, !,
even_members(L, Es).

even_members([E|L], [E|Es]) :-
even_members(L, Es).

Enumerate solutions:
% even_member(_L, E): E is an even
% member of the list L.
even_member([X|L], E) :-

X mod 2 =:= 0, E = X.
even_member([_X|L], E) :-

% _X either odd or even,
% continue the enumeration:
even_member(L, E).

% A simpler solution:
even_member2(L, E) :-

member(E, L), E mod 2 =:= 0.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 118 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Collecting and enumerating solutions

Given a “collecting” predicate, write an “enumerating” one:
Use the member/2 built-in predicate, e.g.:
even_member(L, E) :-

even_members(L, Es), member(E, Es).

This is less efficient than directly implementing even_member/2.
Given an “enumerating” predicate, write a “collecting” one:

Not possible with the tools shown so far
A new kind of BIP, an “all-solutions” predicate is needed, e.g.
even_members(L, Es) :-

findall(E, even_member(L, E), Es).
% Es is the list of all solutions, returned in E,
% of the goal even_member(L, E).

All-solutions predicates often help in making the code very compact
(but the result may be less efficient than the code written directly)
even_members(L, Es) :-

findall(E, (member(E, Es), E mod 2 =:= 0), Es).
% { E | member(E, Es), E mod 2 =:= 0} =Es)

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 119 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

The built-in predicate findall(?Templ, :Goal, ?L)

Approximate meaning: L is a list of Templ terms for all solutions of Goal6

Examples7

| ?- findall(X, (member(X, [1,7,8,3,2,4]), X>3), L).
=⇒ L = [7,8,4] ? ; no

| ?- findall(X-Y, (between(1, 3, X), between(1, X, Y)), L).
=⇒ L = [1-1,2-1,2-2,3-1,3-2,3-3] ? ; no

The execution of the BIP findall/3 (procedural semantics);
Interpret term Goal as a goal, and call it
For each solution of Goal:

store a copy of Templ (copy =⇒ replace vars in Templ by new ones)
continue with failure (to enumerate further solutions)

When there are no more solutions (Goal fails)
collect the stored Templ values into a list, unify it with L.

| ?- findall(T, member(T, [A-A,B-B,A]), L). =⇒ L= [_A-_A,_B-_B,_C] ? ; no
6annotation “:” marks a meta argument, i.e. a term to be interpreted as a goal
7Predicate between(+N, +M, ?X) enumerates in X the integers N, N+1, . . . , M.

Defined in library(between).
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 120 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

The built-in predicate findall – further details

Example: collect employees
% emp(R, E): employer R employs employee E.
emp(a,b). emp(a,c). emp(b,c). emp(c,d). emp(b,d).

| ?- findall(E, emp(R, E), Employees). (1)
=⇒ Employees = [b,c,c,d,d] ? ; no

i.e. Employees = {E | ∃ R. (R employs E)}
| ?- R = a, findall(E, emp(R, E), Employees). (2)

=⇒ Employees = [b,c] ? ; no
i.e. Employees = {E | (R employs E)}

| ?- findall(E, emp(R, E), Employees), R = a. (3)
=⇒ Employees = [b,c,c,d,d] ? ; no % findall is not pure

The declarative meaning of findall(?Templ, :Goal, ?List):
List = { a copy of Templ | (∃X . . . Z) Goal is true }
where X, . . . , Z are the free variables in the findall call.
A variable is free in a findall(Templ, Goal, List) call, if it occurs in Goal
but not in Templ. E.g. R is free in the findall goals (1) and (3), but not in
(2).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 121 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

An example illustrating BIP bagof/3

emp(a,b). emp(a,c). emp(b,c). emp(c,d). emp(b,d).

| ?- bagof(E, emp(R, E), L). % L ≡ list of E’s employed by given R.
=⇒ R = a, L = [b,c] ? ;
=⇒ R = b, L = [c,d] ? ;
=⇒ R = c, L = [d] ? ; no

Execution details
Collect the list of free variables: FreeVars = [R], Templ = E,
For each solution store a copy of FreeVars and Templ

FreeVars Templ

[a] b
[a] c
[b] c
[c] d
[b] d

Collect the distinct FreeVars instances: [a], [b], [c]
Enumerate these instances: FreeVars=[R]= [a]; [b]; [c]
For each FreeVars collect Templ values: Employees= [b,c]; [c,d]; [d]

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 122 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

The BIP bagof(?Templ, :Goal, ?L) – semantics

The execution of the BIP (procedural semantics):
Collect the FreeVars list of free variables in the bagof goal
Interpret term Goal as a goal, and call it; for each solution of Goal

store a normalised copy of the pair 〈 FreeVars, Templ 〉
normalisation: rename any vars in FreeVars to X1, . . . , Xn, . . .
(in the order of the first occurrences of the vars)

continue with failure (so as to enumerate further solutions)
When there are no more solutions (i.e. Goal fails)

fail, if there are no stored copies; otherwise
collect the FreeVars instances distinct wrt. ==
enumerate in FreeVars the distinct instances (in some order)
for a given FreeVars instance collect the list of corresponding Templ
values, and unify it with L.

The meaning of the BIP (declarative semantics):
L = {Templ | Goal is true }, L 6= [].

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 123 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

An example illustrating that bagof/3 is the “inverse” of member/2

| ?- bagof(T, member(T, [A-A,B-B,A]), L). =⇒ L=[A-A,B-B,A] ? ; no

Execution details
Collect the list of free variables: FreeVars = [A,B], Templ = T,
For each solution store a normalised copy of FreeVars and Templ

norm. FreeVars Templ

[X1,X2] X1-X1

[X1,X2] X2-X2

[X1,X2] X1

The normalised FreeVars instances are all identical
“Enumerate” the only FreeVars instance:
FreeVars = [A,B] = [X1,X2], i.e. X1 = A, X2 = B

For the single FreeVars collect the Templ values:
L = [X1-X1,X2-X2,X1] = [A-A,B-B,A]

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 124 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

The built-in predicate bagof – explicit quantification

Explicit existential quantification can be added to a bagof call:
| ?- bagof(E, R^emp(R, E), L).

% L≡ list of E’s for which
% there exists an R, such that emp(R, E)

=⇒ L = [b,c,c,d,d] ? ; no

In general explicit quantification takes the following form:
bagof(Templ, V1^...^Vn^ Goal, List)

variables V1, . . . , Vn are existentially quantified,
i.e., not considered free any more.

The declarative semantics of the above goal:
List = { Templ | (∃V1, . . . , Vn)Goal is true } 6= [].

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 125 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Nesting bagof/3

If a bagof call has free variables then it can be nondeterministic
Thus it may make sense to nest bagof calls within each other
% Employer R has C employees.
employee_count(R, C) :-

bagof(E, emp(R, E), Es), length(Es, C).

% The employee-counts list RCL is the list of R-C pairs, where
% R is an employer and C is the number of its employees
employee_counts(RCL) :-

bagof(R-C, employee_count(R, C), RCL).

| ?- employee_counts(RCL).
⇒ RCL = [a-2,b-2,c-1] ? ; no

The helper predicate employee_count can be eliminated:
employee_counts2(RCL) :-

bagof(R-C, Es^(bagof(E, emp(R, E), Es),
length(Es, C)), RCL).

Note the need for the explicit quantification
Also note that the latter predicate is slower, as control structures in
meta-arguments are interpreted and not compiled

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 126 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

The built-in predicate bagof – further details

Further minor differences between bagof/3 and findall/3:
| ?- findall(X, emp(d, X), L). =⇒ L = [] ? ; no
| ?- bagof(X, emp(d, X), L). =⇒ no

Summary: bagof/3 is cleaner than findall/3, but it is less efficient.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 127 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

The built-in predicate setof

setof(?Templ, :Goal, ?List)

The execution of the procedure:
same as: bagof(Templ, Goal, L0), sort(L0, List),
here sort(+L, ?SL) is a built-in predicate which sorts L and
removes duplicates (wrt. ==) and unifies the result with SL

Example for using setof/3:
graph([a-b,a-c,b-c,c-d,b-d]).

% A vertex of Graph is V.
vertex(V, Graph) :- member(A-B, Graph), (V = A ; V = B).

% The set of vertices of G is Vs.
graph_vertices(G, Vs) :- setof(V, vertex(V, G), Vs).

| ?- graph(_G), graph_vertices(_G, Vs). =⇒ Vs = [a,b,c,d] ? ; no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 128 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Dynamic predicates

Dynamic predicates are Prolog predicates, with the following properties
The predicate can be modified during runtime by adding (asserting)
and removing (retracting) clauses
There can be 0 or more clauses of the predicate in the program text
The predicate is interpreted (slower execution)

A dynamic predicate can be created
by placing a directive in the program: :- dynamic(Predicate/Arity).
(preceding any clauses of the predicate in the program text); or
by using a database modification BIP8

Built-in predicates for database modification
Add a clause: asserta/1, assertz/1
Remove a clause (can be nondeterministic): retract/1
Retrieve a clause (can be nondeterministic): clause/2

Adding or removing clauses is permanent, this is not undone at
backtracking.

8The set of program clauses is often called the Prolog database.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 129 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Adding a clause: asserta/1, assertz/1

asserta(:Clause)9

the term Clause is interpreted as a clause, it has to be sufficiently
instantiated for its functor P/N to be to determined
If pred. P/N exists, it has to be dynamic, if not, it is made dynamic
a copy of Clause is added to pred. P/N as the first clause

By copying we mean systematically replacing variables with new ones.
assertz(:Clause)

Same as asserta, but Clause is added as the last clause
Most Prolog systems support the non-standard BIP assert/1, which adds
a clause in an arbitrary position in the predicate (mostly ≡ assertz/1)
Examples:

| ?- assertz((p(1,X):-q(X))), asserta(p(2,0)), p(2, 0).
assertz((p(2,Z):-r(Z))), listing(p). =⇒ p(1, A) :- q(A).

p(2, A) :- r(A).

| ?- assertz(s(X,X)), s(U,V), U == V, X \== U. =⇒ V = U ? ; no

9Recall that the : character indicates that the argument is a meta-argument.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 130 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Removing a clause: retract/1

retract(:Clause) where Clause viewed as a clause is sufficiently
instantiated so that its functor P/N can be determined:

looks up a clause of pred. P/N which unifies with Clause;
if found (and unified), removes the clause from the program;
on backtracking keeps looking up and removing further clauses

Example (continued from the previous slide):
| ?- listing(p), retract((p(2,X):-B)),

assertz((s(3,X):-B)), listing(p), listing(s), fail. =⇒ no

The output
p(2, 0).
p(1, A) :-

q(A).
p(2, A) :-

r(A).

p(1, A) :-
q(A).

p(2, A) :-
r(A).

s(3, 0).

p(1, A) :-
q(A).

s(3, 0).
s(3, A) :-

r(A).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 131 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

An example – a simplified findall

Predicate findall1/3 implements the BIP findall/3, except for
not supporting nested invocations

:- dynamic(solution/1).

% findall1(T, Goal, L):
% L is the list of copies of T, for each solution of Goal
findall1(T, Goal, _L) :-

call(Goal),
asserta(solution(T)), % solutions stored in reverse order!
fail.

findall1(_Templ, _Goal, L) :-
solution_list([], L).

% solution_list(L0, L): L = rev(list of retracted solutions) ⊕ L0
solution_list(L0, L) :-

retract(solution(S)), !,
solution_list([S|L0], L).

solution_list(L, L).

| ?- findall1(Y, (member(X, [1,2,3]),Y is X*X), SL). =⇒ SL = [1,4,9]

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 132 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

Retrieving a clause: clause/2

clause(:Head, ?Body) where Head is instantiated sufficiently so that its
functor P/N can be determined

looks up a clause of pred. P/N which unifies with (Head :- Body)10

if found exits with success (having performed the unification);
on backtracking keeps looking up further clauses

Example (continued from previous slides)
:- listing(p), clause(p(2, 0), Body).

p(2, 0).
p(1, A) :-

q(A).
p(2, A) :-

r(A).

=⇒ Body = true ? ;
=⇒ Body = r(0) ? ;
=⇒ no

10For facts. Body = true is assumed.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 133 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

An example with the BIP clause: wallpaper tracing

An interpreter for tracing pure Prolog programs, with no BIPs.

% interp(G, D): Interprets and traces goal G with an indentation D.
interp(true, _) :- !.
interp((G1, G2), D) :- !,

interp(G1, D), interp(G2, D).
interp(G, D) :-

(trace(G, D, call)
; trace(G, D, fail), fail % shows the fail port, keeps backtracking
),
D2 is D+2,
clause(G, B), interp(B, D2),
(trace(G, D, exit)
; trace(G, D, redo), fail % shows the redo port, keeps backtracking
).

% Traces goal G at port Port with indentation D.
trace(G, D, Port) :-

/* Writing out D spaces:*/ format(’~|~t~*+’, [D]),
write(Port), write(’: ’), write(G), nl.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 134 / 335

Declarative Programming with Prolog BIPs 1 – meta-preds, all solutions, dynamic preds

A sample run of the wallpaper trace interpreter

:- dynamic app/3,app/4. % (*)

app([], L, L).
app([X|L1], L2, [X|L3]) :-

app(L1, L2, L3).

app(L1, L2, L3, L123) :-
app(L1, L23, L123),
app(L2, L3, L23).

Assuming that above
text is stored in file, say,
app34.pl, line (*)
becomes unnecessary if
the file is loaded by

| ?- load_files(app34,
compilation_mode(

assert_all)).

| ?- interp(app(_,[b,c],L,[c,b,c,b]), 0).
call: app(_203,[b,c],_253,[c,b,c,b])
call: app(_203,_666,[c,b,c,b])
exit: app([],[c,b,c,b],[c,b,c,b])
call: app([b,c],_253,[c,b,c,b])
fail: app([b,c],_253,[c,b,c,b])
redo: app([],[c,b,c,b],[c,b,c,b])
call: app(_873,_666,[b,c,b])
exit: app([],[b,c,b],[b,c,b])

exit: app([c],[b,c,b],[c,b,c,b])
call: app([b,c],_253,[b,c,b])
call: app([c],_253,[c,b])
call: app([],_253,[b])
exit: app([],[b],[b])

exit: app([c],[b],[c,b])
exit: app([b,c],[b],[b,c,b])

exit: app([c],[b,c],[b],[c,b,c,b])
L = [b] ?

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 135 / 335

Declarative Programming with Prolog BIPs 2 – higher order programming, loops, modules

Contents

1 Declarative Programming with Prolog
Declarative and imperative programming
Propositional Prolog
Prolog with Simple Data Structures
Compound Data Structures in Prolog
Lists
Prolog implementation – a brief overview
Prolog execution – definitions
Prolog syntax
Syntactic sugar: operators
Further control constructs
BIPs 1 – meta-preds, all solutions, dynamic preds
BIPs 2 – higher order programming, loops, modules
Efficient programming in Prolog

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 136 / 335

Declarative Programming with Prolog BIPs 2 – higher order programming, loops, modules

Higher order predicates

A higher order predicate (or meta-predicate) is a predicate with an
argument which is interpreted as a goal, or a partial goal

e.g., findall/3 is a meta-predicate, as its second argument is a goal
A partial goal is a goal with some (usually the last n) arguments missing

e.g., a predicate name is a partial goal
Example: filter(L, Pred, FL): List FL contains those elements of L
which satisfy Pred, where Pred is the name of a unary predicate
filter0(L, Pred, FL) :-

Goal =.. [Pred,X], findall(X, (member(X,L), Goal), FL).

even(X) :- X mod 2 =:= 0.

| ?- filter0([1,3,2,5,4,0], even, FL). =⇒ FL = [2,4,0] ; no.

A less compact, but more efficient variant:
filter1([], _Pred, []).
filter1([X|L], Pred, FL) :-

Goal =.. [Pred,X],
(call(Goal) -> FL = [X|FL1], filter1(L, Pred, FL1)
; filter1(L, Pred, FL)
).

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 137 / 335

Declarative Programming with Prolog BIPs 2 – higher order programming, loops, modules

Calling predicates with additional arguments

Definition: a callable term is a compound or atom.
Built-in predicate group call/N

call(Goal): invokes Goal, where Goal is a callable term
call(PG, A): Adds A as the last argument to PG, and invokes it.
call(PG, A, B): Adds A and B as the last two args to PG, invokes it.
call(PG, A1, ..., An): Adds A1, . . . , An as the last n arguments to PG,
and invokes the goal so obtained.

PG is a partial goal, to be extended with additional arguments before
calling. It has to be a callable term.
Implementing filter using call/2

filter([], _PG, []).
filter([X|L], PG, FL) :- (call(PG, X) -> FL = [X|FL1]

; FL = FL1
), filter(L, PG, FL1).

less(N, X) :- X < N.

| ?- filter([2,3,4,5,1,7], less(3), FL). =⇒ FL = [2,1] ? ; no
| ?- filter([2,3,4,5,1,7], =<(4), FL). =⇒ FL = [4,5,7] ? ; no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 138 / 335

Declarative Programming with Prolog BIPs 2 – higher order programming, loops, modules

Another useful higher order predicate: map/3

map(L, PG, ML): List ML contains elements Y obtained by calling PG(X,Y)
for each X element of list L, where PG is a partial goal to be expanded with
two arguments
Variants:
map0(L, PG, ML) :- % PG has to be an atom

Goal =.. [PG,X,Y], findall(Y, (member(X,L), Goal), ML).

map1(L, PG, ML) :- % PG can be a callable term
findall(Y, (member(X,L), call(PG, X, Y)), ML).

map([], _, []).
map([X|L], PG, [Y|ML]) :- % PG can be a callable term

call(PG, X, Y),
map(L, PG, ML).

square(X, Y) :- Y is X*X.

mult(N, X, NX) :- NX is N*X.

| ?- map0([1,2,3,4], square, L). =⇒ L = [1,4,9,16] ? ; no
| ?- map1([1,2,3,4], mult(2), L). =⇒ L = [2,4,6,8] ? ; no
| ?- map([1,2,3,4], mult(-5), L). =⇒ L = [-5,-10,-15,-20] ? ; no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 139 / 335

Declarative Programming with Prolog BIPs 2 – higher order programming, loops, modules

Do-loops

The main advantage of higher order predicates is that one can avoid
writing auxiliary predicates.
Another, even more efficient approach is to use do-loops.

Implementing map(L, square, ML) using a do-loop:
(foreach(X, L), foreach(Y, ML) do Y is X*X)
Implementing map(L, mult(N), ML) using a do-loop:
(foreach(X, L), foreach(Y, ML), param(N) do Y is N*X)

Examples of further iterators:

| ?- (for(I,1,5), foreach(I,List) do true).
=⇒ List = [1,2,3,4,5] ? ; no

| ?- (foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X).
=⇒ Sum = 6 ? ; no

| ?- (foreach(X,[a,b,c,d]), count(I,1,N), foreach(I-X,Pairs) do true).
=⇒ N = 4, Pairs = [1-a,2-b,3-c,4-d] ? ; no

| ?- (foreacharg(A,f(a,b,c,d,e),I), foreach(I-A,List) do true).
=⇒ List = [1-a,2-b,3-c,4-d,5-e] ? ; no

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 140 / 335

Declarative Programming with Prolog BIPs 2 – higher order programming, loops, modules

Principles of the SICStus Prolog module system

Each module should be placed in a separate file
A module directive should be placed at the beginning of the file:

:- module(ModuleName, [ExportedFunc1, ExportedFunc2, ...]).
ExportedFunci – the functor (Name/Arity) of an exported predicate
Example
:- module(drawing_lines, [draw/2]). % line 1 of file draw.pl
Built-in predicates for loading module files:

use_module(FileName)
use_module(FileName, [ImportedFunc1,ImportedFunc2,...])

ImportedFunci – the functor of an imported predicate
FileName – an atom (with the default file extension .pl);
or a special compound, such as library(LibraryName)

Examples:
:- use_module(draw). % load the above module
:- use_module(library(lists), [last/2]). % only import last/2
Goals can be module qualified: Mod:Goal runs Goal in module Mod
Modules do not hide the non-exported predicates, these can be called
from outside if the module qualified form is used

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 141 / 335

Declarative Programming with Prolog BIPs 2 – higher order programming, loops, modules

Meta predicates and modules

Predicate arguments in imported predicates may cause problems:

File module1.pl:
:- module(module1, [double/1]).

% (1)

double(X) :-
X, X.

p :- write(go).

File module2.pl:
:- module(module2, [q1/0,q2/0,r/0]).
:- use_module(module1).

q1 :- double(module1:p).

q2 :- double(module2:p).

r :- double(p). (2)

p :- write(ga).

Load file module2.pl, e,g, by | ?- [module2]., and run some goals:
| ?- q1. =⇒ gogo
| ?- q2. =⇒ gaga
| ?- r. =⇒ gogo :-(counterintuitive
Solution: Tell Prolog that double has a meta-arg. by adding at (1) this:
:- meta_predicate double(:).
This causes (2) to be replaced by ‘r :- double(module2:p).’ at load time,
making predicates r and q2 identical.

Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 142 / 335

Declarative Programming with Prolog BIPs 2 – higher order programming, loops, modules

Meta predicate declarations, module name expansion

Syntax of meta predicate declarations
:- meta_predicate 〈 pred. name 〉(〈 modespec1 〉, ..., 〈 modespecn 〉),

〈 modespeci 〉 can be ‘:’, ‘+’, ‘-’, or ‘?’.
Mode spec ‘:’ indicates that the given argument is a meta-argument

In all subsequent invocations of the given predicate the given arg. is
replaced by its module name expanded form, at load time

Other mode specs just document modes of non-meta arguments.
The module name expanded form of a term Term is:

Term itself, if Term is of the form M:X or it is a variable which occurs in
the clause head in a meta argument position; otherwise
SMod:Term, where SMod is the current source module (user by default)

Example, ctd. (double in module1_m is declared a meta predicate)
:- module(module3, [quadruple/1,r/0]).
:- use_module(module1_m). % the loaded form:
r :- double(p). =⇒ r :- double(module3:p).11

:- meta_predicate quadruple(:).
quadruple(X) :- double(X), double(X). =⇒ unchanged11

11The imported goal double gets a prefix “module1:”, not shown here, to save space.
Declarative Programming with Prolog (Part I) Semantic and Declarative Technologies 2012 Spring Semester 143 / 335

