Disjunctions - "happy" example

- Disjunctions (i.e. subgoals separated by "or") can appear as goals
- A disjunction is denoted by semicolon (";"), an xfy op. of priority 1100
- Comma (priority 1000) has tighter binding, e.g. q, r; s \equiv (q , r) ; s
- Enclose each disjunction in parentheses, align the characters (;)

happy $:-$	
(workday,
	good_lecture
$;$	hot, swimming
).	

\% I'm happy if
\% it's a workday and
\% I'm at a good lecture;
\% or it's hot and I'm swimming.

- Disjunctions are just "syntactic sugar", they can be easily eliminated:

```
t(X, Z) :-
p(X,Y),
    ( q(Y,U),r(U,Z)
    ; s(Y, Z) \Longrightarrow aux(Y, Z) :- s(Y, Z).
    ; t(Y), w(Z)
),
v(X, Z).
t(X,Z) :- p(X,Y), aux (Y, Z), v(X, Z).
    t(Y), w(Z)
    aux(Y, Z) :- t(Y), w(Z).
```


The trace of "happy" with a disjunction

```
% happy: I'm happy.
happy :- % I'm happy if | ?- happy.
    ( workday,
        % it's a workday and
        good_lecture
        % I'm at a good lecture;
    hot,
    % or it's hot and
    swimming
    % I'm swimming.
    ).
workday.
swimming.
hot.
good_lecture :- fail.
```

```
    1 1 Call: happy ?
```

 1 1 Call: happy ?
 2 2 Call: workday ?
 2 2 Call: workday ?
 2 2 Exit: workday ?
 2 2 Exit: workday ?
 3 2 Call: good_lecture ?
 3 2 Call: good_lecture ?
 3 2 Fail: good_lecture ?
 3 2 Fail: good_lecture ?
 4 Call: hot ?
 4 Call: hot ?
 4 2 Exit: hot ?
 4 2 Exit: hot ?
 5 2 Call: swimming ?
 5 2 Call: swimming ?
 5 2 Exit: swimming ?
 5 2 Exit: swimming ?
 1 1 Exit: happy ?
 1 1 Exit: happy ?
 yes
    ```
        yes
```


Negation by failure

- As a modification of the previous variant of "happy" consider a person who, on workdays, is happy only if attending a good lecture.
- Thus the condition "It isn't a workday" has to appear in the $2^{\text {nd }}$ disjunct.
- This can be achieved using the " $\backslash+$ " construct, called negation by failure:

```
happy :- % I'm happy if
    ( workday, % it's a workday and
    good_lecture % I'm attending a good lecture;
    ; \+ workday, % or it isn't a workday and
    hot, swimming % it's hot and I'm swimming.
    ).
```

- The goal " $\backslash+$ G" is executed by first executing G. If this fails " $\backslash+G$ " succeeds, otherwise it fails.
- Read " $\backslash+$ " as "not provable", cf. \vdash tilted slightly to the left.
- Negation by failure has its limitations, to be discussed soon.

Executing the variant of "happy" with negation

- As the " $\+$ " construct is not shown in the trace, an auxiliary predicate not_a_workday is introduced, to make the effect of "l+" visible:

```
happy :-
    ( workday, good_lecture
    ; not_a_workday, hot, swimming
    ).
```

workday.
swimming. 2
3
hot. 3
4
\% It isn't a workday. 5
not_a_workday :- 5
\+ workday. 4
$1 \quad 1$ Fail: happy ?
no

- Note that predicate workday is called twice (calls number 2 and 5).

The if-then-else construct

- When the two branches of a disjunction exclude each other, use the

```
    if-then-else construct ( condition -> then-branch ; else-branch ):
    happy :-
        good_lecture
    ; \+ workday, \Longrightarrow
        hot, swimming hot, swimming
    ).
```

```
happy :-
```

happy :-
good_lecture
good_lecture
).

```
    ).
```

- The atom -> is a standard operator, of type xfy and priority 1050
- The construct (Cond -> Then ; Else) is executed by first executing Cond. If this succeeds, Then is executed, otherwise Else is executed. Important: Only the first solution of Cond is used for executing Then. The remaining solutions are discarded!
- Note that (Cond -> Then ; Else) looks like a disjunction, but it is not
- The else-branch can be omitted, it defaults to false.

The procedure box for if-then-else

```
happy(P, D) :-
```

(wd (D) -> gl(P, D)
; $\operatorname{hot}(D), \operatorname{sw}(P, D)$
).

- The 2nd etc. solutions of wd are not produced (cf. the dangling Redo port of wd).
- With uninstantiated vars in the condition, if-then-else may not work as expected.

The if-then-else construct (contd.)

- If-then-else can be transformed to a disjunction with a negation:

These are equivalent only if cond succeeds at most once.
The if-then-else is more efficient (no choice point left).

- Negation can be fully defined using if-then-else

$$
\+\mathrm{p} \quad \equiv \quad ; \quad \text { true }
$$

- The semicolon binds to the right, preferably avoid nested parentheses when making multiple if-then-else branches:

```
( cond1 -> then1
; ( cond2 -> then2
; ( (...) ) = ; (...)
; else ; else
)
```

```
; cond2 -> then2
```

; cond2 -> then2

```
( cond1 -> then1
```

```
( cond1 -> then1
```


Pitfalls of Negation by Failure - declarative reading

- Given some facts find an employer who is not an employee. \% emp(Employer, Employee): Employer employs Employee.

$$
\begin{equation*}
\operatorname{emp}(\mathrm{a}, \mathrm{~b}) . \tag{f1}
\end{equation*}
$$

$\operatorname{emp}(a, c)$.
$\operatorname{emp}(d, a)$.
| ?- $\operatorname{emp}(E, X), \+\operatorname{emp}(Y, E) . \Longrightarrow E=d$? ; no

- The meaning of query (q1): $(\exists X . \operatorname{mp}(E, X)) \wedge(\neg \exists Y . \operatorname{emp}(Y, E))$
- What happens when the two calls are switched?
| ?- $\backslash+\operatorname{emp}(Y, E), \operatorname{emp}(E, X) . \Longrightarrow$ no $\{$ irresp. of the emp/2 facts\} (q2)
- Prolog first calls $G=\operatorname{emp}(Y, E)$. Since both arguments are unbound, this succeeds if there is at least one emp/2 fact. $\Longrightarrow \backslash+G$ fails.
- Thus the meaning of query (q2): ($\neg \exists \mathrm{Y}, \mathrm{E} . \operatorname{emp}(\mathrm{Y}, \mathrm{E})) \wedge(\exists \mathrm{X} . \operatorname{emp}(\mathrm{E}, \mathrm{X}))$
- The meaning of $\backslash+G$ depends on which variables of G are unbound!
- In general: the meaning of $\backslash+G$: $\neg \exists X_{1}, \ldots X_{n} G$, where X_{i} are the unbound variables in G at the time of invocation.

Pitfalls of Negation by Failure - open and closed worlds

- Mathematical logic uses the open world assumption (OWA)
- A statement S follows from a set of statements $S S$ (premises), if S holds in any world (interpretation) that satisfies SS.
- $\neg \operatorname{emp}\left(_\right.$, d) is not a logical consequence of the facts (f1)-(f3).
- (But, one can still deduce $\neg \operatorname{emp}\left(_,\right.$d) using a rule:

Those receiving unemployment benefit are not employed by anyone)

- Negation in database queries (and $\backslash+$ in Prolog) uses closed world assumption (CWA)
- a single world is considered
in which the given facts, and only these are true
- when something cannot be proved, it is considered false
- Classical logic with OWA is monotonic:
- the more you know, the more you can deduce
- Negation by failure (CWA) is non-monotonic:
- Add the fact "emp(b, d)." to (f1)-(f3) and query (q1) will fail

Pitfalls of if-then-else

- Can a predicate involving if-then-else be used in multiple I/O modes?

```
happy(P, D) :- ( workday(D) -> good_lecture(P, D)
    ; hot(D), swimming(P, D)
    ).
```

- It can be used in mode happy (?, +), but not in mode happy(?, -)
- Reason: workday (-D) will bind D to the first workday only! Workarounds:

```
happy1(P, D) :- day(D), % \equiv member(D, [mon,...,sun])
    happy(P, D).
happy2(P, D) :- ( workday(D), good_lecture(P, D)
    ; weekend_day(D), % \equiv member(D, [sat,sun])
    hot(D), swimming(P, D)
    ).
```

- Don't use unbound vars in IF conditions unless for expressing "there is":

```
employer(E) :- % E is an employer if
    ( emp(E, _X) -> true ). % there is an _X such that emp(E, _X)
```

- For facts (f1)-(f3) employer(a) succeeds once, while emp(a,_) twice!
- The control BIP once/1 does exactly this: employer(E) :- once(emp(E,_)).

The cut - the BIP underlying if-then-else and negation

- The cut, denoted by! is a BIP with no arguments, i.e. its functor is !/0.

```
happy(P, D) :- workday(D), !, good_lecture(P, D).
happy(P, D) :- hot(D), swimming(P, D).
```

- Execution: succeeds unconditionally, but has the following side effects:
- Restrict to first solution:

Remove all choice points created within the goals preceding the cut.

- Commit to clause:

Remove the choice of any further clauses in the current predicate.

- Definition: if q :- ..., p, then the parent goal of p is the goal matching the clause head q
- Effects of cut in the goal reduction model: removes all choice points up to and including the node labelled with the query parent goal of the cut, ...
- In the procedure box model: Fail port of cut \Longrightarrow Fail port of parent.
- The behaviour is identical to the following if-then-else:
happy (P, D) :- (workday (D) -> good_lecture (P, D)
; $\operatorname{hot}(D)$, swimming($P, D)$
).
- In fact, SICStus transforms this to the predicate (1)-(2) above

Choicepoints removed by the cut - pruning the search tree

```
% example without cut
q(X):- s(X).
q(X):- t(X).
s(a). s(b). t(c).
% same example with cut
r(X):- s(X), !.
r(X):- t(X).
% executing the example without cut
:- q(X), write(X), fail.
    ---> abc
% executing the example with cut
:- r(X), write(X), fail.
---> a
```


Variants of cut

- An example: firstp(+L, -FP): FP is the first positive element in list L
- The computer scientist's solution:

```
firstp_green([X|_], X) :- X > 0, !.
firstp_green([X|L], FP) :- X =< 0, firstp_green(L, FP).
```

- The Prolog hacker's (relies on the enumeration order of member/2): firstp_hacker (L, FP) :- member (FP, L) , FP > 0, !.
- The green cut: we know that there are no solutions, but the Prolog implementation does not - semantically "harmless".
- $\mathrm{X}>0 \equiv \neg \mathrm{X}=<0$, but Prolog does not "know" this
- When a green cut is removed the set of solutions stays the same, but the program may become less (space and time)-efficient
- The red cut: we throw away solutions on purpose.
- In (3) we throw away all solutions but the first
- Also, a green cut may become red when an "unnecessary" condition, such as $\mathrm{X}=<0$, is removed
- When a red cut is removed, the set of solutions changes.

The dangers of using the cut - the base rule

- Consider fp0 with the "unnecessary" $\mathrm{x}=<0$, and fp1 without it:
- In mode (+,-), fp0 and fp1 behave the same way. But:

$$
\begin{array}{lll}
\mid ?-Z=2, f p 0([1,2], Z) . & \Longrightarrow \text { no } & \\
\text { | ?- } Z=2, \operatorname{fp} 1([1,2], Z) . & \Longrightarrow \text { yes } \%(1) \text { does not match, } \\
& & \%(2) \xlongequal{\Longrightarrow} \text { fp1([2],2) } \\
\text { | ?- } f p 1([1,2], Z), Z=2 . & \Longrightarrow \text { no } \% \text { fp1 is not steadfast }
\end{array}
$$

- Definition: $\mathrm{p}(+$, ?) is steadfast iff " $\mathrm{p}(\mathrm{f} \circ \mathrm{o}, \mathrm{X}), \mathrm{X}=\mathrm{bar}$ " is equivalent to " $\mathrm{x}=\mathrm{bar}, \mathrm{p}(\mathrm{f} \circ \mathrm{o}, \mathrm{X})$ "
- Rewrite (1) to notice that output arg. unification is part of the condition: fp1([x|_], Y) :- Y = X, X > 0, !.
- The base rule of cut: unify output arguments after the cut!
- Steadfast version, which observes the base rule and is faster:

$$
\mathrm{fp} 2\left(\left[\left.\mathrm{X}\right|_{-}\right], \mathrm{Y}\right):-\mathrm{X}>0,!, \mathrm{Y}=\mathrm{X} .
$$

$$
\text { fp2 }\left(\left[_\mid L\right], Y\right):-/ * X=<0 * /, f p 2(L, Y) .
$$

$$
\begin{aligned}
& \mathrm{fp} 3([\mathrm{X} \mid \mathrm{L}], \mathrm{Y}):- \\
& \quad(\quad \mathrm{X}>0->\mathrm{Y}=\mathrm{X} \\
& \quad ; \quad / * \mathrm{X}=<0 * /, \mathrm{fp} 3(\mathrm{~L}, \mathrm{Y}))
\end{aligned}
$$

- If in doubt, use if-then-else instead of cut.

$$
\begin{align*}
& \text { fp0 ([x|_], X) :- X > 0, !. fp1([X|_], X) :- X > 0, !. } \tag{1}\\
& \text { fpo([X|L], Y) :- X=<0, fp0(L, Y). fp1([X|L], Y) :- fp1(L, Y). } \tag{2}
\end{align*}
$$

Contents

(1) Declarative Programming with Prolog

- Declarative and imperative programming
- Propositional Prolog
- Prolog with Simple Data Structures
- Compound Data Structures in Prolog
- Lists
- Prolog implementation - a brief overview
- Prolog execution - definitions
- Prolog syntax
- Syntactic sugar: operators
- Further control constructs
- BIPs 1 - meta-preds, all solutions, dynamic preds
- BIPs 2 - higher order programming, loops, modules
- Efficient programming in Prolog

Built-in predicates - batch 1

- Meta-predicates
- term classification: $\operatorname{var}(\mathrm{X})$, number (X), ...
- composition and decomposition of compound terms: a compound \Leftrightarrow name + arguments
- composition and decomposition of atoms and numbers: an atom or a number \Leftrightarrow list of characters
- universal term comparison: comparing arbitrary Prolog terms
- All-solutions predicates: finding all solutions of a goal
- Dynamic predicates: adding and removing program clauses from within a running Prolog program

Classification of terms

- Classification BIPs \Leftrightarrow nodes of the Prolog term hierarchy (recap)


```
var(X)
nonvar(X)
atomic(X)
compound(X)
number(X)
atom(X)
float(X)
integer(X)
```

X is a variable X is not a variable X is a constant (atom or number)
X is a compound
X is a number
X is an atom
X is a floating point number
x is an integer

- Some further SICStus-specific (non-standard) classification predicates:
- simple(X): x is a non-compound term (i.e., constant or variable);
- ground (X) : x is ground, i.e. contains no unbound variables
- All the above BIPs test the current state of the argument
- E.g. number (X) checks that x is currently a number, rather than imposing a constraint that x has to be a number.

Building and decomposing compounds: the univ predicate

- BIP =.. /2 (pronounce univ) is a standard op. (xfx, 700; just as $=, \ldots$)
- Term =. . List holds if
- Term $=\operatorname{Fun}\left(A_{1}, \ldots, A_{n}\right)$ and List $=\left[F u n, A_{1}, \ldots A_{n}\right]$, where $F u n$ is an atom and $A_{1}, \ldots \quad A_{n}$ are arbitrary terms; or
- Term $=C$ and List $=[C]$, where C is a constant. (Constants are viewed as compounds with 0 arguments.)
- $\mathrm{X}=\mathrm{F}(\mathrm{A} 1, \ldots, \mathrm{An}) \Longrightarrow$ syntax error, use $\mathrm{X}=. .[\mathrm{F}, \mathrm{A} 1, \ldots, \mathrm{An}]$ instead
- Call patterns for univ:

$$
\begin{aligned}
& \text { - +Term }=\text {. . ?List }- \text { decomposing Term } \\
& \text { - -Term }=\text {. }+ \text { List }- \text { constructing Term }
\end{aligned}
$$

- Examples

```
| ?- edge(a,b,10) =.. L. }\Longrightarrow\quad\textrm{L}=[\mathrm{ [edge,a,b,10]
| ?- Term =.. [edge,a,b,10]. }\Longrightarrow\mathrm{ Term = edge(a,b,10)
| ?- apple =.. L. }\quad\Longrightarrow\quadL=[apple
| ?- Term =.. [1234]. }\Longrightarrow\quad\mathrm{ Term = 1234
| ?- Term =.. L. }\Longrightarrow\mathrm{ error
| ?- f(a,g(10,20)) =.. L. }\Longrightarrow\quadL=[f,a,g(10,20)
| ?- Term =.. [/,X,2+X]. }\Longrightarrow\mathrm{ Term = X/(2+X)
```


Building and decomposing compound structures: functor/3

- functor(Term, Name, Arity):

Term has the name Name and arity Arity, ie.
Term has the functor Name/Arity.
(A constant C is considered to have the name c and arity 0 .)

- Call patterns:

```
functor(+Term, ?Name, ?Arity) - decompose Term
functor(-Term, +Name, +Arity) - construct a most general Term
```

- If Term is output (*), it is unified with the most general term with the given name and arity (with distinct new variables as arguments)
- Examples:

```
| ?- functor(edge(a,b,1), F, N). }\Longrightarrow\textrm{F}=\mp@code{edge, N = 3
| ?- functor(E, edge, 3). }\Longrightarrow\quadE=\mp@code{edge(_A,_B,_C)
| ?- functor(apple, F, N). }\quad\Longrightarrow\quad\textrm{F}=\mathrm{ apple, N = O
| ?- functor(Term, 122, 0). }\quad\Longrightarrow\quad\mathrm{ Term = 122
| ?- functor(Term, edge, N). }\quad\Longrightarrow\quad\mathrm{ error
| ?- functor(Term, 122, 1). }\quad\Longrightarrow\quad\mathrm{ error
| ?- functor([1,2,3], F, N). }\quad\Longrightarrow\quad\textrm{F}=,.',N = 
| ?- functor(Term, ., 2). }\Longrightarrow\mathrm{ Term = [_A|_B]
```


Building and decomposing compounds: arg/3

- $\arg (N$, Compound, $A):$ the nth argument of Compound is A
- Call pattern: $\arg (+\mathrm{N},+$ Compound, ?A)
- Execution: The nth argument of Compound is unified with A. If Compound has less than N arguments, or $N=0, \arg / 3$ fails
- Thus arg/3 can also be used for instantiating a variable argument of the structure (as in the second example below).
- Examples:

```
| ?- arg(3, edge(a, b, 23), Arg). }\Longrightarrow\quad\operatorname{Arg = 23
| ?- T=edge(_,_,_), arg(1, T, a),
    arg(2, T, b), arg(3, T, 23). }\Longrightarrow\quadT=\operatorname{edge(a,b,23)
| ?- arg(1, [1,2,3], A). }\Longrightarrow\quad|=
| ?- arg(2, [1,2,3], B). }\Longrightarrow\quadB=[2,3
```

- Predicate univ can be implemented using functor and arg, and vice versa, for example:
Term $=. .[\mathrm{F}, \mathrm{A} 1, \mathrm{~A} 2] \quad \Longleftrightarrow \quad$ functor (Term, $\mathrm{F}, 2$),

$$
\arg (1, \mathrm{Term}, \mathrm{~A} 1), \arg (2, \text { Term, A2) }
$$

Using univ for simplifying an earlier example

- Polynomials: built from numbers and the atom ' x ', using ops ' + ' and ' $*$ '
- Calculate the value of a polynomial for a given substitution of x

```
% value_of(Poly, X, V): Poly has the value V, if x=X
value_of(x, X, V) :-
    V = X.
value_of(Poly, _, V) :-
    number(Poly), V = Poly.
value_of(P1+P2, X, V) :-
    value_of(P1, X, V1),
    value_of(P2, X, V2),
    V is V1+V2.
value_of(Poly, X, V) :-
    Poly = P1*P2,
    value_of(P1, X, V1),
    value_of(P2, X, V2),
    VPoly = V1*V2,
    V is VPoly.
```

```
value_of1(Poly, X, V) :-
```

value_of1(Poly, X, V) :-
Poly =.. [Func,P1,P2],
Poly =.. [Func,P1,P2],
value_of1(P1, X, V1),
value_of1(P1, X, V1),
value_of1(P2, X, V2),
value_of1(P2, X, V2),
VPoly =.. [Func,V1,V2],
VPoly =.. [Func,V1,V2],
V is VPoly.

```
    V is VPoly.
```

- Predicate value_of 1 works for all binary functions supported by is $/ 2$.
| ?- value_of $1(\exp (100, \min (x, 1 / x)), 2, V) . \quad \longrightarrow \quad V=10.0 ?$; no

Using univ for finding subexpressions (ADVANCED)

- Given a term T_{0} with a (not necessarily proper) subterm T_{n} at depth n, the position of T_{n} within T_{0} is described by a selector $\left[\mathrm{I}_{1}, \ldots, \mathrm{I}_{n}\right](n \geq 0)$:

```
select_subterm( }\mp@subsup{T}{0}{},[\mp@subsup{I}{1}{},\ldots,\mp@subsup{I}{n}{\prime}],\mp@subsup{T}{n}{}) :
```


- E.g. within term $\mathrm{a} * \mathrm{~b}+\mathrm{f}(1,2,3) / \mathrm{c}$, $[1,2]$ selects b , $[2,1,3]$ selects 3 .
- Given a term, enumerate number subterms and their selectors. \% number_subterm(?Term, ?N, ?Sel):
$\% \mathrm{~N}$ is a number which occurs as a subterm in Term at position Sel.
number_subterm(X, N, Sel) :-
number (X), !, N = X, Sel = [].
number_subterm(X, N, [I|Sel]) :-
compound(X), \% it is important to exclude variables!
X =.. [_|L],
nth1 (I, L, Y), \% The Ith element of list L is Y.
\% If L is proper, finitely enumerates I and Y.
\% Defined in library(lists).
number_subterm(Y, N, Sel).
| ?- number_subterm $(f(1,[b, 2]), N, S) . \Longrightarrow \quad S=[1], \quad N=1$? ;
$\Longrightarrow \quad S=[2,2,1], N=2$? ;

Decomposing and building atoms

- atom_codes(Atom, Cs): Cs is the list of character codes comprising Atom.
- Call patterns: atom_codes(+Atom, ?Cs)
- Execution:
- If Cs is a proper list of character codes then Atom is unified with the atom composed of the given characters
- Otherwise Atom has to be an atom, and Cs is unified with the list of character codes comprising Atom
- atom_chars (Atom, Chs): Chs is the list of characters (single character atoms) comprising Atom.
- Examples:

| ?- atom_codes(ab, Cs). | $\Longrightarrow \mathrm{Cs}=[97,98]$ | |
|---|---|---|
| \| ?- atom_chars (ab, Cs). | $\Longrightarrow \mathrm{Cs}=[\mathrm{a}, \mathrm{b}]$ |
| \| ?- atom_codes (ab, [0'a|L]). | $\Longrightarrow \mathrm{L}=$ [98] |
| \| ?- Cs="bc", atom_codes(Atom,
 ?- atom_codes(Atom, [0'a\|L]) | $\begin{aligned} & \Longrightarrow \quad \text { Cs }=[98,99] \\ & \Longrightarrow \text { error } \end{aligned}$ |

Decomposing and building numbers

- number_codes(Number, Cs): Cs is the list of character codes of Number.
- Call patterns: number_codes(+Number, ?Cs)
number_codes(-Number, +Cs)
- Execution:
- If Cs is a proper list of character codes which is a number according to Prolog syntax, then Number is unified with the number composed of the given characters
- Otherwise Number has to be a number, and Cs is unified with the list of character codes comprising Number
- number_chars (Number, Chs): Chs is the list of characters comprising Number.
- Examples:

Ordering all Prolog terms

- Each Prolog term belongs to one of the five classes: var, float, integer, atom, compound (cf. the leaves of the Prolog term hierarchy, page 105)
- The relation "precedes" $X \prec Y$ is defined as follows:
(1) If X and Y belong to different classes, then their class determines the order, as listed above (e.g. all floats \prec all integers); otherwise
(2) If X and Y are variables, then their order is system-dependent (normally variables are ordered according to their memory address)
(3) If X and Y are numbers, then $X \prec Y \Leftrightarrow X<Y$
(9) If X and Y are atoms, then $X \prec Y \Leftrightarrow$ either X is a proper prefix of Y, or $X_{i}<Y_{i}$ where i is the index of the first different char, $\left(A_{i}\right.$ is the code of the i th char of A)
(5) If both X and Y are compounds:
(1) If their arities differ, $X \prec Y \Leftrightarrow X$'s arity $<Y$'s arity
(3) Otherwise (same arity), if their names differ, $X \prec Y \Leftrightarrow N_{X} \prec N_{Y}$ (N_{A} is the name of the compound A)
© Otherwise (same name and arity): $X \prec Y \Leftrightarrow X_{i} \prec Y_{i}$ where i is the index of the first non-identical argument, (A_{i} is the i th argument of the compound A)

Built-in predicates for comparing Prolog terms

- Comparing two Prolog terms:

| Goal | holds if |
| :--- | :--- |
| Term1 == Term2 | Term1 \nprec Term2 \wedge Term2 \prec Term1 |
| Term1 $\backslash==$ Term2 | Term1 \prec Term2 \vee Term2 \prec Term1 |
| Term1 @< Term2 | Term1 \prec Term2 |
| Term1 @=< Term2 | Term2 \not Term1 |
| Term1 @> Term2 | Term2 \prec Term1 |
| Term1 @>= Term2 | Term1 \not Term2 |

- The comparison predicates are not pure:

$$
\begin{aligned}
& \text { ? }-X @<3, X=4 . \\
& \mid ?-X=4, X @<3 . \Longrightarrow X=4 \\
& \text { ? } \quad \Longrightarrow \quad \text { no }
\end{aligned}
$$

- Comparison uses, of course, the canonical representation:
| ?- $[1,2,3,4]$ @ $s(1,2,3) . \Longrightarrow$ yes (rule 5.1)

Equality-like Prolog predicates - a summary

- $U=V: U$ unifies with V No errors.
- $U==V: U$ is identical to V. No errors, no bindings.
- $U=:=V$: The value of U is equal to that of V. No bindings. Error if U or V is not a (ground) arithmetic expression.
- U is $V: U$ is unified with the value of V.
Error if V is not a (ground) arithmetic expression.
- ($U=\ldots V$: The "decomposition" of term U is the list V).

| $?-\mathrm{X}=1+2 . \quad \Longrightarrow$ | $X=1+2$ |
| :---: | :---: |
| $?-3=1+2 . \quad \Longrightarrow$ | no |
| ?- $\mathrm{X}==1+2 . \quad \Longrightarrow$ | no |
| ?-3 = $=1+2 . \quad \Longrightarrow$ | no |
| ? $-+(1,2)==1+2 \Longrightarrow$ | yes |
| $?-\mathrm{X}=:=1+2 . \Longrightarrow$ | error |
| ?- $1+2=:=\mathrm{X} . \Longrightarrow$ | error |
| ?- $2+1=:=1+2 . \Longrightarrow$ | yes |
| \| $?-2.0=:=1+1 . \Longrightarrow$ | yes |
| ?-2.0 is $1+1 . \Longrightarrow$ | no |
| \| $?-\mathrm{X}$ is $1+2 . \quad \Longrightarrow$ | $\mathrm{X}=3$ |
| ?- 1+2 is X. $\quad \Longrightarrow$ | error |
| ?-3 is $1+2 . \quad \Longrightarrow$ | yes |
| \| ? $-1+2$ is $1+2 . \Longrightarrow$ | no |
| \| $?-1+2=. . \mathrm{X} . \Longrightarrow$ | $\mathrm{X}=[+, 1,2]$ |
| ?- $\mathrm{X}=. .[\mathrm{f}, 1] . \Longrightarrow$ | $X=f(1)$ |

$$
\mid ?-2.0 \text { is } 1+1 . \Longrightarrow \text { no }
$$

$$
\mid \quad ?-X \text { is } 1+2 . \quad \Longrightarrow \quad X=3
$$

$$
\mid \text { ?- } 1+2 \text { is } X . \quad \Longrightarrow \text { error }
$$

$$
\text { | } ?-3 \text { is } 1+2 . \quad \Longrightarrow \text { yes }
$$

$$
\mid \text { ?- } 1+2 \text { is } 1+2 . \Longrightarrow \text { no }
$$

$$
\mid ?-1+2=\ldots X . \Longrightarrow X=[+, 1,2]
$$

$$
\mid ?-X=. .[f, 1] . \Longrightarrow X=f(1)
$$

Nonequality-like Prolog predicates - a summary

- Nonequality-like Prolog predicates never bind variables.
- $U \backslash=V: U$ does not unify with V. No errors.

```
| ?- X \= 1+2. }\quad\Longrightarrow\mathrm{ no
| ?- +(1,2) \= 1+2. \Longrightarrow no
```

- $U \backslash==V$: U is not identical to V. No errors.

| $\mid ?-X \backslash==1+2$. | \Longrightarrow | yes |
| :--- | :--- | :--- |
| $\mid ?-3 \backslash==1+2$. | \Longrightarrow | yes |
| 1 | $?-+(1,2) \backslash==1+2$ | \Longrightarrow |

- $U=\backslash=V$: The values of the arithmetic expressions U and V are different.
Error if U or V is not a (ground) arithmetic expression.

(Non)equality-like Prolog predicates - examples

| | | Unification | | Identical terms | | Arithmetic | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| U | V | $U=V$ | $U \backslash=V$ | $U==V$ | $U \backslash==V$ | $U=:=V$ | $U=\backslash=V$ | U is V |
| 1 | 2 | $n o$ | yes | $n o$ | yes | $n o$ | yes | $n o$ |
| a | b | $n o$ | yes | $n o$ | yes | error | error | error |
| $1+2$ | $+(1,2)$ | yes | $n o$ | yes | $n o$ | yes | $n o$ | $n o$ |
| $1+2$ | $2+1$ | $n o$ | yes | $n o$ | yes | yes | $n o$ | $n o$ |
| $1+2$ | 3 | $n o$ | yes | $n o$ | yes | yes | $n o$ | $n o$ |
| 3 | $1+2$ | $n o$ | yes | $n o$ | yes | yes | $n o$ | yes |
| X | $1+2$ | $\mathrm{X}=1+2$ | $n o$ | $n o$ | yes | error | error | $\mathrm{X}=3$ |
| X | Y | $\mathrm{X}=\mathrm{Y}$ | $n o$ | $n o$ | yes | error | error | error |
| X | X | yes | $n o$ | yes | $n o$ | error | error | error |

Legend: yes - success; no - failure.

Finding multiple solutions: enumeration vs. collection

- Search problem: find values satisfying certain conditions.
- Two approaches to solving search problems in Prolog:
- collect solutions - e.g., return a list of all solutions;
- enumerate solutions - return one solution at a time, enumerate all solutions via backtracking
- A simple example: find the even members of a list:

Collect solutions:

\% even_members(L, Es) : Es is the $\%$ list of even members of L. even_members ([], []). even_members ([X|L], Es) :$X \bmod 2=\backslash=0,!$, even_members (L, Es). even_members([E|L], [E|Es]) :even_members(L, Es).

Enumerate solutions:

```
% even_member(_L, E): E is an even
% member of the list L.
even_member([X|L], E) :-
    X mod 2 =:= 0, E = X .
even_member([_X|L], E) :-
    % _X either odd or even,
    % continue the enumeration:
    even_member(L, E).
% A simpler solution:
even_member2(L, E) :-
    member(E, L), E mod 2 =:= 0.
```


Collecting and enumerating solutions

- Given a "collecting" predicate, write an "enumerating" one:
- Use the member/2 built-in predicate, e.g.:

```
even_member(L, E) :-
    even_members(L, Es), member(E, Es).
```

This is less efficient than directly implementing even_member/2.

- Given an "enumerating" predicate, write a "collecting" one:
- Not possible with the tools shown so far
- A new kind of BIP, an "all-solutions" predicate is needed, e.g.

```
even_members(L, Es) :-
    findall(E, even_member(L, E), Es).
    % Es is the list of all solutions, returned in E,
    % of the goal even_member(L, E).
```

- All-solutions predicates often help in making the code very compact (but the result may be less efficient than the code written directly)

```
even_members(L, Es) :-
    findall( E, (member(E, Es), E mod 2 =:= 0), Es).
    { E | member(E, Es), E mod 2 =:= 0} =Es)
```


The built-in predicate findall (?Templ, :Goal, ?L)

Approximate meaning: L is a list of Templ terms for all solutions of Goal ${ }^{6}$

Examples ${ }^{7}$

```
| ?- findall(X, (member(X, [1,7,8,3,2,4]), X>3), L).
    L = [7,8,4] ? ; no
| ?- findall(X-Y, (between(1, 3, X), between(1, X, Y)), L).
    L = [1-1,2-1,2-2,3-1,3-2,3-3] ? ; no
```

The execution of the BIP findall/3 (procedural semantics);

- Interpret term Goal as a goal, and call it
- For each solution of Goal:
- store a copy of Templ (copy \Longrightarrow replace vars in Templ by new ones)
- continue with failure (to enumerate further solutions)
- When there are no more solutions (Goal fails)
- collect the stored Templ values into a list, unify it with L.
| ?- findall(T, member (T, [A-A,B-B,A]), L). $\Longrightarrow \mathrm{L}=$ [_A-_A,_B-_B,_C] ? ; no

[^0]
The built-in predicate findall - further details

- Example: collect employees
\% emp(R, E): employer R employs employee E.
$\operatorname{emp}(a, b) . \quad \operatorname{emp}(a, c) . \quad \operatorname{emp}(b, c) . \quad e m p(c, d) . \quad e m p(b, d)$.
| ?- findall(E, emp(R, E), Employees).
\Longrightarrow Employees $=[\mathrm{b}, \mathrm{c}, \mathrm{c}, \mathrm{d}, \mathrm{d}]$? ; no
i.e. Employees $=\{E \mid \exists R$. $(R$ employs $E)\}$
| ?- R = a, findall(E, emp(R, E), Employees).
\Longrightarrow Employees $=[b, c]$? ; no
i.e. Employees $=\{E \mid \quad(R$ employs $E)\}$
| ?- findall(E, emp(R, E), Employees), R = a.
\Longrightarrow Employees $=[b, c, c, d, d]$? no $\%$ findall is not pure
- The declarative meaning of findall(?Templ, :Goal, ?List):

List $=\{$ a copy of Templ $\mid(\exists \mathrm{X} \ldots \mathrm{Z})$ Goal is true $\}$
where $\mathrm{x}, \ldots, \mathrm{z}$ are the free variables in the findall call.

- A variable is free in a findall (Templ, Goal, List) call, if it occurs in Goal but not in Templ. E.g. R is free in the findall goals (1) and (3), but not in (2).

An example illustrating BIP bagof/3

```
emp(a,b). emp(a,c). emp(b,c). emp(c,d). emp(b,d).
| ?- bagof(E, emp(R, E), L). % L 三 list of E's employed by given R.
    \LongrightarrowR=a, L = [b,c] ? ;
    \LongrightarrowR=b, L = [c,d] ? ;
    \LongrightarrowR=c, L = [d] ? ; no
```

Execution details

- Collect the list of free variables: FreeVars = [R], Templ = E,
- For each solution store a copy of FreeVars and Templ

| FreeVars | Templ |
| :--- | :--- |
| $[\mathrm{a}]$ | b |
| $[\mathrm{a}]$ | c |
| $[\mathrm{b}]$ | c |
| $[\mathrm{c}]$ | d |
| $[\mathrm{b}]$ | d |

- Collect the distinct FreeVars instances: [a], [b], [c]
- Enumerate these instances: \quad FreeVars=[R]= [a]; [b]; [c]
- For each FreeVars collect Templ values: Employees= [b, c] ; [c,d]; [d]

The BIP bagof (?Templ, :Goal, ?L) - semantics

The execution of the BIP (procedural semantics):

- Collect the FreeVars list of free variables in the bagof goal
- Interpret term Goal as a goal, and call it; for each solution of Goal
- store a normalised copy of the pair 〈FreeVars, Templ \rangle
- normalisation: rename any vars in FreeVars to $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}, \ldots$ (in the order of the first occurrences of the vars)
- continue with failure (so as to enumerate further solutions)
- When there are no more solutions (i.e. Goal fails)
- fail, if there are no stored copies; otherwise
- collect the FreeVars instances distinct wrt. ==
- enumerate in FreeVars the distinct instances (in some order)
- for a given FreeVars instance collect the list of corresponding Templ values, and unify it with L.
The meaning of the BIP (declarative semantics):
- $\mathrm{L}=\{$ Templ \mid Goal is true $\}, \mathrm{L} \neq[\mathrm{l}$.

An example illustrating that bagof $/ 3$ is the "inverse" of member/2

| ?- bagof (T, member (T, $[A-A, B-B, A]), L) . \Longrightarrow L=[A-A, B-B, A]$? ; no
Execution details

- Collect the list of free variables: FreeVars = [A,B], Templ = T,
- For each solution store a normalised copy of FreeVars and Templ

| norm. FreeVars | Templ |
| :--- | :--- |
| $\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]$ | $\mathrm{X}_{1}-\mathrm{X}_{1}$ |
| $\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]$ | $\mathrm{X}_{2}-\mathrm{X}_{2}$ |
| $\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]$ | X_{1} |

- The normalised FreeVars instances are all identical
- "Enumerate" the only FreeVars instance:

```
FreeVars = [A,B] = [X }\mp@subsup{X}{1}{},\mp@subsup{X}{2}{\prime}],\mathrm{ i.e. }\mp@subsup{X}{1}{}=A,\mp@subsup{X}{2}{}=
```

- For the single FreeVars collect the Templ values:

$$
\mathrm{L}=\left[\mathrm{X}_{1}-\mathrm{X}_{1}, \mathrm{X}_{2}-\mathrm{X}_{2}, \mathrm{X}_{1}\right]=[\mathrm{A}-\mathrm{A}, \mathrm{~B}-\mathrm{B}, \mathrm{~A}]
$$

The built-in predicate bagof - explicit quantification

- Explicit existential quantification can be added to a bagof call:

```
| ?- bagof(E, R^emp(R, E), L).
    % L\equivlist of E's for which
    % there exists an R, such that emp (R, E)
    L = [b,c,c,d,d] ? ; no
```

- In general explicit quantification takes the following form: bagof (Templ, $\mathrm{V}_{1}{ }^{\wedge} \ldots{ }^{\wedge} \mathrm{V}_{n}{ }^{\wedge}$ Goal, List)
- variables $\mathrm{v}_{1}, \ldots, \mathrm{v}_{n}$ are existentially quantified,
- i.e., not considered free any more.
- The declarative semantics of the above goal:

$$
\text { List }=\{\text { Templ } \mid(\exists \mathrm{V} 1, \ldots, \mathrm{Vn}) \text { Goal is true }\} \neq[] .
$$

Nesting bagof/3

- If a bagof call has free variables then it can be nondeterministic
- Thus it may make sense to nest bagof calls within each other

```
% Employer R has C employees.
employee_count(R, C) :-
    bagof(E, emp(R, E), Es), length(Es, C).
```

\% The employee-counts list RCL is the list of $R-C$ pairs, where
$\% R$ is an employer and C is the number of its employees
employee_counts(RCL) :-
bagof (R-C, employee_count(R, C), RCL).
| ?- employee_counts(RCL).
\Rightarrow RCL $=[\mathrm{a}-2, \mathrm{~b}-2, \mathrm{c}-1]$? ; no

- The helper predicate employee_count can be eliminated:
employee_counts2(RCL) :-
bagof (R-C, Es ${ }^{\text {(} \operatorname{bagof}(E, \operatorname{emp}(R, E), E s), ~}$
length(Es, C)), RCL).
- Note the need for the explicit quantification
- Also note that the latter predicate is slower, as control structures in meta-arguments are interpreted and not compiled

The built-in predicate bagof - further details

- Further minor differences between bagof/3 and findall/3:

```
| ?- findall(X, emp(d, X), L). \Longrightarrow L = [] ? ; no
| ?- bagof(X, emp(d, X), L). }\Longrightarrow\mathrm{ no
```

- Summary: bagof/3 is cleaner than findall/3, but it is less efficient.

The built-in predicate setof

- setof(?Templ, :Goal, ?List)
- The execution of the procedure:
- same as: bagof(Templ, Goal, L0), sort(L0, List),
- here sort (+L, ?SL) is a built-in predicate which sorts L and removes duplicates (wrt. ==) and unifies the result with SL
- Example for using setof $/ 3$:

```
graph([a-b,a-c,b-c, c-d,b-d]).
% A vertex of Graph is V.
vertex(V, Graph) :- member(A-B, Graph), ( V = A ; V = B).
```

\% The set of vertices of G is Vs.
graph_vertices(G, Vs) :- setof(V, vertex(V, G), Vs).
| ?- graph(_G), graph_vertices(_G, Vs). \Longrightarrow Vs = [a,b,c,d] ? ; no

Dynamic predicates

- Dynamic predicates are Prolog predicates, with the following properties
- The predicate can be modified during runtime by adding (asserting) and removing (retracting) clauses
- There can be 0 or more clauses of the predicate in the program text
- The predicate is interpreted (slower execution)
- A dynamic predicate can be created
- by placing a directive in the program: :- dynamic(Predicate/Arity). (preceding any clauses of the predicate in the program text); or
- by using a database modification BIP 8
- Built-in predicates for database modification
- Add a clause: asserta/1, assertz/1
- Remove a clause (can be nondeterministic): retract/1
- Retrieve a clause (can be nondeterministic): clause/2
- Adding or removing clauses is permanent, this is not undone at backtracking.
${ }^{8}$ The set of program clauses is often called the Prolog database.

Adding a clause: asserta/1, assertz/1

- asserta(:Clause) ${ }^{9}$
- the term Clause is interpreted as a clause, it has to be sufficiently instantiated for its functor P / N to be to determined
- If pred. P / N exists, it has to be dynamic, if not, it is made dynamic
- a copy of Clause is added to pred. P/N as the first clause

By copying we mean systematically replacing variables with new ones.

- assertz(:Clause)
- Same as asserta, but Clause is added as the last clause
- Most Prolog systems support the non-standard BIP assert/1, which adds a clause in an arbitrary position in the predicate (mostly \equiv assertz/1)
- Examples:

```
| ?- assertz((p(1,X):-q(X))), asserta(p(2,0)), p(2, 0).
    assertz((p(2,Z):-r(Z))), listing(p). }\Longrightarrow\textrm{p}(1,A):- q(A)
    p(2,A) :- r(A).
```

 | ?- \(\operatorname{assertz}(\mathrm{s}(\mathrm{X}, \mathrm{X}))\), \(\mathrm{s}(\mathrm{U}, \mathrm{V}), \mathrm{U}==\mathrm{V}, \mathrm{X} \backslash==\mathrm{U} . \Longrightarrow \mathrm{V}=\mathrm{U}\) ? ; no
 [^1]
Removing a clause: retract/1

- retract (:Clause) where Clause viewed as a clause is sufficiently instantiated so that its functor P / N can be determined:
- looks up a clause of pred. P/n which unifies with Clause;
- if found (and unified), removes the clause from the program;
- on backtracking keeps looking up and removing further clauses
- Example (continued from the previous slide):

```
| ?- listing(p), retract((p(2,X):-B)),
    assertz((s(3,X):-B)), listing(p), listing(s), fail. }\Longrightarrow\mathrm{ no
```

- The output

| $p(2$, | $0)$ |
| ---: | :--- |
| $p(1, A)$ | $:-$ |
| | $q(A)$. |
| $p(2, A)$ | $:-$ |
| | $r(A)$. |

$$
s(3,0)
$$

$$
\begin{array}{ll}
p(1, A) & :- \\
& q(A) . \\
s(3,0) . \\
s(3, A) & :- \\
& r(A) .
\end{array}
$$

An example - a simplified findall

- Predicate findall1/3 implements the BIP findall/3, except for not supporting nested invocations
:- dynamic(solution/1).

```
% findall1(T, Goal, L):
```

$\% L$ is the list of copies of T, for each solution of Goal
findall1(T, Goal, _L) :-
call(Goal),
asserta(solution(T)), \% solutions stored in reverse order!
fail.
findall1(_Templ, _Goal, L) :-
solution_list([], L).
$\%$ solution_list(LO, L): $L=\operatorname{rev}(l i s t$ of retracted solutions) $\oplus L O$
solution_list(LO, L) :-
retract(solution(S)), !,
solution_list([S|LO], L).
solution_list(L, L).
| ?- findall1(Y, (member (X, [1,2,3]), Y is $X * X), S L) . \Longrightarrow S L=[1,4,9]$

Retrieving a clause: clause/2

- clause(:Head, ?Body) where Head is instantiated sufficiently so that its functor P/N can be determined
- looks up a clause of pred. P/N which unifies with (Head :- Body) ${ }^{10}$
- if found exits with success (having performed the unification);
- on backtracking keeps looking up further clauses
- Example (continued from previous slides)
:- listing(p), clause(p(2, 0), Body).

| $p(2,0)$ | |
| ---: | :--- |
| $p(1, A)$ | $:-$ |
| | $q(A)$. |
| $p(2, A)$ | $:-$ |
| | $r(A)$. |

$$
\begin{aligned}
& \Longrightarrow \quad \text { Body }=\text { true ? ; } \\
& \Longrightarrow \text { Body }=r(0) \text { ? ; } \\
& \Longrightarrow \text { no }
\end{aligned}
$$

An example with the BIP clause: wallpaper tracing

An interpreter for tracing pure Prolog programs, with no BIPs.

```
% interp(G, D): Interprets and traces goal G with an indentation D.
interp(true, _) :- !.
interp((G1, G2), D) :- !,
    interp(G1, D), interp(G2, D).
interp(G, D) :-
    ( trace(G, D, call)
    ; trace(G, D, fail), fail % shows the fail port, keeps backtracking
    ),
    D2 is D+2,
    clause(G, B), interp(B, D2),
    ( trace(G, D, exit)
    trace(G, D, redo), fail % shows the redo port, keeps backtracking
% Traces goal G at port Port with indentation D.
trace(G, D, Port) :-
    /* Writing out D spaces:*/ format('~|~t~*+', [D]),
    write(Port), write(': '), write(G), nl.
```


A sample run of the wallpaper trace interpreter

:- dynamic app/3,app/4. \% (*)

```
app([], L, L).
```

$\operatorname{app}([X \mid L 1], L 2,[X \mid L 3]):-$ $\operatorname{app}(L 1, L 2, L 3)$.
$\operatorname{app}(\mathrm{L} 1, \mathrm{~L} 2, \mathrm{~L} 3, \mathrm{~L} 123):-$ app(L1, L23, L123), $\operatorname{app}(L 2, L 3, L 23)$.

- Assuming that above text is stored in file, say, app34.pl, line (*) becomes unnecessary if the file is loaded by
| ?- load_files(app34, compilation_mode(assert_all)).

```
| ?- interp(app(_, [b,c],L,[c,b,c,b]), 0).
    call: app(_203,[b,c],_253,[c,b,c,b])
    call: app(_203,_666,[c,b,c,b])
    exit: app([],[c,b,c,b],[c,b,c,b])
    call: app([b,c],_253,[c,b,c,b])
    fail: app([b,c],_253,[c,b,c,b])
    redo: app([],[c,b,c,b],[c,b,c,b])
        call: app(_873,_666,[b,c,b])
        exit: app([],[b,c,b],[b,c,b])
    exit: app([c],[b,c,b],[c,b,c,b])
    call: app([b,c],_253,[b,c,b])
        call: app([c],_253,[c,b])
            call: app([],_253,[b])
            exit: app([],[b],[b])
        exit: app([c],[b],[c,b])
    exit: app([b,c],[b],[b,c,b])
    exit: app([c],[b,c],[b],[c,b,c,b])
L = [b] ?
```


Contents

(1) Declarative Programming with Prolog

- Declarative and imperative programming
- Propositional Prolog
- Prolog with Simple Data Structures
- Compound Data Structures in Prolog
- Lists
- Prolog implementation - a brief overview
- Prolog execution - definitions
- Prolog syntax
- Syntactic sugar: operators
- Further control constructs
- BIPs 1 - meta-preds, all solutions, dynamic preds
- BIPs 2 - higher order programming, loops, modules
- Efficient programming in Prolog

Higher order predicates

- A higher order predicate (or meta-predicate) is a predicate with an argument which is interpreted as a goal, or a partial goal
- e.g., findall/3 is a meta-predicate, as its second argument is a goal
- A partial goal is a goal with some (usually the last n) arguments missing
- e.g., a predicate name is a partial goal
- Example: filter(L, Pred, FL): List FL contains those elements of L which satisfy Pred, where Pred is the name of a unary predicate

```
filter0(L, Pred, FL) :-
Goal =.. [Pred,X], findall(X, (member(X,L), Goal), FL).
even(X) :- X mod 2 =:= 0.
| ?- filter0([1,3,2,5,4,0], even, FL). }\Longrightarrow\quad\textrm{FL}=[2,4,0] ; no
```

- A less compact, but more efficient variant:

```
filter1([], _Pred, []).
filter1([X|L], Pred, FL) :-
    Goal =.. [Pred,X],
    ( call(Goal) -> FL = [X|FL1], filter1(L, Pred, FL1)
    ; filter1(L, Pred, FL)
    ).
```


Calling predicates with additional arguments

- Definition: a callable term is a compound or atom.
- Built-in predicate group call/N
- call(Goal): invokes Goal, where Goal is a callable term
- call(PG, A): Adds A as the last argument to PG, and invokes it.
- call (PG, A, B): Adds A and B as the last two args to PG, invokes it.
- $\operatorname{call}\left(P G, A_{1}, \ldots, A_{n}\right)$: Adds A_{1}, \ldots, A_{n} as the last n arguments to PG, and invokes the goal so obtained.
- PG is a partial goal, to be extended with additional arguments before calling. It has to be a callable term.
- Implementing filter using call/2

```
filter([], _PG, []).
filter([X|L], PG, FL) :- ( call(PG, X) -> FL = [X|FL1]
    FL = FL1
), filter(L, PG, FL1).
less(N, X) :- X < N.
| ?- filter([2,3,4,5,1,7], less(3), FL). \Longrightarrow FL = [2,1] ? ; no
| ?- filter([2,3,4,5,1,7], =<(4), FL). }\Longrightarrow\textrm{FL}=[4,5,7] ? ; n
```


Another useful higher order predicate: map/3

- map(L, PG, ML): List ML contains elements y obtained by calling PG(X,Y) for each x element of list L, where $P G$ is a partial goal to be expanded with two arguments
- Variants:

```
map0(L, PG, ML) :- % PG has to be an atom
    Goal =.. [PG,X,Y], findall(Y, (member(X,L), Goal), ML).
map1(L, PG, ML) :- % PG can be a callable term
    findall(Y, (member(X,L), call(PG, X, Y)), ML).
map([], _, []).
map([X|L], PG, [Y|ML]) :- % PG can be a callable term
    call(PG, X, Y),
    map(L, PG,ML).
square(X, Y) :- Y is X*X.
mult(N, X, NX) :- NX is N*X.
| ?- map0([1,2,3,4], square, L). }\Longrightarrow\textrm{L}=[1,4,9,16] ? ; n
| ?- map1([1,2,3,4], mult(2), L). \Longrightarrow L = [2,4,6,8] ? ; no
| ?- map([1,2,3,4], mult(-5), L). }\Longrightarrow\textrm{L}=[-5,-10,-15,-20] ? ; n
```


Do-loops

- The main advantage of higher order predicates is that one can avoid writing auxiliary predicates.
- Another, even more efficient approach is to use do-loops.
- Implementing map(L, square, ML) using a do-loop:
(foreach(X, L), foreach(Y, ML) do Y is $X * X$)
- Implementing map(L, mult(N), ML) using a do-loop:
(foreach(X, L), foreach(Y, ML), param(N) do Y is $N * X$)
- Examples of further iterators:
| ?- (for ($1,1,5$), foreach(I,List) do true).

$$
\Longrightarrow \text { List }=[1,2,3,4,5] \text { ? ; no }
$$

| ?- (foreach(X,[1,2,3]), fromto(0,In,Out,Sum) do Out is In+X). \Longrightarrow Sum $=6$? ; no
| ?- (foreach(X,[a,b,c,d]), count(I,1,N), foreach(I-X,Pairs) do true). $\Longrightarrow N=4$, Pairs $=[1-a, 2-b, 3-c, 4-d]$? ; no
| ?- (foreacharg(A,f(a,b,c,d,e),I), foreach(I-A,List) do true). \Longrightarrow List $=$ [1-a,2-b, 3-c,4-d,5-e] ? ; no

Principles of the SICStus Prolog module system

- Each module should be placed in a separate file
- A module directive should be placed at the beginning of the file:
:- module(ModuleName, [ExportedFunc c_{1}, ExportedFunc $\left.c_{2}, . ..\right]$).
- ExportedFunc ${ }_{i}$ - the functor (Name/Arity) of an exported predicate
- Example
:- module(drawing_lines, [draw/2]). \% line 1 of file draw.pl
- Built-in predicates for loading module files:
- use_module (FileName)
- use_module(FileName, [ImportedFunc c_{1}, ImportedFunc c_{2}, \ldots]) ImportedFunc c_{i} - the functor of an imported predicate FileName - an atom (with the default file extension .pl); or a special compound, such as library (LibraryName)
- Examples:
:- use_module(draw). \% load the above module
:- use_module(library(lists), [last/2]). \% only import last/2
- Goals can be module qualified: Mod:Goal runs Goal in module Mod
- Modules do not hide the non-exported predicates, these can be called from outside if the module qualified form is used

Meta predicates and modules

- Predicate arguments in imported predicates may cause problems:

```
File module1.pl:
    :- module(module1, [double/1]).
% (1)
double(X) :-
    X, X.
```

p :- write (go).

File module2.pl:
:- module(module2, [q1/0,q2/0,r/0]).
:- use_module(module1).
q1 :- double(module1:p).
q2 :- double(module2:p).
r :- double(p).
p :- write (ga).

- Load file module2.pl, e,g, by । ?- [module2]., and run some goals:
| ?- q1. \Longrightarrow gogo
| ?- q2. \Longrightarrow gaga
| ?- r. \Longrightarrow gogo :-(counterintuitive
- Solution: Tell Prolog that double has a meta-arg. by adding at (1) this:
:- meta_predicate double(:).
This causes (2) to be replaced by ' r :- double(module2:p).' at load time, making predicates r and q 2 identical.

Meta predicate declarations, module name expansion

- Syntax of meta predicate declarations
:- meta_predicate \langle pred. name $\rangle\left(\left\langle\right.\right.$ modespec $\left._{1}\right\rangle, \ldots,\left\langle\right.$ modespec $\left.\left._{n}\right\rangle\right), \ldots$
- 〈 modespec $\left._{i}\right\rangle$ can be ':', ‘+', ‘-', or '?'.
- Mode spec ':' indicates that the given argument is a meta-argument
- In all subsequent invocations of the given predicate the given arg. is replaced by its module name expanded form, at load time
- Other mode specs just document modes of non-meta arguments.
- The module name expanded form of a term Term is:
- Term itself, if Term is of the form $M: X$ or it is a variable which occurs in the clause head in a meta argument position; otherwise
- SMod:Term, where SMod is the current source module (user by default)
- Example, ctd. (double in module1_m is declared a meta predicate)
:- module(module3, [quadruple/1,r/0]).
:- use_module(module1_m).
\% the loaded form:
$r:-$ double $(p) . \quad \Longrightarrow r:-$ double (module3:p). ${ }^{11}$
:- meta_predicate quadruple(:).
quadruple(X) :- double(X), double(X). \Longrightarrow unchanged 11
${ }^{11}$ The imported goal double gets a prefix "module1:", not shown here, to save space.

[^0]: ${ }^{6}$ annotation ":" marks a meta argument, i.e. a term to be interpreted as a goal
 ${ }^{7}$ Predicate between $(+\mathrm{N},+\mathrm{M}, \quad$? X) enumerates in X the integers $\mathrm{N}, \mathrm{N}+1, \ldots, \mathrm{M}$.
 Defined in library (between).

[^1]: ${ }^{9}$ Recall that the : character indicates that the argument is a meta-argument.

