
A Survey on Frequent Itemset Mining

A Survey on Frequent Itemset Miningin preparation
by Feren Bodon

Department of Computer Siene and Information TheoryBudapest University of Tehnology and EonomisBudapestApril 28, 2006

Prefae
The frequent itemset mining problem �rst has been formulated in 1993 as the ompu-tational relevant step in assoiation rule mining. Given a sequene of itemsets, we haveto �nd itemsets that are ontained as a subset in more than a given number of elementsof the sequene. More than 180 papers have been published about algorithms to solvethis task, most of them delared to be the most eÆient. The open-soure ompetition,whih was organized ten years after the problem's birth, proved that the truth is farfrom the laims and the data struture and implementation issues need to be polishedeven for the basi algorithms.In this survey we investigate data struture and implementation details of the threemost important FIM algorithms Apriori, Elat, FP-growth, examine their advantagesand disadvantages. Besides, we present new tehniques to speed-up the basi algorithms.

v

Contents
1 Introdution 11.1 The arena of FIM algorithms; a short history 31.2 Common misbelieves . 31.3 Algorithmi aspets of the modern proessors' features 51.3.1 Memory hierarhies, data loality: 51.3.2 Pipeline proessing, branh predition: 61.4 A Frequent Pattern Mining Template Library 62 The Frequent Itemset Mining Problem 93 Base Algorithms 133.1 Bottom-up FIM algorithms . 133.2 Breadth-�rst, iterative vs. depth-�rst, reursive algorithms 143.3 Tehniques . 153.4 Graphial presentation of the experiments 153.5 The trie and its variants . 173.5.1 The representation of the list of edges 173.5.2 Index vs. pointer-based trie . 193.5.3 Patriia trie . 204 Algorithm Apriori 234.1 The trie of Apriori . 264.1.1 Support Counting . 264.1.2 Removing Infrequent Candidates 264.1.3 Candidate Generation . 274.2 Compatness of the trie . 274.3 Inhomogeneous trie . 294.4 Removing Dead-end Branhes . 30vii

4.5 Routing strategies at the nodes . 334.5.1 Routing strategies in the ase of ordered-list edge representation . 344.5.2 Can we speed up binary searh-based routing strategies? 374.5.3 Routing strategies in the ase of di�erent edge representation . . . 394.6 Determining the support of 2-itemset andidates 414.7 Determining the support of 3-itemset andidates 425 Algorithm Elat 436 Algorithm FPgrowth 457 Tehniques for improving eÆieny 477.1 Pruning equisupport extensions . 477.2 Improvements used in Apriori . 487.2.1 Cahing the transations . 527.2.2 Support ount of Christian Borgelt 557.2.3 Filtering unimportant items from the transations 577.2.4 Equisupport pruning . 587.2.5 Level 2 equisupport pruning . 607.2.6 Level 2 equisupport pruning and further dead-end pruning 617.2.7 Intersetion-based pruning . 657.2.8 Omitting omplete pruning . 697.2.9 Summary of the tehniques . 707.3 The inuene of item ordering . 727.3.1 The order-preserving assumption 727.3.2 The number of andidates . 757.3.3 Size of the trie . 777.3.4 Tehniques in Apriori . 798 Evalutation 838.1 The battle of Apriori implementations 838.2 The battle of Elat implementations . 868.3 The battle of FP-growth implementations 868.4 Comparing Aprior, Elat and FP-growth 868.5 The bottlenek of Apriori, Elat and FP-growth 869 The furure: toward hybrid algorithms 899.1 Conlusion . 90

Chapter1IntrodutionFrequent itemset mining (FIM) is a very young researh �eld born in 1993 [3℄. It aimsto �nd frequently ourring subsets in a sequene of sets. The FIM problem appearsas a subproblem in many other data mining �elds like assoiation rule disovery [3℄,orrelations, lassi�ation [27℄, lustering [28℄, Web mining [55℄, [34℄. The fat thatalgorithms and tehniques developed in FIM are also used suessfully in �nding frequentpatterns of other types (like sequenes, episodes, rooted ordered/unordered trees, labeledgraphs and boolean formulas) also proves the signi�ane of the �eld. The frequent setsplay an important role in many appliation suh as ustomers relationship management,improving the eÆieny of eletroni ommere [48℄, bioinformatis, DNA and proteinanalysis, indutive databases [31℄, query expansion [39℄, network intrusion detetion [29℄,et.After the problem was born, many algorithms were proposed, the authors of eahalgorithms laimed that their algorithms are the fastest. The eÆieny was shownby run-time plots on a few databases and for the omparisons the authors oded theounterpart algorithms as well. Unfortunately, neither the proposed algorithm, nor theimplementation of the ounterpart algorithm were publi available therefore the laimedresults were not reproduible.Those, who wanted to �nd the real values, the real ontributions were not satis�edwith lak of reproduibility. The �rst step toward the quality assurane was the pub-liation of some independent authors who implemented and ompared some publishedalgorithms [25℄ [19℄ [26℄ [9℄ [17℄. Unfortunately, these implementations are less e�etivethan the best implementations (if there exists suh)of the same algorithms, and oftenthey do not even show the same performane harateristis. This is the reason, webelieve that the onsequenes drawn form the experiments of suh implementations arenot neessarily attributed to the algorithms themselves, but rather to the non-optimizedimplementation.A better and less time-onsuming solution was published by Zheng et al. [59℄, where1

CHAPTER 1. INTRODUCTIONindependent referees olleted the implementations from the authors themselves, andrun the experiments. The ase of Apriori, Elat and FP-growth has shown the mosteÆient implementation of an algorithm is not neessarily developed by the inventors ofthe algorithm, therefore the omparison should be open to everybody. This lead to thepubli, open-soure ompetitions of FIM implementation [16℄ in 2003 and 2004. The im-portane of the FIMI ontests is inevitable; it stressed the requirement of reproduibilityand provided some baseline implementation and test datasets for the researh ommu-nity. The most important question, however, is not answered. We still don't know thereal reasons of the eÆieny, the borders and the bottlenek of some implementations.Does the eÆieny of best implementation stems from the algorithm itself or from thesophistiated data struture? Or the outstanding run-time is attributed to the brilliantprogramming tehnique?Although we agree with the view \Exposition, ritiism, appreiation, is work forseond-rate minds."1 we believe that the publishing of data mining algorithms hasreahed the point when a theoretial analysis and a omprehensive studies are moreuseful to the ommunity than new algorithms. It seems that we have moved from the\We are drowning in information, but starving for knowledge" to the \We are drowningin methods, but starving for solutions" era.Even now, after the numerous publiation there are many misbelieves, misunder-standing about the eÆieny of ertain algorithms. Most reasoning in textbooks areeither not true or they are not the real reason of an algorithm's eÆieny.Frequent itemset mining is fortunate ompared to other the data mining �elds likelassi�ation and lustering, beause the problem an be easily formulated. It su�ers,however, from the lak of evaluation method, and from the fat that it is easy to reatea database whih is suitable to demonstrate arbitrary ineÆient algorithm.In the beginning this was fortunate, beause the opportunity of the easy publiationattrated many researhers, and this has raised frequent itemset mining as one of themost popular �eld of the 90s. Unfortunately the high number of published algorithms,the lak of standard terminology, omparisons and theoretial results led to a haos andresulted in an unexpressed loss of redibility of the �eld.An eÆient FIM program is an implementation of a widely known and basi FIMalgorithm together with many data struture and implementation tehnique. The basealgorithm alone is not ompetitive with its ounterpart that adapts speed-up tehniques.This is the reasons we believe that speed-up tehniques and the base algorithm areinseparable and there is no point stating anything about the base algorithm withoutexamine the inuene of the statement to the tehniques. The FIM world is furtherompliated by the fat that the tehniques are not independent of eah other, i.e. oneredues, the other inreases the inuene of a third tehnique. Atually, the eÆienyof almost any arbitrary simple idea, an be veri�ed by arefully hoosing the other1G H Hardy. A Mathematiian's Apology (London 1941).2

CHAPTER 1. INTRODUCTION1.1. THE ARENA OF FIM ALGORITHMS; A SHORT HISTORYtehniques, whih resulted in the large number of publiations. To reveal the truth, wehave to examine the base algorithms, the tehniques alone and their inuene on eahother, and the theoretial statements have to be veri�ed with a omprehensive set ofexperiments. Suh publiation has not born yet.Our goal is twofold. First we would like to larify the three most important al-gorithms of the �eld, i.e. Apriori, Elat and FP-growth. We believe that the imple-mentation of the fastest Apriori, Elat and FP-growth, the most omprehensive set ofexperiments and the development of a template FIM library entitles us. Seond, e wetry to provide a notation and terminology that is as onise, ompat and oherent aspossible. In the literature, often di�erent names have been used. But as the same enti-ties often got di�erent names and there learly is no onvergene in notation moreover,the historial terminonolgy sometimes obsures more than it helps. So we felt obligedto provide a base for further ommon understanding. For referene, we always providethe most ommon historial names in apostrophes.1.1 The arena of FIM algorithms; a short historyThe �rst FIM algorithm AIS was published in the paper that presented the problemitself [3℄. A year later the same authors published Apriori, whih is the widest-knownalgorithm even nowadays. In the next few years many Apriori modi�ations were pro-posed, DHP [40℄, DIC [12℄, Partition [49℄ and the sampling algorithm [52℄ are the mostfamous ones. These algorithms are regarded obsolete; there exists no publi implemen-tation of any of them that is ompetitive with today's algorithms. In 1996 Zaki et al.[58℄ published algorithm Elat and four years later Han et al. [22℄ presented FP-growth.Sine FP-growth was shown not to perform well on sparse datasets, the authors im-proved their solution and published H-mine [42℄. A very eÆient Apriori mutant DCI,whih adapts hybrid support ount was presented by Orlando et al. [36℄.2003 was a milestone in the history of frequent itemset mining. The �rst openFIM ompetition was organized [16℄. Two FP-growth implementations (FP-growth* byGrahne and Zhu [20℄ and Patriia by Pietraaprina and Zandolin [43℄), a modi�ationof DIC [38℄ and a highly optimized Elat alled lm by [53℄ were standing out fromthe �eld of ompetitors. Lm was further improved and submitted to the seond FIMIompetition, where a brand new FP-growth implementation by R�az [45℄ overtook the�rst plae from FP-growth* and Patriia.1.2 Common misbelievesIn this setion we list some ommon believes that are false and led the researhes intowrong diretion. 3

1.2. COMMON MISBELIEVES CHAPTER 1. INTRODUCTION� The eÆieny is not primarily determined by the number of san of the database.In the early era of the FIM many e�orts foused on reduing the number ofdatabase san of Apriori. This led to algorithms DIC [12℄, Partition [49℄, et.Although there exists no publi implementation of these algorithms that outper-form the most widespread Apriori [11℄[9℄, they are quite favored in textbooks.� Algorithm FP-growth do generates andidates, furthermore it generates more an-didates than Apriori. An itemset is alled andidate if its support is determined,i.e. a spae for ounter is reserved in the memory. Atually FP-growth determinesthe supports of only 1-itemsets, but then it does it reursively in the projeteddatabase. For example if item B ours in a transation that is projeted to itemA, then the support of itemset AB is determined.� The number of andidates is not the primary fator that determines the eÆienyof an algorithm. We will see that Elat and FP-growth generates more andidatethan Apriori, nevertheless they outperform Apriori most of the ases. The sameapplies to Apriori and DHP, it is easy to present databases where DHP generatesfewer andidates, but runs slower. Analysis that use only these numbers (like [24℄)have nothing to do with the real performane. To understand the performane, wehave take into onsideration the number of andidates, the way they are generatedand their support are determined.� FP-tree (or trie) is not neessarily a ondensed representation of the database.Worst-ase the size of the FP-tree is four times as muh as the size of the database.In many ases a simple vetor that stores the transations that are deprived of theinfrequent items needs less memory than an FP-tree. See Setion 7.2.1 for furtherdetails.� Support ount is always the most time-onsuming funtion in Apriori. In dense,medium-size databases the andidate generation dominates the run-time.� Generating andidates of size two is not the bottlenek of algorithm Apriori. Thismight have been true in 1997 when the available memories were muh smallerand fewer andidates �t into the memory. With todays' memory apaities thisrestrition no longer lives. See setion 7.2 for more details about the bottlenek ofApriori.� The numerous database san is not the bottlenek of algorithm Apriori. We knowthat Apriori sans the database as many times as the size of the largest andidates.The time required by the I/O operations is only a small fration of time requiredby the support ount and almost never dominates the run-time of Apriori.4

CHAPTER 1. INTRODUCTION1.3. ALGORITHMIC ASPECTS OF THE MODERN PROCESSORS' FEATURES1.3 Algorithmi aspets of the modern proessors'featuresMany researhers tend to analyze their algorithms by using the external memory model.Due to the huge memory sizes, most databases �t into the main memory, whih leads tothe usage of the simpler random aess model (RAM) (also alled von Neumann model[54℄ named after the Hungarian born John von Neumann who proposed �rst this arhi-teture). The preise model of the modern proessors, however, is more sophistiatedthan the RAM model, whih is the reason that the analysis has often nothing to do withthe real run-times. For an exellent overview about the hanges in lassial algorithmrequired by the new model, the reader is referred to [33℄. The most important featuresof modern proessors, whih have to be kept in mind by a data mining programmer, arethe memory hierarhy and the pipeline proessing.1.3.1 Memory hierarhies, data loality:The memory is not one big blok but rather a hierarhy of memories with di�erentsizes, aess latenies and aess numbers. The larger the memory the longer it takesto aess it. The members of the hierarhy are registers, (few kilobytes of) L1 ahe,(few megabytes of) L2 ahe, sometimes L3 ahe, (few gigabytes of) main memory andhard disk. The data are opied from the main memory to the L2 ahe and from L2 toL1 ahe in bloks. The size of blok (also alled ahe line size) for opying from L2 toL1 ahe is 128 bytes in the ase of Pentium 4 proessors.The blok proessing brings in some important algorithmi aspets. Reahing a singlebit from a slower memory takes the same time as reahing a whole blok. Proessing thedata that is in the same blok does not require an other slow memory aess operation.Therefore data loality, the requirement that data items whih are proessed lose toeah other in time, should be loated lose to eah other in memory, is a immenselyimportant issue, whih a�et signi�antly the running time. Data near the urrentlyproessed data should ontain many items, whih will be proessed in the near future.When a data has to be proessed, it has to be moved into the registers. Sometimesit is already there, beause it was used in the previous instrutions. Due to the limitednumber of registers, it is more probably that the data is loated in L1, L2 ahe or inmain memory. It may even be loated on the hard disk, if the memory usage of thealgorithm is so large, that the operating system has to swap. We say a data aess ausesahe miss if it is loated in L2 ahe or main memory. Although the proessor mayperform another operations while the data is fethed, the performane of the proessorget far from its maximum. The proessor is apable to do 1000 basi operations (likeaddition) during the time the data is fethed from the main memory. In summary, whendesigning the data struture { algorithm pair, we have to endeavor to reah high data5

1.4. A FREQUENT PATTERN MINING TEMPLATE LIBRARYCHAPTER 1. INTRODUCTIONloality so that ahe misses are avoided.1.3.2 Pipeline proessing, branh predition:The instrutions a programmer works with are exeuted as a sequene of many miroop-erations (u-ops). The operations are not proessed individually, one-by-one after eahother. Instead, a parallel proessing is done by using a pipeline. Unfortunately, thedata dependeny and the onditions ruin the eÆieny of parallelism. Data dependenyours when an instrution depends on the results of a previous instrution. Branhpredition means prediting the output of a ondition and loading the predited opera-tions into the pipeline. If the predition turns out to be false, then the pipeline has tobe ushed and the orret values have to be reloaded to the registers. These problemsan be often overome by di�erent tehniques (like ode reordering), whih are doneautomatially by the ompiler. We still have to take data independene and branhpredition into onsideration when designing a omputation intensive algorithm.The pipeline proessing makes it possible to exeute more than one instrution dur-ing a loktik. The problems mentioned above are the reasons for being the averageperformane of the proessor muh less than the optimal. We say the proessor stalls,if it an not exeute an operation in the atual loktik.Unneessary onditions may ruin eÆieny, but this is not always the ase. Thebranh predition is \intelligent" in the sense that it learns if the outome of the on-dition never hanges, and sets the predition aordingly. Therefore, a 100% true (or)false ondition never ruins eÆieny at all.1.4 A Frequent Pattern Mining Template LibraryThose who believe that their work is of high value, often say, that the main problem offrequent pattern mining is the lak of reproduibility and the impossibility of veri�ation.In the beginning of the FPM era a typial paper proposed some new tehniques,reasoned with some intuitive, informal thoughts and showed its eÆieny on some are-fully generated datasets. This proedure led to indignation, beause the eÆieny ofthe implementation of the rival algorithm was often signi�antly below the eÆieny ofthe implementation done by the original authors. The generality, drawbaks, limits ofthe proposed algorithm were rarely disussed.Fortunately, this era quikly losed after some famous implementations were madepublily available, and at the onferenes of high standards it was required that theproposed algorithms be ompared with the known implementations. The level was raisedfurther by the two FIMI ompetitions. Now we have ultrafast FIM implementations,nevertheless nobody exatly knows why do they perform so well, what are the limitationsof the solutions, what kind of input data they prefer. They are like blak-boxes, and6

CHAPTER 1. INTRODUCTION1.4. A FREQUENT PATTERN MINING TEMPLATE LIBRARYonly the authors an hange the parts of the implementation, whih is attributed tothe highly optimized, non-objet oriented odes, whih are almost impossible to read byother researhers.If we would like to understand the performane e�et of all parts of a ode, we haveto make it modularized. This is not a trivial task in a highly optimized environment. In[46℄ we presented some tehniques, whih are based on templated and in-line funtions,to make a ode objet-oriented without sari�ing eÆieny. To ahieve a perfet FPMworld, objet oriented odes are not enough yet. The odes have to be in a library,where any part of an implementation an be replaed by an other element of the samefuntionality and any tehnique an be swithed on and o�. This way eah part ofan algorithm an be tested separately and together with other tehniques. We anmeasure how does a ertain solution ontribute to the �nal performane, how do di�erenttehniques assist or hold bak eah other.These priniples were followed in building up our FPM template library, whih on-tains our fully pluggable Apriori, Elat and FP-growth implementations that are om-petitive with (and in most of the ases outperform) the blak-box implementations. Forexample in our Apriori algorithm di�erent template lasses are responsible for doingthe support ounting, the andidate generation, oding and deoding the items, ahingthe transation. All tehniques like, dead-end pruning, equisupport extension, et. anbe turned on and o� by a template parameter. The data struture is also a templateparameter. If it is a trie, then the representation of the list of edges is given by an othertemplate lass, in whih even the vetor representation is pluggable, therefore we anhose STL vetor or our lightweight, self-made vetor.The FPM template library made possible to ondut a omprehensive set of exper-iments with reasonable e�ort. In a blak-box system this would have required a lot oflaborious and error-prone work. The library is made publily available and started tobe used by other researhers.

7

1.4. A FREQUENT PATTERN MINING TEMPLATE LIBRARYCHAPTER 1. INTRODUCTION

8

Chapter2The Frequent Itemset Mining ProblemLet I be a set of uninterpreted symbols alled items. Any subset I � I is alled anitemset.Let T = ht1; : : : ; tni be a sequene of itemsets alled data (also alled as transationdatabase). Its elements t 2 T will be alled data itemsets or transations1. For anyitemset I � I we de�ne the setoverT(I) := ft 2 T j I � tgof data itemsets ontaining I as the over of I. The size of the oversupT(I) := j overT(I)jis alled support. Given a lower support threshold minsup alledminimum support,the set FT;minsup := fI � I j supT(I) � minsupgis alled the set of frequent itemsets.The frequent itemset mining (FIM) task then is, given data T and a lowersupport threshold minsup, to ompute the set F of all frequent itemsets.Historially, the support threshold was de�ned as a relative measure to the numberof transations, i.e j overT(I)jjTj and a relative support threshold in interval [0; 1℄ was given.The data mining ommunity tended to hange the de�nition, and by today, the absolutesupport is the default. In the rest of the paper we refer to the relative support asfrequeny and denote supT(I)jTj by freqT(I) and minsupjTj by minfreq.1A large part of the researh ommunity de�nes the data as a multi-set of itemsets or as a binaryrelation over a set of items and a set of transation (bipartite graph-based de�nition). It is atually amatter of taste sine the three de�nitions result in an equivalent problem statement. We have deidedfor sequene-based de�nition beause, in pratie, the data is atually given as sequene .9

CHAPTER 2. THE FREQUENT ITEMSET MINING PROBLEMWe will often illustrate de�nitions and methods by examples where the items aredenoted by apital letters of the English alphabet. For the sake of simpliity, we oftenomit braes and ommas when denoting an itemset. For example, we write AEDGinstead of the preise form fA;E;D;Gg.There are some notions that are heavily used throughout the paper. Next, we givethe de�nitions for them.In a set of itemsets S the downward losure property holds, if I 0 2 S for allI 0 � I and all I 2 S. A frequent itemset I is maximal if there exist no proper supersetof I in I that is frequent. An itemset I is losed [41℄[57℄ if there exist no proper supersetof I that has the same support as I.Corollary 2.0.1 All maximal frequent itemsets are losed.De�nition 2.0.2 The negative border of a set of itemsets F (denoted by NB(F))ontains the itemsets that are not elements of F , but all their proper maximal subsetsare in F . FormallyNB(F) := fIjI 62 F and I 0 2 F for all I 0 � I suh that jI 0j+ 1 = jIjg:In poset theory the negative border is alled the minimal, proper upper bound.Example 2.0.3 Let I = fA;B;C;Dg and F = f;; A; B; C;AB;AC; g. Then NB(F) =fBC;Dg.De�nition 2.0.4 Let � denote a total order on I. The `-element pre�x of itemset I(` � jIj), whih is denoted by PÌ , is the `-element subset of I that ontains the ` smallestelements of I with respet to the ordering �.By de�nition P 0I = ; for any I itemset, i.e. the empty set is the zero-size pre�x of allitemsets.Example 2.0.5 Let I = fA;B;C;D;Eg and � denote the alphabeti order over I.Here, P 2ABC = AB and P 1BDE = B.De�nition 2.0.6 The order based negative border of a set of itemsets F ontainsthe itemsets I that are not elements of F , but their pre�x of size jIj�1 and the subsequentsubset of size jIj � 1 are elements of F . Here, subsequent is understood with respet tothe ordering de�ned on the power set of I. Formally:NB�(F) := fIjI 62 F and P jIj�1I 2 F;Q 2 F , where P jIj�1I � Q � Q0 (2.1)for all Q0 � I suh that jQ0j+ 1 = jIj; Q0 6= P jIj�1I ; Q0 6= Qg:(2.2)By de�nition item i is in NB�(F) if fig is not in of F and the empty set is in F .10

CHAPTER 2. THE FREQUENT ITEMSET MINING PROBLEMExample 2.0.7 Let I = fA;B;C;D;Eg , F = f;; A; B; C;AB;ACg and for any item-sets of the same size I; J let I � J if I lexiographially preedes J. Then NB�(F) =fABC;BC;Dg.Corollary 2.0.8 For any itemset I, F � 2I and � we haveNB(F) � NB�(F):In depth-�rst like algorithms the notion projeted database plays an importantrole.De�nition 2.0.9 Let T be a transation database over I. The I-projeted database ofT (whih is denoted by TjI) onsists of the elements of T that ontain I.The sequene of transations that are not ontained in the I projeted database isdenoted by TjI and alled the omplement of the projeted database. Obviously,no element of TjI ontains I.For example hABC;AE;BCE;BCEijfBg = hABC;BCE;BCEi, hABC;AE;BCEijfAEg =hAEi and hABC;AE;BCEijfAEg = hABC;BCEi.

11

CHAPTER 2. THE FREQUENT ITEMSET MINING PROBLEM

12

Chapter3Base AlgorithmsThere have been many di�erent algorithms proposed for frequent itemset mining. Al-though most of these algorithms are variants of other algorithms, sometimes small orobvious, sometimes larger or more intriate, for marketing purposes most of them omeby their own names, making it rather hard to see the ommon features as well as thespei� di�erenes.All these algorithms an be ategorized as variants of one of three di�erent basealgorithms, Apriori, Elat and FP-growth. Furthermore, Elat and FP-growth arethe same algorithms exept that they use a di�erent data struture. Nevertheless, wedistinguish them for historial reasons.3.1 Bottom-up FIM algorithmsThe initial step is ommon in all algorithms. We san the database one to determinethe support of every item, and then selet the frequent ones. Without loss of generality,we assume that frequent items are denoted by onseutive integers starting from 0.In the latter phases of the algorithms eah transation is �ltered before being pro-essed, i.e. infrequent items are removed. Most of the tehniques make the assumptionthat the (frequent) items are oded with nonnegative integers. Therefore eah transa-tion is �ltered, and reoded. Obviously, before writing out the results the items have tobe oded bak.Apriori, Elat and FP-growth perform a bottom-up traversal of the searh spae,i.e. starting from the empty set they determine the frequent itemsets in a growingmanner. To avoid dupliate heking of the same itemset all FIM algorithm are basedon an ordering of the items. The lexiographi extension of this ordering makes itpossible to order the itemsets. It would be impossible to determine the support of everypossible itemset (their number is exponential in jIj) therefore the algorithms restrit13

3.2. BREADTH-FIRST, ITERATIVE VS. DEPTH-FIRST, RECURSIVEALGORITHMS CHAPTER 3. BASE ALGORITHMStheir attention to the so alled andidates. In general a andidate is an itemset whosesupport is determined.Bottom-up searh algorithms turned out to be more eÆient algorithms than thosethat perform top-down or a middle-way top-down bottom-up searh (suh as algorithmsPiner [30℄ and CBW [51℄). This is attributed to the fat that the maximal frequentitemset border is loser to the empty set than to I, i.e. in general the size of the largestfrequent set is muh less than jIj.3.2 Breadth-�rst, iterative vs. depth-�rst, reursivealgorithmsApriori is an iterative, breadth-�rst algorithm. In the iteration step ` it determines thefrequent itemsets of size `. Elat and FP-growth, on the ontrary, are reursive, depth-�rst-like algorithms. Given a set of frequent itemsets (denoted by F+P) with a ommonmaximal proper pre�x P and of size jP j + 1, it takes the itemsets I 2 F+P one-by-oneand determines the frequent itemsets whose pre�x is I. The searh is done reursively;initially the emptyset is onsidered as a pre�x and the set of frequent 1-itemsets is thegiven set.The de�nition of a andidate in Apriori di�ers from the de�nition in Elat andFP-growth. In Apriori the set of andidates at iteration ` is equal to the negativeborder of frequent itemsets found till the iteration step `. In Elat and FP-growththe set of andidates in the next reursive step belonging to itemset I 2 F+P is thesubset of the order-based negative border of F+P whose element's pre�x is I (formallyfI 0jI 0 2 NB�(F+P) suh that P jI0j�1I0 = Ig). The reursive step is terminated if noandidate is generated.It would be ineÆient to hek all itemsets of a given size if they meet the de�nitionfor andidates. Instead, we generate the andidates. Here we make use of the fat thatin all three algorithms the smallest and the subsequent subset of the andidate must befrequent. The itemsets form a lattie, therefore eah andidate is a union of two frequentitemsets, that have same pre�x of size ` � 1. This is the reason the maximal properpre�x and the subsequent itemset are alled the generators of the andidate. The itemthat is added to get the andidate (i.e. the largest item of the seond generator) is alledthe extender.The set of infrequent andidates is the the negative border of the frequent itemsetsin Apriori and is the order-based negative border of the frequent itemsets in the ase ofElat and FP-growth. It follows from Corollary 2.0.8 that the number of andidates isnever less in Elat and FP-growth than in Apriori.historial remark: FP-growth has been viewed as an algorithm operationon the data trie by its inventors [22, 21, 23℄ that is augmented by so-alled14

CHAPTER 3. BASE ALGORITHMS 3.3. TECHNIQUES"header lists" that sequentially link nodes with the same item label. Fromthis perspetive, FP-growth looks like a depth-�rst algorithm that is quitedi�erent from Elat. We argue here (and it was also noted by Goethals[19℄), that this is a queer view on the algorithm, and that atually the maindata struture is the set of pre�xes (i.e., the \header lists"), while the datatrie is nothing else than a means to ompute the relation startsWith eÆ-iently. Then, the e�etive di�erene between Elat and FP-growth is thatFP-growth works on pre�xes, while Elat works on single transation. Thatmeans, that FP-growth an take advantage from data that an onsiderablyompressed by a trie, while it has to pay the overhead of a more omplexintersetion method that has to take into aount the relation startsWith.3.3 TehniquesMost published algorithms are the modi�ations of the base algorithms. A typial FIMpaper presents some tehnique that dereases the run-time, memory need or I/O demandof a known method. In fat, there is muh more to disuss about tehniques and datastruture issues than about the base algorithms.In the next setions we desribe the three most important FIM algorithms. Eahalgorithm is �rst desribed at semanti level, and then we hek what kind of datastruture supports best the funtions of the algorithm. Then we give a omprehensivedesription of the tehniques.We all a tehnique memory safe if it never inreases the memory need of thealgorithm signi�antly (let us say more than 25%). A memory-safe tehnique is alledstritly memory-safe if it required the same or less amount of memory than thealgorithm without the tehnique in all test databases with every support threshold.Similarly a tehnique is run-time safe if it never results in a signi�ant run-timedegradation. We all a tehnique dangerous if the performane drops to its fration atsome benhmark dataset.3.4 Graphial presentation of the experimentsThis work is based on thorough theoretial analysis and on a very omprehensive set ofexperiments. To inrease readability we avoid using tables of numbers but rather tryingto visualize the experiments. In the literature the authors present their experiments byrun-time and memory plots. Displaying the plots for all databases takes too muh spae,therefore only a few (unfortunately the ones that give a favorable view of the proposedtehnique) are seleted. The FIMI ontests showed that the published algorithms donot perform so well in general as they do in ertain, arefully hosen databases. For15

3.4. GRAPHICAL PRESENTATION OF THE EXPERIMENTSCHAPTER 3. BASE ALGORITHMSfairness, we test eah tehnique on 16 well-known test databases, most of them an bedownloaded from http://fimi.s.helsinki.fi. To avoid spae problems, we restritour attention to test results at low support thresholds.In many experiments we ompare two solutions (s and snew), one (snew) is expetedto be faster. The advantage of the faster solution is presented on 16 databases mainlyat very low support thresholds. We use bar-harts, where the height of a bar is m(s)m(snew) ,where m denotes the measurement (in most of the ases it is run-time and memory-need). Sometimes the new tehnique results in an improvement of a several orders ofmagnitude. To present suh ases we use the logarithm of the measurements.In many ases we are not only interested in the run-times but we would like tovisualize the way the tehnique suits to the features of the modern proessor. For thiswe use a diagram like the following.
 0

 200

 400

 600

 800

 1000

 1200

 1400

500

GC
loc

kti
ck

s

all uops on BMS−WebView−2 at 6

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

The height of the wide bars entered around the tiks show the atual run-time (thetotal loktiks used by the program). The olors/patterns of these bars show how wellthe program utilized these loktiks: the top-most part shows the amount of loktiksduring whih three u-ops were exeuted, while the bottom-most part shows the timeduring whih the program exeution was stalled for some reason (i.e., no operationswere exeuted during that loktik).The narrow bars entered around the tiks show the total number of u-ops that wereexeuted. The bar is divided into two, the upper part show the bogus u-ops, those u-opsthat were speulatively exeuted on a mispredited branh, and thus were rolled bak.The ratio of the lower-to-upper part of this bar shows the branh predition ineÆieny.The narrow bars beside the wide ones show the front-side bus ativity, the totalnumber of loktiks during whose at least one read/write operation was pending (i.e.,data transfer time inluding memory lateny). The upper part of these bars show thetime onsumed by prefeth reads (when the proessor speulatively transfers data fromthe memory into the ahe for further availability), while the lower part shows atualreads or writes. The main di�erene is that the delivery of data during atual readsand writes presumably stalls the exeution pipeline (these are the ahe misses). If theratio of prefeth (top part) to atual wait (bottom part) is high, then a huge amount16

http://fimi.cs.helsinki.fi

CHAPTER 3. BASE ALGORITHMS 3.5. THE TRIE AND ITS VARIANTSof ahe misses are avoided by the prefeth mehanism, thus ahieving a onsiderableperformane gain.3.5 The trie and its variantsSine the trie (pre�x-tree) data struture omes into play in Apriori, FP-growth andmany other FIM algorithms (like MaxMiner [47℄ and TreeProjetion [1℄), we begin withthe desription this entral data struture.The data struture trie was originally introdued by de la Briandais [14℄ and Fredkin[15℄ to store and eÆiently retrieve words of a ditionary. Mueller [35℄ was the �rst touse trie in a FIM algorithm.A trie is a rooted, labeled tree. Eah label is a harater and eah node represents aword (sequene of haraters) whih is the onatenation of the haraters that are onthe path from the root to the node. The root is de�ned to be at depth 0, and a node atdepth d an point to nodes at depth d+ 1. A pointer is also referred to as edge or link.We will use the notations parent, hild, sibling, anestor and desendant as theyare de�ned in the lassial oriented tree data strutures.Tries are suitable for storing and retrieving not only words, but any �nite sequenesover arbitrary alphabet as well. In the FIM setting a link is labeled by a frequent item,and a node represents a sequene of items. To obtain a sequene from a set, we have tode�ne a total order on the items. For this, we always use the same order that is usedto order the edges. In this ase the preorder depth-�rst searh traversal orresponds tothe asending lexiographial ordering of the itemsets.If the trie stores sequenes of di�erent lengths, then a boolean value is also assoiatedto eah inner node. A true value denotes that the sequene that is represented by theinner node is also ontained in the ditionary not just the sequenes represented by theleaves. Figure 3.1 presents a trie that stores the itemsets A, C, F , AC, AF , EF , AEF .The order used to onvert sets to sequenes orresponds to the alphabeti order. Innernodes with false and true boolean values are denoted by squares and irles, respetively.A trie that stores all subsets of a given set is quite unbalaned. The following pitureshows the trie that stores all subsets of itemset fABCDEg.Originally the tries are hild-linked, i.e. from eah node only its hildren an bereahed with one step. In ase of a parent-linked trie we an only reah the parentsdiretly. Obviously, the two approahes an be ombined. For example, in FP-growththe hild linked-trie is onverted to parent-linked tree after all itemsets are inserted.3.5.1 The representation of the list of edgesThe list of edges an be represented in many ways. The representation used in thealgorithms greatly a�ets both run-time and memory-need. Let us assume that we have17

3.5. THE TRIE AND ITS VARIANTS CHAPTER 3. BASE ALGORITHMS
A C E F

C E F FFFigure 3.1: Example: a trie that stores sets fAg,fCg,fFg,fACg, fAFg, fEFg, fAEFg
T(2ABCDE)

A B C D E
B C DE C DE D E EC DE DE E D E E EDE E E EEFigure 3.2: Example: a trie that stores all subsets of itemset fABCDEg

18

CHAPTER 3. BASE ALGORITHMS 3.5. THE TRIE AND ITS VARIANTSa node u with n hildren. This means that n edges start out from u. Denote the smallestand largest label of these edges by lmin and lmax respetively. The most frequently usedrepresentations are:ordered list: Eah edge is represented by a pair, whose �rst element is the label, andthe seond is a pointer to the hild. The edges are stored in a vetor, whih isordered aording to the labels. The memory need of this solution (ignoring theoverhead of a list) is 2n ells.indexvetor: The hild pointers are stored in a vetor whose length equals to thenumber of frequent items. A node at index i is the endpoint of the edge whoselabel is item i. If there is no edge with suh label, then the element is NIL.Obviously the elements at index less than the smallest label and greater than thelargest label are NIL. We save memory if these elements are not stored. In o�setindexvetor representation the smallest element (the o�set) and a pointer vetorof size lmax� lmin+1 is stored. The hild pointer of label i is given by the elementat index i� lmin.hybrid solution: Notie, that neither of the above representations needs always lessmemory than the other. If 2n < lmax� lmin+1+1, then the ordered list needs lessmemory, otherwise the o�set-indexvetor. In the hybrid edge representation wedynamially hoose the edge representation based on the memory requirements.3.5.2 Index vs. pointer-based trieThe nodes of the trie (together with the lists of edges) an be stored onseutively orsattered in the memory. We distinguish two types of Trie aording to the memorylayout (suh tries are depited in Figure 3.3).167123 102B Dontiguous-memory based:[2,167,B,6,D,8,0,123,0,102℄ pointer-based:167,[B,�,D,�℄123,[℄102,[℄Figure 3.3: di�erent representations of the same trie19

3.5. THE TRIE AND ITS VARIANTS CHAPTER 3. BASE ALGORITHMSpointer-based trie : The nodes are sattered in the memory. The ounter and the listof edges are assoiated with the node. The nodes are identi�ed by their addressin the memory, and a link is represented by a pointer. When adding a new leafinto the tree we searh for a free spae in the memory and reserve it to the newleaf. Deleting a leaf means simply freeing the memory oupied by the leaf andremoving the pointer (together with the label) from the edgelist of its parent.If we store the edges in an ordered vetor, then the memory need of a node isthe memory need of a ounter and a list. The total memory need of a trie isnsi+nsov+(n�1)si+(n�1)sp, where n is the number of nodes in the trie, sov isthe memory need of the overhead of the vetor, si; sp is the size of an integer anda pointer respetively. If the vetor of C++ STL is used then the overhead of avetor equals three times the size of the pointer, therefore the total memory needis approximately 2n(si + sp) whih is 26n bytes in a Pentium 4 and 40n bytes inan Opteron.ontiguous-blok trie : The trie is represented by one big vetor. The ounter, thenumber of edges and the list of edges are assoiated with the node. Eah nodeis identi�ed by the position in the vetor. Adding (and erasing) a leaf is quite alaborious work. We expand the vetor, then insert a new edge into the edgelist ofthe parent. This results in an inrease of the positions of the nodes oming afterthe parent, therefore the indies have to be updated. This requires a total san ofthe vetor.It may be diÆult to �nd a free big blok in the memory, hene a list of medium-size bloks are used in pratie. The bloks are of the same size, therefore we anquikly determine the blok (and the o�set) of a node it has been plaed into.If the edgelists are stored in an ordered vetors, then the memory need of a nodeequals to the memory need of the ounter the memory need of the variable thatstores the number of hildren, and the edges (without overhead). The total mem-ory need is sov +n(si+ si+2si) � 4nsi whih is 16n in a Pentium and Opteron aswell. Note, that we assume that the size of the vetor that stores the trie is notgreater that 28si , otherwise we annot address an element by an integer value.In our implementation leaves are added and deleted from the trie, therefore we usethe pointer-based approah.3.5.3 Patriia trieA direted path is alled hain if all inner nodes on the path have only one hild. Atree that is obtained from a trie by ollapsing maximal hains to a single edge is alledpatriia tree. The new edge points to the last node of the hain and its label is the20

CHAPTER 3. BASE ALGORITHMS 3.5. THE TRIE AND ITS VARIANTSsequene of the labels on the hain. If hain ollapse is restrited to hains that end inleaves then we talk about leaf-patriia tree.Patriia trees onsume less memory if the trie ontains many hains. Otherwise, itneed more memory, beause the labels are represented by vetors, whih is an ineÆientsolution when it ontains just one element.

21

3.5. THE TRIE AND ITS VARIANTS CHAPTER 3. BASE ALGORITHMS

22

Chapter4Algorithm AprioriAPRIORI is regarded to be the �rst FIM algorithm that an ope with large datasetsand large searh spae. It was proposed by Agrawal and Srikant [2℄ and Mannila et al.[32℄ independently at the same time. Their ooperative work was presented in [4℄.The algorithm sans the transation datasets several times. After the �rst san thefrequent 1-itemsets are found, and in general after the `th san the frequent `-itemsetsare extrated. The method does not determine the support of every possible itemset. Inan attempt to narrow the domain to be searhed, before every pass it generates andidateitemsets and only the support of the andidates are determined. An itemset beomesa andidate if all its proper subsets of are frequent. Due to the bottom-up searh, allfrequent itemsets of size smaller than the andidate are already determined, therefore itis possible to do the subset validations.After all the andidate (` + 1)-itemsets have been generated, a new san of thetransations is e�eted and the preise support of the andidates are determined. Theandidates with low support are disarded. The algorithm ends when no andidates aregenerated. The pseudo ode of Apriori is given below.The intuition behind andidate generation is based on the following simple fat:Property 4.0.1 Every subset of a frequent itemset is frequent.This is immediate, beause if a transation t ontains an itemset X, then t ontainsevery subset Y � X.Using the fat indiretly, we infer that, if itemset I has a subset that is infrequent,then I annot be frequent. In the algorithmAPRIORI only those itemsets are andidateswhose all subsets are frequent. It is not neessary to hek all subsets; if all maximalproper subsets are frequent, then the anti-monotone property of the support funtionguarantees that all subsets are frequent as well.It would be ineÆient to go through on all itemsets of size (`+1) and do the subsethek, instead, we generate the andidates. All itemsets that meet the subset hek23

CHAPTER 4. ALGORITHM APRIORIAlgorithm 1 algorithm AprioriRequire: D : database over the set of items I,minsup support thresholdEnsure: F : the set of frequent itemsets` 1C` Iwhile jC`j 6= 0 dosupport ount(D;C`)for all 2 C` doif :support � minsup thenF` end ifend forC`+1 andidate generation(F`)` `+ 1;end whileF = Sj̀=1 Fjrequirement must be the union of two di�erent `-itemset that are frequent and have` � 1 ommon items. Di�erent pairs an have the same union (for example the pairs(AB;AC) and (AB;BC)). In order the andidate generation to be non-redundant wetake the union of those `-itemsets whose intersetion is the (`� 1)-element pre�x. Pairs(I1; I2) and (I2; I1) generate the same andidate therefore we assume I1 � I2. Thepseudo ode of the andidate generation is found in Algorithm 2.Algorithm 2 andidate generationRequire: F` frequent itemsets of size `Ensure: C`+1 the set of andidates of size `for all fi1; : : : i`�1; i`g; fi1; : : : i`�1; i0̀g 2 F` suh that i` � i0̀ do fi1; : : : i`�1; i`; i0̀gif all ` subsets are frequent(; F`) thenC`+1 end ifend forAfter the andidate generation the supports of the andidates are alulated. Thisis done by reading transations one by one. A ounter with 0 initial value is assoiatedwith eah andidate. For eah transation t the algorithm deides whih andidates areontained in t. The ounter of these andidates are inremented.24

CHAPTER 4. ALGORITHM APRIORIA simple solution of this is to hek eah andidate if it is ontained in the transa-tion. This is an elementary operation (determining if an ordered sequene ontains another ordered sequene) if the transation and the andidates are stored ordered. Thedrawbak of this solution is that the transation is heked and partially traversed asmany times as the number of andidates, whih is quite slow at low support thresholds,where there are many andidates.To save numerous transation traversals it is useful to store the andidates in aspeial data struture. In the original paper [? ℄ a hash-tree was proposed for thispurpose. The �rst trie-based Apriori implementation is reported Pasquier et al. [41℄.For the sake of orretness we have to mention that a year earlier algorithm DIC [12℄,whih is an extension of Apriori, also used trie to store the andidates. Independentfrom eah other Borgelt, Goethals and Bodon (and maybe several others) published the�rst open-soure Apriori implementations. In [7℄ trie and hash-tree were ompared, andsuggested that the trie is a better data struture in Apriori w.r.t run-time, memoryneed but most importantly the exibility. The main disadvantage of hash-tree is thatit is non-parametri, i.e., it requires a hash funtion. The eÆieny of the hash-tree isgreatly inuened by the hash-funtion. Di�erent hash-funtions are suitable for di�er-ent databases and even di�erent hash-funtions are suitable for the same database withdi�erent support threshold. There exists no available and eÆient Apriori implementa-tion that uses a hash-tree.A vetor{trie middle-way solution was proposed in [37℄. Candidates with the same 2-element pre�x are stored in a vetor. The addresses of the vetors are diretly aessibleby a triangular array. Vetor of pre�x i; j belongs to the element at index i; j � i � 1of the array. To save memory, the ommon 2-element pre�xes are not stored in theelements of the vetors. The authors delared that this solution is more eÆient thantrie-based solution, beause of the \pointerless" approah, the high data loality andthe preditable ode branhes. Our experiments do no support this laim.The following plots show that although this is a muh better solution than simplystoring the andidates in a list, it is still not ompetitive with trie-based solution atmedium or low support thresholds. This observation holds in all databases.The fat that trie-based solution provides results in a faster Apriori than pre�x-arraybased solution in all ases, does not imply that trie is the best hoie. Pre�x-arrays areexploited in the initial phases of DCI, therefore we have to ompare the performaneof the two data strutures at smaller andidates' sizes. Our experiment { in whih weterminated the algorithms as soon as the andidates reahed a ertain size { showed thattrie-based solution is always faster than pre�x-array based solution at any andidates'sizes.Due to the outstanding eÆieny of the trie-based solution, we restrit our attentionto this data struture. 25

4.1. THE TRIE OF APRIORI CHAPTER 4. ALGORITHM APRIORI
 1

 10

 100

 1000

 100 1000

ru
n-

tim
e

(s
ec

.)

minsup

Database: BMS-POS

vector
prefix-array

trie

 0.1

 1

 10

 100

 1000

 100 1000

m
em

or
y

ne
ed

 (M
B

)

minsup

Database: BMS-POS

vector
prefix-array

trie

Figure 4.1: Comparison of simple vetor, pre�x-array and trie-based solution for storingthe andidates in Apriori4.1 The trie of AprioriThroughout the algorithm one hild-linked trie is maintained. In this trie a ounteris assoiated with eah node. This ounter stores the support of the itemset the noderepresents. In andidate generation phases new leaves are added with zero ounters, insupport ount phases the ounters are updated, and when we eliminate infrequent sub-sets (infrequent removal phase), leaves with ounter value less than minsup are pruned.Next, we examine Apriori's main proedures from the perspetive of the trie.4.1.1 Support CountingIn the support ounting phase, we take the transations one-by-one. With a reursivetraversal we traverse some part of the trie. If a node is reahed, then the itemsetrepresented by the leaf is ontained in the transation. The ounters of suh leaves areinreased. The traversal of the trie is driven by the elements of transation t and startsin the root. No step is performed on edges that have labels whih are not ontained int. More preisely, if we are at a node at depth d by following a link labeled with the jth(let j be 0 in the root) item in t, then we move forward on those links that have thelabels i 2 t with index greater than j, but less than jtj � ` + d, if we denote the size ofthe andidates by ` + 1. The upper bound is obtained by the fat that ` � d anothersteps are required to reah a leaf from a hild.4.1.2 Removing Infrequent CandidatesAfter support ounting, the leaves that represent infrequent itemsets have to be deletedfrom the trie. Leaves are reahed in a depth-�rst traversal.26

CHAPTER 4. ALGORITHM APRIORI 4.2. COMPACTNESS OF THE TRIE4.1.3 Candidate GenerationHere we make use of an other nie feature of tries; `-itemsets, that share the same (`�1)-pre�x, are represented by sibling leaves. Consequently, the extender of a node must bein the label set of edges pointing to a sibling. This is just a neessary requirement.For an (` + 1)-itemset I to beome a �nal new leaf, it has to meet Apriori's pruningondition: the `-subsets of I have to be frequent.To obtain the itemsets represented by the nodes, we have to maintain a stak andperform a depth �rst traversal. Whenever we step down along an edge we push its labelto the stak, and pop it when a bakward step is performed.4.2 Compatness of the trie and the run-time ofAprioriThe growth of available memory sizes follows Moore's law. Today memory sizes areso large that most of the databases �t in the main memory if the proper �ltering andompression is applied (in FIM setting this means removing infrequent items from thetransations and reoding items to integers). The heap and huge memorie deviesenourages the implementors of data mining algorithms to handle memory issues gen-erously.The reader will, however, observe the opposite in our ase; we try to keep memoryonsumption as small as we an, and we spend serious e�orts on keeping the trie asompat as possible. This has two main reasons. First, memory alloations and deal-loations require proessor resoures, but more importantly they makes the proessorstall, whih ruins eÆieny. Seond, by inreasing ompatness, we inrease data lo-ality, whih improves the eÆieny of the prefething the ahing features of modernproessors.To illustrate this we have done the following experiment. We measured the run-time and memory need of our Apriori. However, we manipulated the andidate trie alittle bit; a vetor of uninitialized integers was inserted into eah node. The size of thevetor was a parameter. The larger this parameter is, the more the nodes are satteredfrom eah other, and hene the worse the data loality is. The following plots show therun-time and memory need.The reason of the run-time inrease is prompted by Fig. 4.3, whih shows more infor-mation about the utilization of the loktiks, the number of u-ops that were exeutedon properly and improperly predited branhes, the total number of loktiks duringwhose at least one read/write operation was pending on database BMS-Webview-2 withminsup = 6. The left bar hart belongs to vetor size 0 the right one belongs to thevetor size 50.We see, that the two implementations perform approximately the same number of27

4.2. COMPACTNESS OF THE TRIE CHAPTER 4. ALGORITHM APRIORI

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 50 100 150 200

ru
n-

tim
e

(s
ec

)

size of the vector in bytes

Database: BMS-WebView-2, minsupp 6

pentium 4
opteron

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

m
em

or
y

ne
ed

 (M
B

)

size of the vector

Database: BMS-WebView-2, minsupp 6

pentium 4
opteron

Figure 4.2: The inuene of node's size of the trie on run-time and memory need

 0

 200

 400

 600

 800

 1000

 1200

 1400

500

GC
loc

kti
ck

s

all uops on BMS−WebView−2 at 6

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 4.3: Complex hardware-friendliness diagram of two implementations
28

CHAPTER 4. ALGORITHM APRIORI 4.3. INHOMOGENEOUS TRIEinstrution, and there is no signi�ant di�erene in branh predition eÆieny. How-ever, in the seond implementation the proessor stalls muh more than in the �rst ase,whih results the slowing down of the program. The proessor stalls are aused by baddata loality.4.3 Inhomogeneous trie and a speial blok alloatorFrom programming point of view a trie an be delared in many ways. The simplest oneis the following: \Trie is a reursive struture; it has a ounter and a list of edges. Anedge is pair of a label and a trie pointer". A trie is alled leaf if its list is empty. Anotherde�nition is, that \A leaf is a ounter. The trie is a leaf (a ounter) or a ounter and alist of edges.". The �rst type of trie is alled homogeneous trie, beause it is delaredby a singe data struture (not taking into onsideration the data struture list). Theseond is inhomogeneous trie beause in the de�nition we use two data strutures (leafand trie). Distinguishing the above de�nitions seems to have no meaning.To understand the ontrary, we have to dig down to implementation level. The mainpoint of the di�erene omes from the fats that:1. the ompatness of the trie is ruial, and greatly a�ets both run-time and mem-ory need,2. any list has some overhead (at least 8 bytes, but in the ase of C++ STL's vetorit is 12 bytes on a 32 bit proessor), i.e., the size of an empty list is not zero.An inhomogeneous trie spares memory by saving the overhead of the lists at theleaves. Sine tries of FIM algorithms are very large, and ontain many leaves, the savingmay be signi�ant. Note that the size of a leaf of an inhomogeneous trie is merely thesize of a ounter, i.e. 4 bytes. On the ontrary the leaf takes 12+4=16 bytes in ahomogeneous trie. The ahe line (the blok that is the basi unit in transferring datafrom the memory to the ahe) size is 32 bytes in the ase of Pentium 4 proessor, whihmeans 8 and 2 leaves �t in a ahe-line in the ase of inhomogeneous and homogeneoustrie, respetively. In 64 bit arhitetures (like Opteron) the di�erene is even larger (thesize of a leaf is the same, however, the size of a pointer is 8 bytes).Notie, that if a transation ontains an itemset represented by a leaf, then it ontainsits siblings many times. It is important that the siblings be as \lose" to eah other inthe memory as possible to obtain better data loality.Leaves being generated in the andidate generation phase, deleted or onverted intoinner node in the infrequent removal phase require a lot of alloations/dealloations. Wean redue the overhead of this and improve data loality at the same time by applyinga speial blok alloation mehanism. The leaves are stored in a blok1 and there is an1Atually we used a list of medium-size bloks instead of one big blok in our implementation.29

4.4. REMOVING DEAD-END BRANCHESCHAPTER 4. ALGORITHM APRIORIextra stak that stores pointers of the freed plaes. When a leaf is freed, a pointer toits plae is popped to the stak. When a new leaf is alloated, we hek if the stak isempty. If not, we realloate the memory that is pointed by the top element of the stak.If the stak is empty, then we simply alloate a new element in the urrent blok. Sinea leaf is pratially a ounter (and integer), realloation means a value assignment.This solution an be further improved by merging together the stak and the bloks,i.e., eah position of a blok is either a leaf or a pointer that points to the next emptyposition (if there is any, otherwise its value is NULL). In C++ this solution is supportedby the union data struture and by the fat that a pointer and an integer needs thesame amount of memory in 32 bit proessors.Table 4.1 shows some experiments onerning this design detail.database minsup homogeneoustrie inhomogeneoustrie inhomogeneoustrie with blokalloatorT40I10D100K 220 670 653 518pumsb 32600 184 161 133retail 3 96 208 44T10I5N1KP5KC0 6 21 21 18T30I15N1KP5KC0 360 622 557 395run-time (se.)database minsup homogeneoustrie inhomogeneoustrie inhomogeneoustrie with blokalloatorT40I10D100K 220 342 128 128pumsb 32600 19 14 14retail 3 939 327 327T10I5N1KP5KC0 6 553 196 196T30I15N1KP5KC0 360 296 204 203memory need (MB)Table 4.1: Inhomogeneous trie and a speial blok-alloation tehniqueAn inhomogeneous trie with our speial blok alloator redues both run-time andmemory need signi�antly. In the forthoming experiments with Apriori we always useinhomogeneous tries and our blok-alloator.4.4 Removing Dead-end BranhesFrequent itemsets of size ` are only needed in (1) writing out the results and (2) gen-erating andidates of size ` + 1. The results an be written out either in andidategeneration or at the infrequent andidate removal phase. In andidate generation someleaves are extended (if adding an item to its representation results in an itemset whoseall subsets are frequent) some are not. This means that there are leaves that representandidates and there are leaves that do not. We all the seond kind of leaves dead-end leaves and a subtrie is a dead-end branh if all its leaves are dead-end leaves.30

CHAPTER 4. ALGORITHM APRIORI4.4. REMOVING DEAD-END BRANCHESDead-end branhes are also generated in infrequent removal phase. If all (or all withone exeption) hildren of a node are infrequent, then the node beomes a leaf and isnever extended again.The nodes of a dead-end branh are not needed for andidate generation thus itsnodes' itemsets an be written out and suh nodes an be purged from the trie. Thistehnique has many advantages. First, the trie gets smaller. Seond, the support ountis faster. To illustrate this, let us assume that only one andidate (itemset ABC) isgenerated. Figure 4.4 shows two andidate tries. The seond is obtained by applyingthe dead-end branh pruning. The advantage of dead-end branh removal an be easilyseen if we onsider �nding the andidates in transation hA;B;C;D;Ei. In both asesthe whole trie is traversed, whih means visiting only half as many nodes in the seondase as in the �rst ase.
A B CB C CC

ABCFigure 4.4: Example: removing dead-end branhesDead-end branh pruning does not require any movement in the trie, if the nodesin the andidate generation phase are visited in a preorder depth �rst manner. This isbased on the following property.Property 4.4.1 For a given depth d, the depth-�rst ordering of the nodes' representa-tion at depth d is the same as if we lexiographially order these representations, wherethe order used in the lexiographial ordering orresponds to the ordering of the trie andthe lexiographi ordering of the presentations is based on a global item ordering.Consequently, an itemset I an be a subset of those andidates whose generatorsstritly preede I in the preorder traversal. Therefore a node an be pruned if no newandidates are generated from any desendants of it.Dead-end branh pruning does not neessarily speed up Apriori. If there exist nodead-end paths, then the dead-end branh heks just deteriorate the branh preditionfaility of the proessor and thus the run-time as well. For example if all maximalandidates have the same size, then dead-end pruning is never used, and this tehnique31

4.4. REMOVING DEAD-END BRANCHESCHAPTER 4. ALGORITHM APRIORIneither results in a faster nor a more memory-eÆient algorithm. Fortunately, in mostases the negative border of frequent itemsets (i.e. the maximal andidates) is not\straight" and the size of the maximal andidates varies. Figure 4.5 shows the ratio ofrun-time and memory need of Apriori that does not use the dead-end pruning and theApriori that does.
 0

 1

 2

 3

 4

 5

 6

 7

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed

pentium 4
opteron

Figure 4.5: Deadend pruning (ratio of run-times and memory-needs)Some hardware friendliness diagrams is given in Figure 4.6.
 0

 50

 100

 150

 200

 250

 300

deadend−on
deadend−off

G
C

lo
ck

tic
ks

all uops on BMS−WebView−2 at 12

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 20

 40

 60

 80

 100

 120

 140

deadend−on
deadend−off

G
C

lo
ck

tic
ks

all uops on BMS−POS at 350

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 4.6: Hardware friendliness diagrams of Aprioris with and without dead-end prun-ingThe experiments show that dead-end pruning is an eÆient tehnique. It alwaysresulted in a faster and more memory-eÆient algorithm.The problem of traversing dead end paths was also onsidered in [10℄ as an inueneof our earlier paper [6℄. The author of [10℄ has hosen an other solution. For eah nodea boolean value was attributed (more preisely the uppermost bit of the ounter wasdediated for this purpose) whose value is true if the node is on a path to the deepestlevel (i.e. to a andidate), otherwise false. Reursion during support ounting proeedsonly on suh hildren whose boolean value is true.32

CHAPTER 4. ALGORITHM APRIORI4.5. ROUTING STRATEGIES AT THE NODESThis solution has two drawbaks. First, dead end branhes are not erased andtherefore the spae is not freed. Seond, the boolean value hek is just a seond testafter a mathing of items is found during support ount (see routing strategy merge onpage 33). Thus the items with false boolean values are also onsidered in �nding theedges to follow. This problem ould be solved by not just distinguishing the edges butatually storing di�erent edges in two di�erent lists. This requires, however, more thanone bit overhead.It is easy to see the onsequene of the two drawbaks if we ompare the experiments(for details see [10℄). It reahed 20-40% speed-up at database BMS-Webview-1, while oursolution resulted in a more than twie so fast program.In the rest experiments with Apriori we use dead-end pruning.4.5 Routing strategies at the nodesRouting strategy at an inner node refers to the priniple used to selet the edges tofollow during the reursive traversal of the support ount method. Given a node witha list of edges and a part of the transation t denoted by t0 we have to �nd the edgeswhose labels are inluded in t0. This is the main step of support ount in APRIORI,it is alled many times, and this is the step that primarily determines the run-time ofthe algorithm. In this setion we analyze some possible solutions. The number of edgeshaving the node we investigate (at depth d) is denoted by n. For the sake of eÆienythe elements of the transation are ordered.Di�erent routing strategies an be applied with di�erent edgelist representations (seesetion 3.5.1). In an indexvetor-based solution the edge that has a given label an befound in one step, thus we adapt the simple method that heks for eah element i of t0if there exists an edge with label i. In our implementation we skip those elements thatare smaller than the smallest label (this equals to the o�set if the o�set trik is applied),and terminate the searh if the atual element of t0 is larger than the largest label (i.e.o�set plus the size of the vetor).With an ordered list representation several solutions are appliable:simultaneous traversal (merge): Two pointers are maintained; one goes through theelements of t0 and the other goes through on the n edges. Both pointers areinitialized to the �rst element of the orresponding list. The pointer that pointsto the smaller item is inreased. If the pointed items are the same, then a mathis found (reursive step is alled), and both pointers are inreased. We terminatethe searh if any pointer reahes the end of its list. The worst ase number ofomparisons (and pointer inreases) is n+ jt0j, the best ase is minfn; jt0jg.�nd orresponding edge: For eah item in t0 we �nd the orresponding edge (if thereis any). We an use a binary searh for �nding the proper label. Notie that the33

4.5. ROUTING STRATEGIES AT THE NODESCHAPTER 4. ALGORITHM APRIORIrun-time of the binary searh is proportional to log2 n. Sine the labels are ordered,it is enough to perform binary searh from the position that the previous binarysearh returned.�nd orresponding transation item: For eah label we �nd the orresponding trans-ation item. For this a binary searh starting from the previously returned indexis appliable.The logarithmi run-time need of the binary searh an be redued to onstanttime by applying an o�set-bitvetor representation of t0, whose value at index iis true if item i+o�set is the element of t0 otherwise false. The o�set is thesmallest element of t0.The problem with bitvetors is that they do not exploit the fat that at a ertaindepth only a part of the transation needs to be examined. For example, if theitem of the �rst edge is the same as the last item of the basket, then the otheredges should not be examined. The bitvetor-based approah does not take intoonsideration the positions of items in the basket.We an easily overome this problem if the indies of the items are stored in thevetor. For example transation f2; 4; 7g is stored as [1; 0; 2; 0; 0; 3℄ with o�set 2.The routing strategy with this vetor is the following. First we step through thoseedges whose labels are less than the o�set. Then we take the remaining labelsone-by-one. If we reah for item i in t0, then we hek the element i�o�set of thevetor. There are three possibilities. If it is 0, then the item is not ontained; weproeed with the next label. If the element is smaller than jtj � ` + d + 1 thenmath is found (and the support ount proedure is ontinued with the next label).Otherwise the proedure is terminated.For eah routing strategy we ould give an upper bound on the number of om-parisons in the worst ase. Comparing these theoretial values, however, predit theeÆieny of the routing strategies muh worse than the degree eah method suits tothe features of the modern proessor and memory strutures. Now let us turn to theexperiments we have arried out.4.5.1 Routing strategies in the ase of ordered-list edge repre-sentationFirst we tested the routing strategies that an be applied when the edges are stored inan ordered list. Two typial plots are depited in Figure 4.7.Some hardware friendliness diagrams is given in Figure 4.8.Observations based on all the tests are the following:34

CHAPTER 4. ALGORITHM APRIORI4.5. ROUTING STRATEGIES AT THE NODES

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 120000 140000 160000 180000 200000 220000

ru
n-

tim
e

(s
ec

.)

minsup

Database: accidents

merge
indexvector

lookup_edge
lookup_edge_prev_mem

lookup_tr
bitvector

 0

 50

 100

 150

 200

 250

 300

 350

 3 9 27

ru
n-

tim
e

 (s
ec

.)

minsup (log scale)

Database: retail

merge
lookup_edge

lookup_edge_prev_mem
lookup_tr
bitvector

indexvector

Figure 4.7: Routing strategies in the ase of ordered edgelist representation

 0

 100

 200

 300

 400

 500

 600

indexvector
bitvector

lookup−tr
lookup−edge−prev−mem

lookup−edge
merge

G
C

lo
ck

tic
ks

all uops on accidents at 140000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

 300

 350

indexvector
bitvector

lookup−tr
lookup−edge−prev−mem

lookup−edge
merge

G
C

lo
ck

tic
ks

all uops on retail at 4

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 4.8: Hardware friendliness diagrams of some routing strategies
35

4.5. ROUTING STRATEGIES AT THE NODESCHAPTER 4. ALGORITHM APRIORI1. There exists no single routing strategy that outperforms all other routing strategieson every database with every support threshold. The run-time di�erenes betweenrouting strategies is sometimes up to ten-fold.2. Exept for merge, there exists a dataset for eah routing strategy where its per-formane is quite bad ompared to the best one.3. merge outperforms the binary-searh based approahes most of the ases by asigni�ant margin.4. Binary searh-based approahes always get faster if the position returned by theprevious binary searh is stored and used to derease the searh spae.5. Bitvetor based solutions performed poorly most of the times; it was always slowerthan merge.Let us explain the observations one-by-one.1. The eÆieny of a routing strategy depends on n, the length of t0 and the numberof mathes. Di�erent data have di�erent harateristis onerning these values,thus di�erent routing strategies perform well.2. The merge strategy produes the simplest ode (its ode ontains the fewest lines)and it does not wait for the data beause the items are read sequentially and theprefeth feature is very e�etive.3. If only the number of omparisons (in the worst/average ase) is taken into onsid-eration then binary searh is always faster than linear searh. If we, however, alsoonsider the way modern proessors' features are utilized, we onlude that thelinear searh outperforms binary searh signi�antly when the lists we are searh-ing in are small. Notie that pipelining, prefething performs poorly sine theelement of the list to proess depends on the outome of the previous omparison.This also results in an ineÆient branh-predition.4. Storing the index that was returned form the previous binary searh redues theaverage number of theoretial omparisons from n log2 n to log2 n!. This simpletrik is also greatly supported by the modern proessor's ahe system. Storingand using the value that was returned by the last binary searh is performed quitefast most of the times sine it is likely to be stored in the L1 ahe.5. The bitvetor-based approah does not take into onsideration that only a part ofthe transation has to be examined. This results in many superuous traversals.Let us see an example. Assume that the only 4-itemset andidate is fD;E; F;Ggand we have to �nd the andidates in transation fA;B;C;D;E; Fg. Exept for36

CHAPTER 4. ALGORITHM APRIORI4.5. ROUTING STRATEGIES AT THE NODESthe bitvetor-based approah all the tehniques onsidered will not visit any nodeexept the root, beause there is no edge of the root whose label orresponds toany of the �rst 6 � 4 + 1 = 3 items in the transation. On the ontrary, thebitvetor-based approah uses the whole transation and starts with a superuoustravel that goes down even to depth 3. The indexvetor-based solution overomesthis drawbak.4.5.2 Can we speed up binary searh-based routing strategies?The reasoning about the exeution time of the linear and binary searh brings up thepossibility of improving the performane of binary-searh based routing strategies, i.e.lookup edge and lookup trans. We know that under a threshold the linear searh isfaster, and above this threshold the binary searh. The value of this threshold dependson the proessor features (ahe sizes, prefething mehanism, length of the pipeline,et.), the way the binary searh is oded and the type of the elements. In our experi-mental environment (Pentium 4 2.8 Ghz proessor { family 15, model 2, stepping 9 {,using std::lower bound for the binary searh, the size of a list element is 4 bytes) thethreshold is around 14.The pure binary searh-based approahes an be speed up if it is substituted by ahybrid solution whih hooses between linear and binary searh aording to the lengthof the lists (length of t0 in the ase of lookup trans).In our implementation the threshold is set by a template parameter. Notie that assoon as a linear searh is seleted, then the threshold hek will prefer linear searh inthe urrent node and in the desendants as well. Therefore in our implementation weswith to merge routing strategy to avoid the threshold ondition hek and improvethe eÆieny of branh predition. The larger the threshold the sooner we swith tomerge.In the next �gure we plotted our expetation of run-time in the funtion of thethreshold. run-time
threshold

binarymerge
idealthresholdWhen the threshold is zero, then always binary searh is employed, when it is morethan the number of frequent item then always linear searh is used, whih results prati-37

4.5. ROUTING STRATEGIES AT THE NODESCHAPTER 4. ALGORITHM APRIORIally in the merge algorithm. The fastest solution is expeted when the threshold equalsto the ideal threshold.In reality we get a totally di�erent harateristi, whih applies in all databases.This is plotted in the next �gure.run-time
threshold

binarymerge
idealthresholdThe runtime dereases as the threshold inreases even if we ross the ideal threshold.It seems that the sooner we swith to merge routing strategy the faster algorithm weget.To resolve the ontradition and understand the observation we have to examine theharateristi of the data. The next two �gures show some distributions of the stepsbetween two mathes in the transation. Zero step belongs to the ase when the �rstitem in the t0 is the same as the label of the �rst edge. With database T10I5N1KP5KC0the merge was 2.5 times faster than look up trans whih is not far from the typialase. The smallest advane was just 20% with database kosarak.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 5 10 15 20

Database: T10I5N1KP5KC0, minsupp 5

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 100 200 300 400 500 600 700 800 900

Database: kosarak, minsupp 870

Figure 4.9: distribution of distanes between onseutive mathesWe an see that the distribution is quite steep (notie the logarithmi sale). Theideal threshold (14 in our environment) is equal to the 0.999989 and 0.645 quantilerespetively. This means that although the size of t0 might be long the distanes betweenonseutive mathes are quite small in most of the ases it is smaller than the advantage38

CHAPTER 4. ALGORITHM APRIORI4.5. ROUTING STRATEGIES AT THE NODESof a binary searh omes into play. Thus linear searh (merge) is the fastest most ofthe ase and the extra ondition hek just ruins the eÆieny of branh predition.The larger threshold we set the sooner we swith to merge and the fewer unneessaryonditions are evaluated.Also notie that the ratio of the number of onseutive steps under 14 to the numberof all mathes has a strong orrelation with the eÆieny of speed-up lookup trans.The less this value the more eÆient this routing strategy is.Although in this setion we neither presented a new approah neither speeded up theexisting routing strategies, we believe that this rationale shows a illuminating examplehow deep we have to dig down to �nd the true reasons. To understand the behavior of therouting strategies and their boundaries we have to onsider (1.) theoretial possibilities,(2.) hardware friendliness and (3.) the speialties/harateristis of the appliationdomain.
4.5.3 Routing strategies in the ase of di�erent edge represen-tationNext we ompared the \winner" (i.e. merge) to the routing strategies that an beapplied when o�setindex-vetor and hybrid edge representation is used. In the aseof hybrid edge representation (i.e. ordered list or o�setindex-based representation isseleted depending on the sizes, in other words, the node representation is not uniquebut hanges dynamially) a hybrid routing strategy is used: lookup edge if the urrentnode uses o�setindex-vetor, merge otherwise. For the sake of memory ompatness weused the uppermost bit of the nodes' ounter to store the type of representation of thenodes' edges.The hybrid solution almost always outperformed the other two solutions onerningboth run-time and memory need. The o�setindex-vetor approah performed quitepoorly in most of the ases. This is attributed to its large memory need. The orrelationbetween the memory need and run-time is quite apparent, the solution is ompetitivein run-time only when it is ompetitive in memory-need.Some hardware friendliness diagrams is given in Figure 4.11.The hybrid solution is more eÆient than the ordered-list edge representation withthe merge routing. The advantage is not very signi�ant, the largest di�erene was 62%in run-time and 37% in memory-need.In the rest of the experiments we use hybrid edge representation and hybrid routingstrategy. 39

4.5. ROUTING STRATEGIES AT THE NODESCHAPTER 4. ALGORITHM APRIORI

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
es

pentium 4
opteron

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed
s

pentium 4
opteron

Figure 4.10: Ratio of run-time and memory-need of ordered list-based Apriori omparedto hybrid edge representation-based Apriori

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

hybridmerge

G
C

lo
ck

tic
ks

all uops on T10I4D100K.dat at 4

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

hybridmerge

G
C

lo
ck

tic
ks

all uops on kosarak.dat at 1100

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 4.11: Hardware friendliness diagrams of routing strategies merge and hybrid
40

CHAPTER 4. ALGORITHM APRIORI4.6. DETERMINING THE SUPPORT OF 2-ITEMSET CANDIDATES4.6 Determining the support of 2-itemset andidatesUsing a trie seems unneessary and ompliated when determining the support of 2-itemset andidates [50℄. A simple array also does the trik. We know that the elementsof eah andidate are frequent items oded by 0,1,2. . . and every pair that onsists oftwo frequent items is a andidate.The array stores the ounters that are initialized to 0. Counter of itemset fi1; i2g (wean assume i1 < i2) is at index i1; i2 � i1 � 1 of the array (i.e. we us an upper-trianglearray). Notie that theoretially this solution is the same as trie based solution whereo�set-index representation is used with o�set equal to 0. Array-based solution (alsoalled diret ount), however, spares the reursive step.It is not neessary to alloate a ounter for eah andidate. In online andidategeneration [19℄ we alloate a ounter only when the pair atually ours in a transation.I databases, that ontains many frequent items and most 2-element andidates do noteven our, this solution redues memory need signi�antly. In this solution the rowsof the array are empty at the beginning and item i2 with ounter 1 is added to row i1when itemset fi1; i2g ours in the �rst time. So the elements of the array are atuallypairs. For the sake of quik insertion the rows are sorted aording to the items.historial remark: Theoretially the same idea with some minor hangeswas reinvented by Woon et al. [56℄. First, they used a trie (alled SOTrieT)instead of an array. This is an unneessary and over-ompliated solution,but most importantly it requires more memory, than a simple vetor ofvetors. Seond, the frequent items and the frequent pairs are found in thesame iteration. This awkward solution also su�ers from a very bad memoryusage. All pairs that our in a transation require a ounter even if theyontain infrequent items. For these reasons we use the vetor-based on-lineandidate generation method in our experiments.A hash-based tehnique DHP was proposed by Park et al. [40℄ in order toredue the number of andidates in partiular the number of andidatespairs. When determining the frequent items an other ounter vetor is alsomaintained. Counter at index i belong to the itempairs that has hash-value i.During the �rst san at eah transation t the hash-value of all subsets of t ofsize two are alulated and the orresponding ounters are inreased. Afterthe �rst san, a andidate itempair is generated only if ounter determinedby the hash-funtion is greater than minsup.The problem of this solution is the lak of a universal good hash funtion.It is easy to �nd a good hash funtion if the harateristi of the transationdatabase is known, but this is not the ase. Furthermore a hash-funtion thatworks well at a database with a given support threshold performs poorly at41

4.7. DETERMINING THE SUPPORT OF 3-ITEMSET CANDIDATESCHAPTER 4. ALGORITHM APRIORIthe same database with an other support threshold. We believe that the sorespot (and atually the appliability) of this tehnique is the hash-funtion,whih was never analyzed in the literature, i.e. no hash funtion was pro-posed that works well at many databases with many support threshold.The next �gure shows ratio of run-time and memory-usage of the online and thetriangular array-based support ount method.
 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

n
of

 ru
n-

tim
e

 0

 0.5

 1

 1.5

 2

 2.5

 3

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed
Figure 4.12: Ratio of run-time derease and memory-need inrease of online and statisupport ount of 2-itemsetsThe disadvantage of online support ount onerning run-time is signi�ant at highsupport thresholds, espeially when the size of the maximal frequent sets is two. Aslowering the threshold the di�erene get insigni�ant when it is ompared to the totalrun-time.4.7 Determining the support of 3-itemset andidatesThe array-based tehnique an be naturally generalized to andidates of size ` by usingan `-dimension array of size �jL1j` �, where L1 denotes the set of frequent items . Thissolution was hosen in the newest implementation of algorithm kDIC [38℄[44℄. Thedrawbak of the array-based solution is straightforward, i.e. it requires 4 � �jL1j3 � bytesof memory, whih an be quite large. For example in the ase of database retail withsupport threshold equal to 3 the L1 is 12889, therefore the array requires 1332 Tbyte!Atually in the ase of 9 out of out 16 test databases (with minsup where our Apriori isable to omplete FIM task within reasonable time) the array needs more than 2Gbyteof memory. This is not a safe solution.Nevertheless, the array-based solution for andidates of size three speeds up Aprioriin many ases. A hybrid solution that hooses array-based tehnique if the numberof frequent items is small (let say smaller than 700) and trie-based solution otherwise,seems to be a good solution. 42

Chapter5Algorithm Elat

43

CHAPTER 5. ALGORITHM ECLAT

44

Chapter6Algorithm FPgrowth

45

CHAPTER 6. ALGORITHM FPGROWTH

46

Chapter7Tehniques for improving eÆienyThe base algorithms an be greatly improved by algorithmi, data struture and im-plementation related tehniques. The literature is rih in this topi. In this setion weinvestigate the most important tehnique putting emphasize on the relationship betweenthem.7.1 Pruning equisupport extensionsThe searh spae pruning based on equisupport itemsets is perhaps the most widelyused speed-up trik in the FIM �eld. Omitting equisupport extension means exludingfrom the support ounting the proper supersets of those `-itemsets that have the samesupport as one of their (`� 1)-subsets. This omes from the following simple property.Property 7.1.1 Let X � Y � I. If sup(X) = sup(Y), then sup(Y [Z) = sup(X [Z)for any Z � I.This property holds for all Z � I, nevertheless we restrit our attention to itemsetsZ � I n Y .The onnetion between the equisupport pruning and losed itemset mining is ob-vious. Itemset X is a non-losed set, with losure Y , if there exists no proper supersetof Y with support equal to sup(Y). An itemset X an be an anteedent of an exatassoiation rule (rule with on�dene 100%) if and only if it is a non-losed itemset.Itemset X is alled a key pattern [5℄ if there exist no proper subset of X with thesame support.If andidate Y has the same support as its pre�x X, then it is not neessary togenerate any superset Y [Z of Y as a new andidate. Based on the above property itssupport an be alulated diretly from its subset X [Z [19℄.47

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYThe support of the pre�x is always available at bottom-up FIM algorithms, thuspre�x equisupport pruning (i.e. X is the pre�x of Y , suh that jXj + 1 = jY j) anbe applied at any time. The tehnique works the following way. After determiningthe support of a hildren of itemset P , we hek at the infrequent removal phase iftheir support are equal to sup(P). Children with suh supports are not onsidered asgenerators in later phases and the extending items that belong to them are stored ina set (alled equisupport set) and assoiated with itemset P . Notie, that due to thenon-redundant traversal of the itemset lattie Y nX � z for all z 2 Z where � denotesthe order used to de�ne the pre�x.When writing out a frequent itemset I, we also output the union of I with itemsetE 0 for all E 0 � E, where E is the union of all equisupport sets for the pre�xes of I.Example 7.1.2 Let us assume that the following itemsets of size two with pre�x A arefound to be frequent AB;AC;AD and sup(A) = sup(AB) = sup(AC) = 4; sup(AD) = 3.Only itemset AD is onsidered as generator for further andidates with pre�x A. At leasttwo itemsets are needed to generate a andidate in Apriori, Elat and FP-growth, thusproessing pre�x A terminates. When writing out itemsets AD and A we also appendall subsets of BC to them, thus we write itemsets AD;ABD;ACD;ABCD with support3, and A;AB;AC;ABC with support 4.If the database ontains only losed sets, then equisupport pruning is never used andthe large number of support equivalene heks just slows down the algorithm. Exper-iments, however, show that in all algorithms the equisupport hek an be performedquite fast (for example in the ase of Apriori it requires no traversal in the trie) and re-sults no ahe misses. Even at databases that ontain insigni�ant number of non-losedsets the run-time inrease is absolutely insigni�ant.7.2 Improvements used in AprioriBefore we turn to our methods that speed up algorithm Apriori, we have to �nd whatis worth improving, i.e. what takes signi�ant time of the running. We have alreadymentioned that in the beginning of the FIM researh the e�orts were foused on reduingI/O osts and later reduing the number of andidates. Now, we know that these twofators are not so important, but rather the data struture and its usage, the memorymanagement, and the level the implementation suits the arhiteture of the modernproessors are the issues that really matter.The following table shows the distribution of proessor time usage between the mainfuntions of Apriori. We measured the three main funtions of Apriori (generating an-didates, determining the supports and deleting infrequent andidates), the time requiredfor reading in, sorting and reoding (removing infrequent items and assign 0,1,. . . valuesto the frequent items) the transations and determining the support of the two element48

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORIandidates. Methods that required less than half perent of the run-time are indiatedby blank entries. For the sake of readability numbers above 25 are rounded. To seethe orrelation between the ratio of the methods and the harateristis of the databaseand searh spae, we also provide some statistis about the data sets and the frequentitemsets (see Tables 7.2 and 7.3). In these tests we have used a highly optimized Apri-ori implementation, whih is based on an inhomogeneous trie using our speial blokalloator, dead-end branh removal, a triangular array-based solution to �nd eÆientlyfrequent pairs, and a sophistiated depth-�rst, bu�ered input/output manager perform-ing the input/output routines.database minsup ountingsup-port generatingandi-date inputsortreode infrequentremoval frequentpairminingT40I10D100K 3 000 14 53 31:0kosarak 7 000 21 69 1:9T10I4D100K 150 68 24 4:1onnet 65 000 73 25 1:4aidents 210 000 77 21 1:4pumsb 41 000 97 2:6retail 65 64 22 10:6BMS-POS 5 000 38 56 3:8BMS-WebView-1 39 67 9:1 21 0:7BMS-WebView-2 30 56 14:0 23:3 0:5 2:7webdos 700 000 1 93mushroom 1600 95 1:3 3T10I5N1KP5KC0 500 8 67 22:0T20I10N1KP5KC0 2 000 76 17:8T30I15N1KP5KC0 1 300 25 73:0pumsb* 23 000 56 41 2:5high support thresholdT40I10D100K 220 90 6:5 0:6 0:6kosarak 860 94 2:0 2:0T10I4D100K 3 33 63 0:7 1:0onnet 43 100 96 3:1 0:5aidents 100 500 98 1:4pumsb 32 600 96 1:6 1:9retail 3 29 63 1:3 1:8 0:7BMS-POS 67 84 13 0:8 0:5BMS-WebView-1 33 44 54 0:7BMS-WebView-2 4 12 83 1:4webdos 200 000 77 21:0 1:3mushroom 250 86 12:5T10I5N1KP5KC0 4 53 39 1:8 0:7 0:8T20I10N1KP5KC0 90 84 13:0 1:7 0:6T30I15N1KP5KC0 300 84 12:2 1:6 0:8pumsb* 13 000 99 0:5low support thresholdTable 7.1: The distribution of run-time of Apriori's methods in %The data show that Apriori is so fast at high support thresholds, that its opera-tion require less time than proessing the input. Thus we onentrate on low supportthresholds. 49

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYdatabase number oftransations number ofitems average sizeof the trans-ationsmushroom 8 124 119 23.0pumsb* 49 046 2 088 50.4pumsb 49 046 2 113 74.0BMS-WebView-1 59 602 497 2.5onnet 67 557 129 43.0BMS-WebView-2 77 512 3 340 4.6retail 88 162 16 470 10.3T10I4D100K 100 000 870 10.1T40I10D100K 100 000 942 39.6T10I5N1KP5KC0 193 373 3 950 10.3T20I10N1KP5KC0 197 440 4 408 20.2T30I15N1KP5KC0 199 095 4 599 30.0aidents 340 183 468 33.8BMS-POS 515 597 1 657 6.5kosarak 990 002 41 270 8.1webdos 1 692 082 5 267 656 177.2Table 7.2: Some statistis about the databasesThe tables support the widely-known observation, that determining the support ofthe andidates takes most of the time of Apriori. This is, however, not always true. Inmining tasks where the number of frequent itemsets is high (databases BMS-WebView-1,BMS-WebView-2, retail) but the size of the dataset is medium with modest averagetransation sizes (T10I5N1KP5KC0, T10I4D100K) the andidate generation ontributessigni�antly to the run-time. Consequently, we �rst fous on the support ount proe-dure and then turn to speed up the andidate generation method.The distribution hanges by employing ertain heuristis, and then other parts maybeome the bottlenek of the algorithm. For example if equisupport pruning is applied(see setion 7.2.4) then it beomes possible to proess dense databases at muh lowersupport threshold, and subset enumeration and output writing dominates the run-time.Nevertheless, we regard these issues of more advaned nature. We believe that ourdata gives good indiators about the bottlenek of Apriori and possible targets forimprovement.We see three prinipal ways to redue the run-time of support ounting.1. We �ne-tune and optimize the elementary operation of support ounting, i.e. �nd-ing the andidates that are ontained in a given transation.2. We redue the number of support ount method alls.3. We make use of the fat that some operations are done repeatedly (for exampletraversing the same part of the tree several times) at di�erent steps of the supportount phase, and by merging these support ounts we may spare some redundantwork. 50

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
database minsup numberof fre-quentitems numberof fre-quentitem-pairs numberof fre-quentitem-sets sizeof themaximalfrequentitemset averagesizeof thefre-quentitem-sets averagesize ofthe �l-teredtrans-a-tionswebdos 700 000 8 14 34 4 2.0T20I10N1KP5KC0 2 000 472 0 473 1 0.99 6.9kosarak 7 000 93 249 772 6 2.6 3.3T40I10D100K 3 000 486 307 794 2 1.38 33.5onnet 65 000 15 72 916 7 4.2 14.8pumsb* 23 000 34 126 1165 8 4.0 20.6BMS-POS 5 000 145 408 1171 5 2.5 5.3T10I5N1KP5KC0 500 1494 90 1655 6 1.1 7.7aidents 210 000 21 125 1685 8 4.17 17.0T30I15N1KP5KC0 1 300 1667 3 1671 2 1.0 21.9retail 65 2895 4958 11684 6 2.1 8.2T10I4D100K 150 767 5549 19127 10 3.39 10.0pumsb 41 000 25 249 36811 11 5.8 23.5mushroom 1 600 43 380 53952 15 7.1 19.2BMS-WebView-1 39 363 3802 69370 12 4.8 2.5BMS-WebView-2 30 2122 6052 194262 15 6.5 4.4high support thresholdwebdos 200 000 195 1 596 58 297 10 5.0aidents 100500 32 408 160 874 12 6.7 22.1pumsb* 13 000 63 900 1 293 829 17 8.8 31.8T10I5N1KP5KC0 4 3 924 49 0812 1 600 477 14 3.7 10.3kosarak 860 1 437 11 460 3 578 574 19 8.36 6.0pumsb 32 600 36 536 6 061 656 20 10.0 31.6T10I4D100K 3 869 220 988 6 169 854 14 4.43 10.1mushroom 250 82 1 684 9 944 484 17 8.9 22.6T40I10D100K 220 901 104 161 10 174 500 20 8.48 39.6onnet 43 100 34 483 11 809 442 19 10.1 30.6T30I15N1KP5KC0 360 3 489 13 037 15 747 841 20 9.7 29.0BMS-POS 67 884 37 377 16 037 252 13 6.4 6.5T20I10N1KP5KC0 90 4 021 86 776 16 964 579 20 8.3 20.1retail 3 12 889 433 297 20 647 332 20 7.9 10.2BMS-WebView-2 4 3 185 106 070 60 193 074 23 9.8 4.6BMS-WebView-1 33 372 5 844 69 417 074 25 11.5 2.5low support thresholdTable 7.3: Some statistis about the frequent itemsets

51

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYFirst we investigate �ne-tuning of the support ount proedure by introduing aspeial data struture, optimizing the routing strategies and applying dead-end pruning.Then we turn to a tehnique that signi�antly redues the number of support ountalls at many databases. Finally, we onsider databases with many losed itemsets andpresent equisupport pruning.7.2.1 Cahing the transationsI/O and string to integer parsing osts are redued if the transations are stored in themain memory instead of disk. It is useless to store the same transations multiple times.It is better to store them one and employ ounters representing the multipliities. Thisway, memory is saved and run-time may be signi�antly dereased. This tehnique isused in FP-growth and an be used in APRIORI as well.The advantage of this idea is the redued number of support ount method alls.If a transation ours n times, then the expensive proedure is alled just one (withounter inrement n) instead of n times (with ounter inrement 1). Thus the numberof alls to the most expensive method may be onsiderably redued. Unfortunately, thedata struture needs memory, and its build-up (i.e. olleting the same transations)requires proessor time.We refer to the data struture that stores the transations together with the mul-tipliities as transation aher. The transations are ahed after the �rst san, sothat infrequent items an be removed from the transations. Di�erent data struturesan be used as transation ahers. We have three requirements:1. inserting an itemset has to be fast,2. the data struture has to be memory-eÆient,3. listing the transations and the multipliities has to be fast.A simple solution is an ordered vetor, eah element stores an itemset and its mul-tipliity ounter. Inserting a transation beomes slow as the number of transationsbeomes large. A better solution is a vetor of ordered vetors where the jth vetorstores transations of size j. We refer to this solution as order-array based aher.The most famous Apriori implementation [11℄ uses trie and in our previous imple-mentation we have used a red-blak tree (denoted by RB-tree). In an RB-tree ahereah node stores a transation. Due to the suess of Patriia-trees in FP-growth basedalgorithms [43℄ we also tested this solution.The experiments proved our expetation, that ordered-vetor and vetor of ordered-vetor solutions are not ompetitive with tree based solutions (the table does not eveninlude the order vetor-based solution, sine its run-time exeeded the aeptable run-time threshold most of the ases). Tries slightly outperforms RB-trees onerning run-time, but their memory need is muh larger, even larger than the memory need of52

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI

database minsup ordered-array RB-tree trie patriiakosarak 48 000 1.74 0.93 0.83 0.84840 212.8 2.79 2.26 1.68aidents 3.96 3.49 1.13 0.90 0.8100 500 94.4 1.88 1.48 1.23BMS-POS 5 000 126.09 1.40 0.89 0.6567 153.28 1.55 1.10 0.72webdos 700 000 27.05 25.92 25.08 24.98200 000 1030.25 38.05 45.20 31.89run-timesdatabase minsup ordered-array RB-tree trie patriiakosarak 48 000 0.69 0.69 0.65 1.93840 28.02 32.16 72.55 19.92aidents 210 000 2.91 2.73 1.45 1.91100 500 21.68 19.15 13.00 9.2BMS-POS 5 000 15.09 17.86 24.84 10.6067 23.31 22.87 38.21 13.12webdos 700 000 48.66 48.66200 000 278.10 280.98 934.01 264.84memory needTable 7.4: Transation ahing with di�erent data strutures

53

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYorder-array solutions. Trie is said to be an eÆient data struture in ompressing datasets beause it stores the same pre�xes one instead of the number of times it appears(whih is the ase with ordered-arrays and RB-trees). Experiments, however, do notsupport the statement about ompression eÆieny.The reason for this omes from the fat that a trie has muh more nodes { thereforemuh more edges { than an RB-tree has (exept for one bit per node, RB-trees need thesame amount of memory as simple binary trees). In a trie eah node stores a ounterand a list of edges. For eah edge we have to store the label and the identi�er of thenode the edge points to. Thus adding a node to a trie inreases memory need by atleast 5 � 4 bytes (if items and pointers are stored in 4 bytes). In a binary tree, like anRB-tree, the number of nodes equals to the number of transations. Eah node stores atransation and its ounter.When inserting the �rst `-itemset transation in a trie, ` nodes are reated. Howeverin an RB-tree we reate only one node. Although the same pre�xes are stored only onein a trie, this does not redue the memory di�erene so muh. This is the reason for theempirial fat we observed, that a binary tree onsumes 3-10 times less memory than atrie does.A Patriia tree overomes the defet of a trie that stems from the ineÆient storageof single paths. It substitutes a single path with one link with a label equal to the setof labels that are on the path. This spares many pointers but more importantly, thememory need aused by the overhead of a list is greatly redued. Thus Patriia treeskeep the advantage of trie-based solution without su�ering from large memory need.In this setion we avoid disussing the run-time and memory need e�et of theordering used to onvert itemsets to sequenes. An in-depth analysis is provided insetion 7.3.After �nding the best data struture for a transation aher, we investigated iftransation ahing really speeds up Apriori. In these experiments (see some results inFigure 7.1) we have used a Patriia-tree as a transation aher.
 0.1

 1

 10

 100

 1000

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
es

pentium 4
opteron

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1
pu

m
sb

*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed
s

pentium 4
opteron

Figure 7.1: Cahing the transations54

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORISome hardware friendliness diagrams are given in Figure 7.2.
 0

 50

 100

 150

 200

 250

 300

cache−on
cache−off

G
C

lo
ck

tic
ks

all uops on kosarak at 1100

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

cache−on
cache−off

G
C

lo
ck

tic
ks

all uops on pumsb at 40000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.2: Hardware friendliness diagrams of Aprioris with and without transationahingExperiments show, that transation ahing is a great speed-up tehnique, it some-times (in the ase of onnet, pumsb) dereases run-time by several orders of magni-tude, sometimes the run-time \just" drops to its fration (aidents, BMS-WebView-1,T20I10N1KP5KC0.25D200K, pumsb*). Due to the fast tree-based solution, this tehniqueis regarded run-time safe, i.e. even at databases where the number of support ountmethod alls do not derease signi�antly, building up the aher does not redue over-all run-time. Building-up the aher never takes signi�ant time ompared to frequentitemset mining (the largest run-time inrease was 10% and 5% at databases retail andBMS-WebView-2 respetively) at low support thresholds.This tehnique is obviously not memory safe. The aher may need a lot of memory,even more than the memory needed by the andidates. With most of the databasesthe memory inrease was not too large and we found no databases where the inreasedmemory assumption resulted in swapping. In the remaining experiments we will turntransation ahing on.7.2.2 Support ount of Christian BorgeltWhen the transations are stored in a trie or in a Patriia tree then an other supportount tehnique an be applied. This lever idea was already mentioned in [11℄ and wasskethed in [9℄. This tehnique is used in the reent versions of Borglet's famous Aprioriimplementation.The observation behind the idea is that two transations result in the same programow till the ommon element, i.e. till the ommon pre�x. Storing the transations in atrie gives the neessary information about the ommon pre�xes. It is possible to proessthe same pre�xes only one instead of the number of times it appears. The ounter ofitemset I in the transation trie stores the number of transation whose pre�x is itemset55

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYI. In this respet this solution di�ers from the one used in transation ahing (andrather it resembles to an FP-tree that is deprived of ross-links.) Another di�erene isthat the ordering used in the transation trie must orrespond to the ordering used inthe andidate trie. In setion 7.3 we will see, that this is a drawbak sine the two triesprefer di�erent orderings.Unfortunately, the algorithm is not detailed in [9℄, but we believe it works as follows.We simultaneously traverse the andidate trie and the transation trie in a double re-ursive manner. We maintain two node pointers respetively that are initialized to theroots. We go through on the edges of both node. If the label belong to the transationtrie is smaller or equal than the other label, then the reursion is ontinued on the hildof the given transation node, and with the same andidate node. If the two labels areequal, then the reursion is ontinued with the pointed hildren. A slightly optimizedversion is found in Algorithm 3.Algorithm 3 BORGELT SUPPCOUNTRequire: n: a node of the andidate trie,nt: a node of the transation trie,`: number of step from n that needs to be done to reah a leaf,i:, the smallest index of the edge of n that is larger than the label of edge that ledto nt.if ` = 0 thenn:ounter n:ounter + nt:ounterelsefor j = 0 to nt:edge number� 1 dowhile i < n:edge number AND n:edge[i℄.label < nt:edge[j℄.label doi i+ 1end whileif i < n.edge number AND n:edge[i℄.label � nt:edge[j℄.label thenBORGELT SUPPCOUNT(n, nt:edge[j℄.hild, `, i)if n:edge[i℄.label = nt:edge[j℄.label thenBORGELT SUPPCOUNT(n:edge[i℄.hild, nt:edge[j℄.hild, `� 1, 0)i i + 1end ifelsebreakend ifend forend ifThe solution above su�ers from the disadvantage of many redundant traversal inthe transation trie. It does not take into onsideration the fat that only a part of a56

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORItransation needs to be evaluated. To overome this problem we an employ a ounterfor eah node nt of the transation trie that stores the length of the longest path thatstarts from node nt. During the support ount we do not proeed the reursion on anode whose ounter is less than `�1. Several other optimizations an be applied that isbased on removing unvisited or unimportant paths from the transation trie. For moredetails the reader is referred to [9℄.7.2.3 Filtering unimportant items from the transationsFiltering unimportant items from the transations means removing those items fromeah transation that do not play role in determining the support of the andidates.Obviously as the algorithm proeeds more and more items an be �ltered from thetransations. We have already mentioned a very simple �ltering, i.e. after the �rst sanwe remove infrequent items from the transations. A similarly simple �ltering is whenwe delete the transations of size smaller than ` at iteration `.Further �ltering an be applied. To illustrate this imagine that the andidates ofsize two are AB, AC, BC and DE and transation ABCD is proessed. Item D is notontained in andidates of size 2 that are ontained in the transation, therefore it an bedeleted from the transation. In general an element of the transation an be removedat iteration ` if it is not ontained in any andidate that ours in the transation [9℄.A more sophistiated solution was proposed by Park et al. [40℄. It is based on thefat that for a andidate I of size `+1 to our in a transation eah element of I mustbe ontained in at least ` andidates of size ` that our in the transation. This isa neessary ondition, therefore an item in the transation an be trimmed if it doesnot appear in at least ` of the andidates in the transation. For example transationACDE is deleted if the andidates are the same as used in our previous example. Notiethat the previous simple �ltering does not remove any element from the transation.This tehnique often results in a large number of item erase, however, to evaluate itseÆieny we have to take into onsideration the overhead of removing an item from thetransation, whih depends on the way the transations are handled. There are di�erentsolutions in the literature.Algorithm DCI [36℄ proesses and �lters eah transation one-by-one and writesthem out to the disk, i.e. the database is redued progressively. It uses optimized I/Ooperations for the eÆient disk usage. If we employ an ordered vetor, ordered arrayor a binary tree as a transation aher, then removing an item from a transation anbe replaed by removing the original transation and inserting the �ltered transation.These transation aher, however, are not ompetitive with red-blak tree, trie or pa-triia tree based solutions. Unfortunately, removing an item from a stored transationis not an easy task in the ase of trie and patriia tree, and it is a slow operation in thease of red-blak tree (deletion may need the expensive rotation operation).This drawbak was also observed in [9℄ where the following heuristis were proposed.57

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYRebuild the transation aher if the �ltering result in a signi�ant node derease, oth-erwise use the original transation aher. The threshold of rebuild was determinedexperimentally.7.2.4 Equisupport pruningWe have seen that pre�x equisupport pruning an be applied in all bottom-up FIMalgorithms, where andidates are generated on the basis of pre�xes. From a Apriori'strie point-of-view, eah node has to be extended with a list that stores equisupport items.In the infrequent andidate removal phase we hek if a leaf has the same support asits pre�x generator. If it has, then the leaf is purged from the trie and the label of thelink is added to the parent's equisupport set. Eah item i in an equisupport set an beregarded as a loop edge with label i. Loop edges are not onsidered in support ount,but must be onsidered in the omplete pruning step of andidate generation.Example 7.2.1 Let itemsets AB;AC;BC be the only frequent pairs, sup(AB) 6= sup(A) 6=sup(AC) and sup(B) = sup(BC) = sup(BD). Figure 7.3 shows the trie obtained afterinfrequent andidates removal phase. Notie that if loop edges were not onsidered inthe previous step of the andidate generation, then itemset ABC would not be generatedas a andidate even though all its subsets are frequent.
A BC B C,DFigure 7.3: Example: removing equisupport leavesThis example draws attention to the onnetion between equisupport pruning anddead-end branh removal. We see that node B does not lead to a leaf at depth 2therefore dead-end branh removal would erase this node, and itemset ABC would notbe generated. The depth of a node for dead-end branh removal must be rede�ned sothat it does not purge leaves that may be needed for a proper omplete pruning. Wehave to see, that an itemset obtained by taking the union of a leaf X and any item thatis in the equisupport set of some pre�x of X has the same support as X. Thus whenonsidering the depths of node X during dead-end branh removal, we have to add to58

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORIthe atual depth of X the size of the equisupport sets that are on the path from theroot to X. For example the depth of node B in Figure 7.3 is 3 instead of one.The astute reader may notie that edge that points to node B from the root isonsidered in support ount, however it does not lead to any andidate. We haveseen the run-time impat on the support ount method of ignoring suh nodes when weanalyzed dead-end pruning (see setion 4.4). If they annot be pruned (so that ompletepruning an be applied), then they should be distinguished. Edges that are on a path toa andidate should be type one (let us all them normal edges), while the rest inludingthe equisupport loops should be of type two (denoted by dashed edges). Suh \oloredtrie" is depited in Figure 7.4. The frequent pairs are AB, AC, AD, BC, BD, CD, CEand sup(A) = sup(AD), sup(B) = sup(BD), sup(C) = sup(CD). The upper trie storesthe frequent two itemsets. Below, on the left a trie is depited, whih is obtained afterandidate generation if equisupport pruning and oloring is used. The trie on the rightis generated if no equisupport pruning is used.
A B CB C D C D D E

A B CC CD CD EDC
A B CB C C DC D D D EFigure 7.4: Example: distinguishing dead-end edges when equisupport pruning is ap-pliedNotie that when determining whih andidates are ontained in transation hABCDEFGHi,only four nodes are visited in the olored trie, nine in the original equisupport and 13in the non-equisupport ase.Although distinguishing the edges seems to be a good pratie, it also has some draw-baks. Eah node stores two lists of edges, that means double overhead. In databasesthat do not ontain non-losed itemsets, the seond type of edges are never used. Wehave seen (in setion 4.2) that inreasing the size of the trie nodes deteriorates run-time59

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYand memory need. With an other solution we may get rid of large part of the over-head. Instead of this tehnique, here we propose a di�erent solution that we all level2 equisupport pruning.7.2.5 Level 2 equisupport pruningIt seems ontraditory to restrit our equisupport pruning to pre�xes in the ase ofApriori sine all subsets together with the supports are available and the equisupportProperty 7.1.1 (see page 47) is ful�lled for every subset. To understand why we an notapply a general equisupport pruning we have to understand, that� omplete pruning does not allow simple removing of equisupport leaves. A loopedge an be regarded as a lassi edge that leads to a node that is fairly similar toits parent. It is like opying an idential subtree of a hild to the node itself. Thusa node with many self loops is a ompat representation of a whole imaginarysubtrie, whih is traversed during the omplete pruning.� for eÆient support ounting and andidate generation the trie has to store orderedsequenes, i.e. the labels on all paths that start from the root and lead to a leafhave to be ordered. In other words when an inlusion of an itemsetX is heked westart from the root and hek if there exist a link with label equal to the smallestelement of X. If there exists we follow the link, and then hek the seond smallestelement, et.Based on a non-pre�x subset equivalene, removing a leaf and adding a loop link,however, may invalidate the seond assumption. Let us onsider the example, whereF2 = fAB;AC;BC;BD;CDg and sup(BC) = sup(C). Sine leaf BC has same supportas its subset, it an be removed, and a loop edge with label B has to be added to nodeC. This is seen in Figure 7.5.
A B CB C D DBFigure 7.5: Example: nonpre�x equisupport pruning ruins orderingThe trie obtained by a nonpre�x equisupport pruning does not meet the orderingrequirement. Node BC annot be reahed from the root, by �rst heking item B and60

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORIthen C. Therefore, itemset ABC is not generated as a andidate beause its subset BCan not be veri�ed.Fortunately, there exists a set of subsets that allows a seond type of equisupporttehnique, beause it does not invalidate the ordering.Here we propose a new equisupport pruning tehnique, whih meets the ordering re-quirement of the trie, thus it an be applied. It an be used only if the pre�x equisupportpruning is used as well.Property 7.2.2 Let Y be the pre�x of itemset Y [z, where jzj = 1. If there exists asubset X of Y suh that jXj + 1 = jY j and sup(X [z) = sup(X), then sup(Y [z) =sup(Y).The above property is a speial ase of the general equisupport pruning property. Weemphasized on the purpose to better illustrate whih itemsets play role in this pruningtehnique. To use the pruning, it requires that we know the equisupport sets of allsubsets. This information is only available in Apriori.This speial equisupport pruning an be easily adapted in the andidate generationphase. The seond step of the andidate generation is heking all `-subsets if they arefrequent. These are reahed by the (` � 1)-element pre�xes of them. We an add anextra hek to apply the equisupport pruning. If the largest item of the andidate isin the equisupport set of a subset of the pre�x, then the andidate is pruned and thislargest item is plaed in its generator's equisupport set.Example 7.2.3 The set of frequent two itemsets are fAB;AC;AD;BC;BDg and theonly equisupport is sup(BC) = sup(C). We do not generate ABC as a andidate beauseit has a 2-element subset that ontains C in the equisupport set of its pre�x. Figure7.6 depits the trie before and after the andidate generation. Please keep in mind, thatdead-end branh pruning (with the virtual depth modi�ation) is applies during andidategeneration.The example also shows that this tehnique may also redue the number of itera-tions of Apriori. Consider the above example exept that itemset BD is not frequent.Three iterations are needed in non-equisupport ase beause ABC would be a andi-date. Equisupport pruning, however, prevents us from generating ABC as a andidate,and terminates Apriori after the seond iteration.7.2.6 Level 2 equisupport pruning and further dead-end prun-ingFurther pruning an be applied if level 2 equisupport pruning is used. This is based onthe following lemma. 61

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY
A BB C D DC ABDCFigure 7.6: Example: speial pre�x equisupport pruningLemma 7.2.4 In the andidate generation phase when heking all subsets of an (`+1)-itemset, no equisupport sets of nodes at depth d for all d < `� 1 need to be onsidered,if level 2 equisupport pruning is used.Proof: We prove this statement by ontradition. Let us assume the pre�x of theandidate is denoted by P and item ij of subset Q = fi1; i2; : : : ; ij; : : : i`g, is in theequisupport set of itemset PQ = fi1; i2; : : : ; ij�1g. We laim that itemset Q0 = PQ[(P nQ) ould not have been generated as a andidate at iteration j. If ij � P nQ, then thepre�x equisupport hek prunes Q0 (beause it prevents extending PQ), otherwise thelevel 2 pruning does this work, beause the largest item of Q0 is in the equisupport setof its subset PQ. �Table 7.5 illustrates the rationale of the proof (P = fABCDg). The table ontainsthe subset of P that is not generated as a andidate, if the items orresponding to theindies of the row and olumn, are ij and Q respetively. For example item B annotbe in the equisupport set of itemset A beause it ontradits to the fat that ABC wasa andidate. Also, if item C is in the equisupport list of itemset B, then equisupportpruning in andidate generation prevents generating itemset ABC as a andidate. Ingeneral, the existene of itemsets above the diagonal as a andidate ontradits to pre�xequisupport pruning, while under the diagonal the itemset ontradits to equisupportpruning in the andidate generation phase.Lemma 7.2.4 allows us to (1.) simplify the ode (equisupport sets need to be on-sidered only at level ` � 1) and (2.) remove some dead-end branhes. Nodes at depth` � 1 with no hildren an be removed after the andidate generation, even if theirequisupport sets are not empty. This pruning does not require any extra movement inthe trie. The preorder traversal of the trie ensures that any `-itemset an be a subsetof an (`+ 1)-itemset that is generated by the preeding nodes. This orresponds to theproperty 4.4.1 (see page 31) used in dead-end pruning. We all level 2 pruning together62

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORIP nQ Q ijA B C DABC D AD ABD ABCD {ABD C AC ABC { ABCDACD B AB { ABC ABCDBCD A { AB ABC ABCDTable 7.5: Illustration of the proof of Lemma 7.2.4with dead-end pruning presented in this setion as level 3 equisupport pruning.Example 7.2.5 The Figure 7.7 illustrates level 3 equisupport pruning. The trie onthe left side is obtained after infrequent removal phase at iteration 2. After andidategeneration and the new dead-end pruning, we get the trie that is depited on the right sideof the �gure. Notie that nodes A and B are present in the next iteration if equisupport
A B DB,C,D D E E BDEFigure 7.7: Example: removing dead-end branhes when level 3 equisupport pruning isappliedpruning in andidate generation is not applied beause their virtual depth is 4 and 3.These unneessary branhes slow down support ount throughout two iterations.The example also shows that this dead-end pruning also redues the number of iterationin Apriori. The virtual depth of node A is 4, therefore this node is removed during theandidate generation in iteration 5. Dead-end branh removal, however, terminates thealgorithm before the support ount of the 4th iteration begins.Experiments with equisupport pruningEquisupport pruning is not neessarily run-time safe. If the database does not ontainnon-losed itemsets, then the memory alloations of the never used equisupport lists63

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYrequire extra proessor operations. Furthermore, this tehnique is not neessarily mem-ory safe. The equisupport sets need memory even if they are empty and never used.Experiments, however, show that the performane deterioration is not signi�ant. Thehighest run-time and memory need degradation were 26% and 20%, respetively. Webelieve that this is attributed to the fat that equisupport hek does not require anyextra movement in the trie and an be performed quikly. In the experiments, whoseresults are shown in Figure 7.8, level 3 equisupport pruning was employed.
 0.1

 1

 10

 100

 1000

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

 0.1

 1

 10

 100

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed

pentium 4
opteron

Figure 7.8: Equisupport pruningSome hardware friendliness diagrams are given in Figure 7.9.
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

Level3−ESP
prefix−ESP

off

G
C

lo
ck

tic
ks

all uops on pumsb at 36000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

Level3−ESP
prefix−ESP

off

G
C

lo
ck

tic
ks

all uops on retail at 6

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.9: Hardware friendliness diagrams of Aprioris with di�erent equisupport prun-ing tehniquesThe results meet our expetation. In dense datasets the run-time and memory needdrop to their fration. The derease may be of several orders of magnitude. Pleasenotie the logarithmi sale.Next, we tested if the speed-up is attributed to pre�x equisupport or the other twoprunings also play signi�ant role. The answer is found in Fig. 7.10.Experiments show that equisupport pruning proposed in andidate generation andthis speial dead-end pruning do not only possess a nie theoretial foundation but it is64

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
 0.5

 1

 1.5

 2

 2.5

 3

 3.5

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

 0.9
 1

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9

 2

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed

pentium 4
opteron

Figure 7.10: pre�x equisupport pruning vs. level 3 equisupport pruningan eÆient speed-up tehnique in pratie as well. In some ases the run-time droppedto its half.historial remark: Similar pruning tehnique based on itemsets with equalsupport was �rst presented in algorithm PASCAL proposed by Bastide et al.[5℄. Their solution di�ers from our in many respetive. First of all, they ap-ply full equisupport pruning, i.e. they do not alulate the support of anyproper superset of itemset I if sup(I) = sup(I 0) for any I 0 � I. They usethe term key pattern for those itemset that have no proper subsets with thesame support. The authors of PASCAL desribe full equisupport removal inoneptual terms. This desription suggests a naive/straightforward imple-mentation that keeps the whole ombinatorial set of equisupport expansions.The edges may be distinguished so that many of them are not onsideredduring support ount, but the nodes have to exist in order to perform fullpruning. We delare that the main merit of equisupport pruning is the fatthat many nodes an be deleted and even more need not be generated. Indense databases the main bottlenek of Apriori is the heavy memory need ofthe large andidate trie. This is not redued by the PASCAL tehnique. Onthe ontrary, our solution solves this problem. The results of the experimentsshown in Figure 7.8 justi�es this argumentation.7.2.7 Intersetion-based pruningThe lassial andidate generation onsists of two steps. First taking the union of twofrequent itemsets that have ommon (`� 1)-pre�x, and then we hek the subsets. Thislatter step is alled the omplete pruning of Apriori. From a trie point of view, eahitemset that ful�lls the omplete pruning requirement an be obtained by taking theunion of the representations of two sibling nodes in the trie. In the so alled simplepruning we go through all nodes at depth `�1, take the pairwise union of the hildren65

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYand do the omplete pruning hek. Two straightforward modi�ations an be appliedto redue unneessary work. On one hand, we do not hek those subsets that areobtained by removing the last and the one before the last elements of the union (theresulting sets are the generators). On the other hand, the prune hek is terminated assoon as a subset is infrequent, i.e. not ontained in the trie.A problem with the simple pruning method is that it unneessarily traverses someparts of the trie many times. We illustrate this by an example. Let ABCD, ABCE,ABCF , ABCG be the four frequent 4-itemsets. When we hek the subsets of potentialandidates ABCDE, ABCDF , ABCDG, then we travel through nodes ABD, ACDand BCD three times. This gets even worse if we take into onsideration all potentialandidates that stem from node ABC. We travel to eah subset of ABC 6 times.To save these superuous traversals, we propose an intersetion-based pruningmethod [8℄. Let us assume that we want to add new leaves to node P [x, where Pdenotes the pre�x. When heking the subsets of itemset P [fx; yg, we hek P [x,P [y and Q[fx; yg where Q � P and jQj+1 = jP j. P [x, P [y are the generators, theyhave to be frequent. Therefore when heking the subsets of P [fx; yg it is enough toexamine if item y extends nodes Q[x for allQ subsets. Similarly, when heking subsetsof P [fx; zg we examine if item z extends nodes Q [x for all Q � P . Consequentlynode P [x is extended by those sibling items that extend all Q [x nodes, i.e. theextending set equals to the intersetion of labels of edges that start from nodes Q [x.This is the point where we save the traversals. If nodes that represent Q itemsets arestored, then heking the subsets of P [fx; zg means determining the hild nodes of Qnodes that are reahed by label z and doing the intersetion. Furthermore, if the edgesare stored ordered and we memorize the index of edges used in the atual searh (andit at a starting point in the next searh), then in determining the items that extend thehildren of p the edges of all Q nodes are traversed at most one.In intersetion-based andidate generation when extending the hildren of P , we �rst�nd nodes Q, where Q � P , jQj + 1 = jP j. Then we take eah label i of nodes thatstart from P and determine if x extends all Q nodes. If not, then P [x an not beextended, otherwise we take the intersetion of the extender labels of Q [x and thelabel of siblings P [x. The elements of the result set are the items that extend P [x,beause they meet the omplete pruning requirement.Note the real advantage of this method. The (`�2)-subset nodes of the P are reused,hene the paths representing the subsets are traversed only one, instead of �n2�, wheren is the number of the hildren of the pre�x.Example 7.2.6 Let us assume that the trie obtained after removing infrequent itemsetsof size 4 and dead-end paths is depited in Fig. 7.11.To get the hildren of node ABCD that ful�ll the omplete pruning requirement (allsubsets are frequent), we �nd the nodes that represent the 2-subsets of the pre�x (ABC).These nodes are denoted by Q1, Q2, Q3. Next, we �nd their hildren that are reahed66

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
Q1 Q2 Q3P Q01 Q02 Q03

A BB C CC D D D FD E F G E F G F G F GFigure 7.11: Example: intersetion-based pruningby edges with label D. These hildren are denoted by Q01, Q02 and Q03 in the trie. Theintersetion of the label sets assoiated to the hildren of the pre�x, Q01, Q02 and Q03 is:fD;E; F;Gg \ fE; F;Gg \ fF;Gg \ fFg = fFg, hene only one hild is added to nodeABCD, and F is the label of this new edge.When determining the extender items of node ABCE, we �nd the new Q0j node,i.e. hildren of nodes Qj, that are reahed by edge with label E. The lak of any suhnode indiates that ABCE annot be extended, beause it has a proper subset that isinfrequent.Intersetion-based andidate generation is not neessarily faster than the traditionalandidate generation. If the �rst, non-generator subset of the andidate is infrequent,then the traditional method terminates quikly. On the ontrary intersetion-basedmethod �rst determines the nodes for all subsets of the pre�x. Therefore the intersetion-based method is faster under the negative border, and the traditional method may bethe better solution when the elements of the negative border are generated. The distanefrom the negative border, however, is not know in advane.We tested intersetion-based pruning with and without the equisupport tehnique(Figure 7.12).Some hardware friendliness diagrams are given in Figure 7.13.Obviously at databases where support ount dominates, the overall run-time dereaseis insigni�ant. Experiments shows that at databases where andidate generation takesa signi�ant time of the overall run-time, the intersetion-based andidate generation isan eÆient tehnique.Equisupport pruning inuenes eÆieny of intersetion-based pruning at databaseswhih ontain non-losed itemsets. Equisupport pruning redues the number of supportount and andidate generation alls, beause it replaes these operations with subsetenumeration. It is not known, however, how does the ratio of support ount and an-didate generation hanges (this depends on the harateristis of the database). If theandidate generation beomes more signi�ant, then the advantage of the intersetion-based pruning grows. 67

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

pentium 4 (ESP)
opteron (ESP)

Figure 7.12: Speed-up ratios of intersetion-based andidate generation without andwith Level 3 equisupport pruning

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

intersect−prune

classic−prune

G
C

lo
ck

tic
ks

all uops on mushroom at 550

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 50

 100

 150

 200

 250

 300

 350

classic−prune
intersect−prune

G
C

lo
ck

tic
ks

all uops on T10I4D100K at 4

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.13: Hardware friendliness diagrams of Aprioris with the simple lassi and withthe intersetion-based andidate generation
68

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI7.2.8 Omitting omplete pruningComplete pruning is delared to be an inherent and important step of algorithm Apriori.It seems to be natural to use pruning, sine { in ontrast to the DFS algorithms { allsubsets of a potential andidate are available. The main merit of Apriori against DFSalgorithms is that Apriori generates a smaller number of andidates. In [8℄ it wasshown that the eÆieny of Apriori is not neessarily attributed to omplete pruning,furthermore, omplete pruning slows down Apriori most of the times. In the rest of thepaper we refer to Apriori that does not apply omplete pruning (i.e. the seond step ofthe andidate generation is omitted) as Apriori-Noprune.The advantage of the pruning is to redue the number of andidates. The numberof andidates in Apriori equals to the number of frequent itemsets plus the numberof infrequent andidates, i.e. the negative border of the frequent itemsets. If pruningis not used, then the number of infrequent andidates beomes the size of the order-based negative border of the frequent itemsets, where the order orresponds to the orderused in onverting the sets to sequenes (An itemset I is an element of the order-basednegative border of F if it is not in F , but its pre�x P IjIj�1 and the subsequent subset of Iof the same size are in F). It follows, that if we want to derease the redundant work (i.edetermining a support of the infrequent andidates), then we have to use the order thatresults in the smallest order-based negative border. This issue is further investigated inSetion 7.3, here let us aept that the asending order aording to supports is expetedto result in the minimal negative border.The disadvantage of the pruning strategy is simple: we have to traverse some partof the trie to deide if all subsets are frequent or not. Obviously this needs some time.Here we state that pruning is not neessarily an important part of Apriori. Thisstatement is supported by the following observation, that applies in most ases:jNB�A(F) nNB(F)j � jF j:The left-hand side of the inequality gives the number of infrequent itemsets thatare not andidates in the original Apriori, but are andidates in Apriori-Noprune. Sothe left-hand side is proportional to the extra work to be done by omitting pruning.On the other hand, jF j is proportional to the extra work done by pruning. Candidategeneration with pruning heks all the maximal proper subsets of eah element of F ,while Apriori-Noprune does not. The outomes of the two approahes are the same forfrequent itemsets, but the pruning-based solution determines the outome with muhmore e�ort (i.e. traverses the trie many times).Although the above inequality holds for most ases, this does not imply that pruningis unneessary, and slows down Apriori. The extra work is just proportional to the quan-tities in the formulas above. Extra work aused by omitting pruning means determiningthe support of some andidates. The resoure requirement of this is a�eted by manyfators, suh as the size of these andidates, the number of transations, the number69

7.2. IMPROVEMENTS USED IN APRIORICHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYof elements in the transations, and the length of mathing pre�xes in the transation.The extra work aused by pruning omes in a form of redundant traversals of the treeduring heking the subsets. This also depends on many other parameters.As soon as the pruning strategy is omitted, Apriori an be further tuned by mergingthe andidate generation and the infrequent node deletion phases. After removing theinfrequent hildren of a node, we extend eah hild the same way as we would do inandidate generation. This way we spare an entire traversal of the trie. This solutionombines andidate generation and infrequent andidates removal phases.This trik an also be used in the original Apriori, however { as opposed to theappliation of Apriori-Noprune { it does not neessarily speed up the algorithm. Tounderstand this, we have to observe that andidate generation is always after the in-frequent node deletion phase, in whih some leaves and even entire branhes of the triemay be removed. Sine the trie is traversed many times during the omplete pruningheks of the andidate generation, this trie purge may result in a signi�ant run-timederease. If the seond step, and thus the numerous trie traversals are omitted, thenwe an merge infrequent andidate removal and andidate generation phase without thethreat of ausing performane degradation.Figure 7.14 shows the performane gain of Apriori-Noprune ompared to Apriori withlassial pruning. We also hek the results when equisupport pruning was turned on.This means full equisupport pruning in the ase of lassi Apriori and pre�x equisupportpruning in Apriori-Noprune.Some hardware friendliness diagrams are given in Figure 7.15.Experiments show that omplete pruning is not neessarily an important step ofApriori, furthermore it inreases run-time most of the times. The highest di�erenewas at database BMS-WebView-1, where the run-time dropped to its quarter as soon asomplete pruning was omitted Similar to intersetion-based andidate generation, theequisupport pruning also hanges the importane of omplete pruning.7.2.9 Summary of the tehniquesWe have presented many tehniques that aim to redue run-time or memory need.The following table summarizes our results. The tik in the seond (third) olumndenotes that the tehnique is run-time (memory) safe. The sign S stands for the stritsafeness, i.e. for all databases the tehnique did not result in a slower (less memory-eÆient) implementation. If no sign is found, then this tehnique has no inuene onthat measurement. For example routing strategies, when the edges are stored in anordered vetor do not have e�et on memory need.The fourth olumn stores the largest run-time drop. For example if the run-timeof the base algorithm was 20 se, and with the tehnique it dropped to 10 se., thenthis value is 2. Therefore higher numbers here mean more eÆient algorithms. If thetehnique resulted in a slower algorithm { for example the run-time inreased to 30 se70

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.2. IMPROVEMENTS USED IN APRIORI
 0

 2

 4

 6

 8

 10

 12

 14

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

pentium 4 (ESP)
opteron (ESP)

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f m

em
or

y n
ee

d

Figure 7.14: Omitting omplete pruning

 0

 20

 40

 60

 80

 100

 120

 140

no−prune
classic−prune

G
C

lo
ck

tic
ks

all uops on BMS−Web−2 at 8

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

no−prune
classic−prune

G
C

lo
ck

tic
ks

all uops on pumsb at 36000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.15: Hardware friendliness diagrams of Apriori and Apriori-Noprune71

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY{ then the �fth olumn stores the largest performane degradation (2/3 in this ase).The last two olumns store the same indiators but for the memory onsumption.tehnique run-time memoryneed largestrun-timeratio smallestruntimeratio largestmemoryneedratio smallestmemoryneedratioinhomogeneous triewith speial blokalloator S S 2.18 2.86dead-end pruning S S 4.24 2.56hybrid edge repre-sentation X S 1.62 0.94 1.37 0.97transation ahing X { 706 0.94 0.17level 3 equisupportpruning X X 105 0.77 42 0.88pre�x vs. level 3equisupport prun-ing S S 3.35 1.9intersetion-basedpruning X 6.12 0.98omitting ompletepruning { { 7.36 0.81 0 0.76Table 7.6: Summary of the tehniques7.3 The inuene of item orderingAt the theoretial level we work with sets. In the implementations there exist no setsbut vetors, lists, arrays, trees. Sets are onverted to sequenes using a total order onthe items. The lexiographi order aording to this order de�nes a total order on theitemsets. The order greatly a�ets the algorithms and the speed-up tehniques. Tillthis point we arefully avoided this issue, but this subsetion is dediated to this topi.7.3.1 The order-preserving assumptionIn many FIM papers ertain algorithms and speed-up tehniques are explained withthe independene assumption. Independene assumption states that if the frequeniesof disjoint itemsets I1 and I2 are respetively freq(I1) and freq(I2), then the frequenyof itemset I1 [I2 is (or at least lose to) freq(I1) � freq(I2). This tries to enapsulate theindependene of two binary random variables, but the probabilities are substituted byfrequenies (relative supports). The assumption seems to ontradit to our original goalwhih is disovering unusual, unexpeted, orrelated patterns in the form of assoiation72

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGrules. If independene holds then the itemset that onsists of the most frequent itemswould be largest itemset with the highest support. If we assume that item frequenies arefreq(i1) � freq(i2) � � � � � freq(i`), then the size of the largest itemset would be k wherefreq(i1) freq(i2) � � � freq(ik) � min freq but freq(i1) freq(i2) � � � freq(ik+1) < min freq.In general the number of frequent itemsets of size ` would be jfI = fi1; i2; : : : i`g :freq(i1) freq(i2) � � � freq(i`) � min freqgj.We ompared the distribution of frequent itemsets of real databases to their \inde-pendent version". The latter has the same item frequenies ad the original one, andthe frequenies for larger sets are derived from the independene assumption (formula).The results of two randomly seleted databases are seen in Figure 7.16.
 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16

Database: pumsb*, minsupp 13000

independence
real

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20

Database: kosarak, minsupp 840

independence
real

Figure 7.16: Distribution of the size of the frequent itemsets and the distribution offrequent itemsets under independene assumptionWe an see that reality is quite far form the assumption. We get similar onsequeneswhen we ompare the number of frequent sets, the size of the largest frequent set, theaverage size of a frequent sets, et.When using a model we expet the onsequenes drawn from the model to be loseto reality. It seems that almost all observable onsequenes that are drawn from theindependene assumption have nothing to do with reality.Does there exist a model that suits the harateristis of the frequent itemsets andat the same time it an be used to make further onsequenes?Here we propose the following assumption.De�nition 7.3.1 The order-preserving assumption requires that sup(X [Y) �sup(X [Z) holds whenever sup(Y) � sup(Z) for any disjoint sets X; Y; Z.We get an equivalent de�nition if support is substituted with frequeny. The order-preserving assumption follows from the independene assumption, but not onversely.An immediate onsequene of the independene assumption is that sup(X [Y) =sup(X [Z), if sup(Y) = sup(Z). If we want that the relative orders aording to73

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYfrequenies of two itemsets are not hanged when adding ertain items to both itemsets,then we have to modify slightly the de�nition.De�nition 7.3.2 The soft order-preserving assumption requires that sup(X [Y) �sup(X [Z) holds whenever sup(Y) < sup(Z) for any disjoint sets X; Y; Z.Some immediate onsequenes for later use are listed in the following.Corollary 7.3.3 Let I = fi1; i2; : : : ; i`g. If sup(i1) � sup(i2) � � � � � sup(i`), thensup(fi1; i2; : : : ; i`�1g) � sup(I 0) for all I 0 � I, with jI 0j = `�1. Also, sup(fi2; i3; : : : ; i`g) �sup(I 00) for all I 00 � I, jI 00j = `� 1.Proof: If I 0 = I n fijg then set X = I n fij; i`g, Y = fijg and Z = fi`g. Theorder=preserving assumption gives the �rst laim. The seond laim an be obtainedsimilarly. �The soft order-preserving assumption version of the above orollary is the following.Corollary 7.3.4 Let I be a set of items of size `. If soft order-preserving assumptionholds, then the subset of size `� 1 that onsists of the most (least) frequent items, thathas the largest (smallest) support among the subset of I of size `� 1.The orollary laims, that the subset of I that ontains the most (least) frequentitems has the largest (smallest) support among all the subsets of I of the same size.Aording to the following orollary (whih gives an equivalent version of de�nition7.3.6), the order-preserving assumption is hereditary to the projeted databases, i.e.,the ordering based on the supports of the items is equal to the ordering based on thesupports of the items in projeted databases.Corollary 7.3.5 Let T be a set of itemsets in whih the order-preserving assumptionholds. Then supTjX(Y) � supTjX(Z) if and only if supT(Y) � supT(Z) holds for anydisjoint sets X; Y; Z.Proof: Using the fat that the support of X[Y in T equals to the support of Y in TjXwe get the laim, sine the de�nition of order-preserving assumption an be rewrittensuh as: supTjX(Y) � supTjX(Z) holds whenever supT(Y) < supT(Z) for any disjointsets X; Y; Z. �The property, however, does not hold to the omplement of the projeted database.This is proven by the following example. Let T = hY;XZ;XWZi. It is easy to ver-ify that the order-preserving assumption holds. Nevertheless sup(Y) < sup(Z) whilesupTjX(Y) > supTjX(Z). 74

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGThe order-preserving assumption is quite rigid, and its validity is sensitive to noise,whih is always present in real-world databases. If the probabilities of the ourrenesof two itemsets are equal, then it is quite likely that in their support in a dataset will belose to eah other but the hane of equality is small and onverges to 0 as the number oftransations inreases. This applies to all of their extensions with independent itemsets.Consequently, half of the extension does not ful�ll the order preserving assumption.Here we propose a relaxation of our assumption.De�nition 7.3.6 Let 0 � � � 1 be a given onstant. The � order-preserving assump-tion requires that � � sup(X [Y) � sup(X [Z) holds whenever sup(Y) < sup(Z) forany disjoint sets X; Y; Z.Obviously, if � = 1, then we get the soft order-preserving assumption.It is quite easy to verify the validity of the � order-preserving assumption in a setof itemsets S, in whih downward losure property holds, in a sequene of itemset T.We hek all di�erent itemset pairs I; I 0 2 S if their intersetion is nonempty. For suhitemset pairs we alulate I1 = InI 0, I2 = I 0nI. If the order of supports aording to I; I 0di�ers from the order of support aording to I1; I2 then the order-preserving assumptionfails, otherwise holds. The order-preserving ratio is then given by the number of itemsetpairs that result a positive hek divided by the number of itemsets pairs onsidered (i.e.,I and I 0 are not disjoint sets). The order-preserving ratio an similarly be alulatedfor the � order-preserving assumption. Table ontains the order preserving ratio of thefrequent itemsets in our benhmark databases.The �gures show that the order-preserving assumption holds in most of the ases.Now let us turn to the onsequenes of the order-preserving assumption that arequite valuable in frequent itemset mining.7.3.2 The number of andidatesThe number of andidates is independent of the ordering in the ase of Apriori. Inontrast, it depends on the pre�xes { and thus on the ordering as well { in the aseof Elat, Fp-growth and Apriori-Noprune. The set of infrequent andidates is equal tothe order based negative border of the frequent itemsets. An `-itemset is an elementof the order-based negative border if it is infrequent and its (`� 1)-element pre�x andthe subsequent (with respet to the ordering) subset of the same size are frequent. Thefollowing lemma indiates whih ordering results in the smallest order based negativeborder.Lemma 7.3.7 If the order-preserving assumption holds, then the asending order withrespet to the supports results in the smallest order based negative border.75

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY
database minsup order-preserving ratio1 0.95 0.9T40I10D100 900 0.912 0.998 0.999kosarak 1 800 0.817 0.980 0.998T10I4D100K 8 0.690 0.693 0.726onnet 56 000 0.725 1.000 1.000pumsb 41 000 0.863 0.994 1.00038 000 0.219 0.974 0.999aidents 114 000 0.882 0.960 0.988retail 11 0.870 0.876 0.909BMS-POS 400 0.809 0.860 0.901350 0.116 0.354 0.544BMS-WebView-1 37 0.857 0.942 0.98436 0.351 0.802 0.961BMS-WebView-2 30 0.790 0.819 0.853webdos 220 000 0.877 0.966 0.990mushroom 1 600 0.910 0.955 0.990900 0.868 0.896 0.913T10I5N1KP5KC0 100 0.915 0.961 0.96710 0.790 0.809 0.8198 0.714 0.729 0.739T20I10N1KP5KC0 400 0.963 0.999 0.999T30I15N1KP5KC0.25D200K 650 0.999 1.000 1.000pumsb* 17 000 0.850 0.963 0.98615 000 0.434 0.833 0.928Table 7.7: The order-preserving ratio of the frequent itemsets

76

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGProof: For eah element I = fi1; i2; : : : i`g of the order-based negative border theproper pre�xes of I are frequent. Without loss of generality we an assume that i1 �i2 � � � � � i`. If sup(ij) � sup(ij+1) for all j = 1; 2; : : : ; `� 1 and the order-preservingassumption holds, then the orollary 7.3.3 states that sup(fi1; i2; : : : ; i`�1g) � sup(I 0)for all I 0 � I, where jI 0j = `� 1. Itemset fi1; i2; : : : i`�1g is the pre�x whih is frequentand hene all proper subsets of I are frequent. Consequently NB�(F) = NB(F) if� denotes the asending order aording to frequenies. By Corollary 2.0.8 (see page11) no other ordering results in smaller number of andidates, hene the lemma follows.�Corollary 7.3.8 If order-preserving assumption holds, thenNB(F) = NB�ASC(F);where F denotes the set of frequent itemsets, and �ASC denotes the asending orderingaording to the supports.7.3.3 Size of the trieItemsets inserted into a trie are �rst onverted to sequenes based on an ordering. Theordering a�ets the shape and the number of nodes of the trie. This is illustrated bythe tries depited in Figure 7.17. Both tries stores sets AB and AC. The �rst trie usesordering A � B � C the seond uses the reverse.012 3AB C 01 23 4C BA AFigure 7.17: tries storing the same sets but using di�erent orderingsFor the sake of reduing the memory need whih has strong orrelation to the traver-sal times (see page 27), it would be useful to use the ordering that results in a trie withminimal size. The size of the trie is given by the number of nodes. Comer and Sethiproved in [13℄ that the minimal trie problem, i.e., to determine the ordering whih gives aminimal trie (denoted by TOPT), is NP-omplete. On the other hand, a simple heuristi(whih was employed in FP-growth) performs very well in pratie: use the desendingorder aording to the frequenies. This is inspired by the fat that tries store any given77

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYpre�x only one, and there is a higher hane of itemsets having the same pre�xes if themore frequent items are loser to the root.Di�erent orderings may result isomorphi tries (and di�erent orderings an result ina minimum-size trie). For example tries that store sets A;B;AB;AC and use orderingA � B � C and A � C � A are isomorphi and minimal. Furthermore di�erentordering may result di�erent, non-isomorphi minimal tries. This is shown in Figure7.18. TOPT01 23 4 56
A BB C CD

T0OPT01 23 4 56
C AA B BDFigure 7.18: Example: minimal non-isomorphi triesNote that we have to distinguish two frequenies of the items; frequeny in thedatabase, and frequeny among the itemsets inserted into the trie. We all this latterfrequeny as unweighted frequeny. Obviously ordering based on the two values arenot neessary equal. If the elements of the database AB;AC;AD;BC;BC;BC thenA is the most frequent aording to unweighted frequeny, but aording to databasefrequeny it is only in third plae. Next we prove that under the order-preservingassumption the two orderings are equal.De�nition 7.3.9 Let T be a sequene of itemsets and denote by T� the sequene thatis obtained from T by keeping only the di�erent elements (i.e. T� ontains the sameitemsets as T but with multipliity exatly one). The unweighted support of itemsetI in T equals to the support of I in T�, i.e.uw supT(I) = supT�(I):Lemma 7.3.10 Let T be a sequene of itemsets over I. If order-preserving assumptionholds, then the ordering with respet to the unweighted support equals to the ordering withrespet to the support, i.e. if sup(fijg < sup(fikg) then uw sup(fijg � uw sup(fikg).Proof: We prove the statement by ontradition. Let us assume that sup(i) � supp(i0)but uw sup(i) < uw sup(i0). Let us denote the elements of the over of i0 in T� by78

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGt01; t02; : : : ; t0n (i0 2 tj, tj 2 T�, t0k 6= t0l). Aording to the order-preserving assumptionsup((tn)i0[i) � sup(t) for all t 2 over�T(i0). This is a ontradition, beause the numberof (t n i0)[i sets is smaller or equal than uw supp(i0), they are di�erent and all ontaini, therefore the size of uw sup(i) annot be less than uw sup(i0). �T�DESC01 2 34 5 6 78
Z B CB C A AC

TOPT01 23 4 5 67
Z AB C B CCFigure 7.19: Example: desending order does not result in the smallest trieThe failure of the desending order produing the minimum size trie stems fromthe fat that the order-preserving assumption does not hold. Note that in the examplesup(Z) > sup(A), but sup(ZB) < sup(AB).Conjeture 7.3.11 Let T be a set of itemsets and denote �DESC the desending orderof items aording to the number of ourrenes of the items in T. If order-preservingassumption holds then T�DESC (T) is the minimum-size trie among the tries that storeT, i.e., there exists no ordering � suh that T�(T) has fewer nodes than T�DESC (T).If the onjeture follows, then we know that the heuristi works �ne under idealirumstanes (the order-preserving assumption holds for all sets). Table 7.7 shows thatthe real-world is \lose"to the ideal, but still slightly di�erent. One of the most valuableknowledge of frequent itemset mining would be a formula about the relationship of the �order-preserving ratio of a set of itemset T and the ratio of jT�DESC (T)j and jTOPT (T)j,where TOPT denotes a minimum-size trie.7.3.4 Tehniques in AprioriSupport ountOne may tend to follow the observation a smaller memory need results in better dataloality and hene faster algorithms. Therefore we should use the desending orderaording to the frequeny when building the andidate trie. This is, however, just oneside of the problem. 79

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCYTo understand the other side we have to reall the support ount proedure. Todeide whih andidates are ontained in a given transation, a part of the trie has tobe traversed. Eah path of the traversals starts from the root. Some paths reah a leaf,others do not. The number and the length of paths that reah a leaf is independent ofthe ordering. This, however, does not apply to the length of the remaining paths. Toredue the expeted number of unneessarily visited nodes, �rst we have to hek if thetransation ontains the least frequent item sine this is likely to provide the strongest�ltering among the items of the andidate, i.e. this is the item that is ontained in theleast amount of transations. Next, the seond least frequent is advised to hek, thenthe third, and so on. The edges are heked from the root to the leaves, hene we expetthe least amount of redundant heks and thus the best run-time, if the order of itemsorresponds to the asending order aording to the supports.01 23 4 5 5A BC D C D 01 23 4 5 5D CB A B AFigure 7.20: Example: Tries with di�erent orders7.20. The two tries store the same sets, but one in the left uses the desendingorder (A � B � C � D) and the other the asending order aording to unweightedfrequenies. When determining the andidates in transation fA;B;E; Fg. Nodes 0,1and 2 are visited if desending order is used, while the searh is terminated immediatelyat the root in the ase of the asending order.We know, that transation ahing using a trie or a patriia tree requires desendingorder aording to the frequenies in order to be storage eÆient. In ontrast, theminimal number of redundant steps in the andidate trie during the support ountprefers asending order. These two requirements an be satis�ed at the same time bya little trik. The items are reoded aording to asending order aording to thesupports, but the items are stored desending in eah transation when inserting intothe aher. Sine the eÆient support ount (i.e. merge) requires the items of thetransation to be stored asendingly, we simply reverse eah transation when it isretrieved from the aher.In summary, desending order is good for the ompatness (and does not requireto reverse the transations before being proessed), while asending order results in afewer redundant steps in the trie. Experiments show also that there is no absolutewinner; most of the times the asending order results in the faster algorithm, sometimesthe desending order. For some results pertaining to this dihotony, see Figure 7.21.80

CHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY7.3. THE INFLUENCE OF ITEM ORDERINGValues less than one mean that the Apriori that uses desending order aording to thefrequenies is the faster.
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

pentium 4 (tr_cache)
opteron (tr_cache)

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

pu
m

sb
*

T3
0I

15
N1

KP
5K

C0

T2
0I

10
N1

KP
5K

C0

T1
0I

5N
1K

P5
KC

0

m
us

hr
oo

m

we
bd

oc
s

BM
S-

W
eb

Vi
ew

-2

BM
S-

W
eb

Vi
ew

-1

BM
S-

PO
S

re
ta

il

ac
cid

en
ts

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D1

00
K

ra
tio

 o
f m

em
or

y n
ee

d

Figure 7.21: Asending vs. Desending order aording to the frequeniesSome hardware friendliness diagrams are given in Figure 7.22.In all experiments the transation ahing does not hanges whih ordering resultsin the �rst plae. This is attributed to the fat that we used low support threshold.In suh ases the memory need of a transation aher and the run-time of building itare insigni�ant omparing to the memory need of the andidate trie and the run-timeof support ount. Di�erent ordering may be a better hoie if we raise the supportthreshold.Pruning eÆienyThere is a strong onnetion between the ordering and eÆieny of the Apriori thatdoes not use omplete pruning. We want to use the ordering that minimizes the num-ber of false andidates. Candidates in Apriori-Noprune are the same as andidates in81

7.3. THE INFLUENCE OF ITEM ORDERINGCHAPTER 7. TECHNIQUES FOR IMPROVING EFFICIENCY
 0

 50

 100

 150

 200

 250

 300

ASCDESC

G
C

lo
ck

tic
ks

all uops on BMS−POS at 200

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

 0

 100

 200

 300

 400

 500

 600

 700

ASCDESC

G
C

lo
ck

tic
ks

all uops on accidents at 140000

3 uops/tick
2 uops/tick
1 uop/tick

stall
bogus uops

nbogus uops
prefetch pending

r/w pending

Figure 7.22: Hardware friendliness diagrams of Aprioris with asending and desendingorder aording to the frequeniesElat or FP-growth (see setion 7.3.2) therefore the fastest Apriori-noprune is expetedwhen asending order aording to the frequenies is used. Experiments support thisonlusion.Table 7.8 shows the ratio of the number infrequent andidates and the number offrequent itemsets in the ase of omplete pruning, Apriori-Noprune with asending anddesending order aording to the supports.database omplete NOPRUNE NOPRUNE jCDESCnF jjCASCnF jprune ASC DESCT40I10D100K 0:98 1:05 3.20 3.04kosarak 0:05 0:74 1.61 2.16T10I4D100K 6:62 15:57 27.98 1.79onnet 0:0001 0:002 2.07 766.83pumsb 0:008 0:03 0.82 22.71aidents 0:03 0:03 2.90 86.78retail 4:82 5:71 578.54 101.15BMS-POS 0:56 0:59 30.98 52.10BMS-WebView-1 0:002 0:02 0.09 3.53BMS-WebView-2 0:05 0:16 3.28 20.18webdos 0:21 0:22 12.91 58.41mushroom 0:001 0:005 2.87 515.85T10I5N1KP5KC0.25D200 42:31 51:94 194.90 3.75T20I10N1KP5KC0.25D200K 0:009 0:06 0.24 3.71T30I15N1KP5KC0.25D200K 0:07 0:26 0.16 0.61pumsb* 0:002 0:05 0.62 12.42Table 7.8: Ratio of the number of infrequent andidates and the number of frequentitemsetsWe an see that the number of infrequent andidates is muh larger when the de-sending order is used (hek the values in the last olumn).It follows from the rational that Apriori di�ers from Apriori-Noprune in terms ofsensitivity of the ordering. Both orderings has their advantage in Apriori, but in Apriori-Noprune the drawbak of desending order is dominating.82

Chapter8Evalutation
8.1 The battle of Apriori implementationsWe have enrolled our three seleted implementations (Apriori, Apriori-Noprune andApriori-MEMSAFE) in a ompetition with three known Apriori odes. Apriori-MEMSAFEemploys on-line andidate 2-itemset generation [19℄ and does not use transation ahing.Apriori-Noprune omits the omplete pruning phase. Apriori and Apriori--MEMSAFEadapt the intersetion-based andidate generation. Apriori-Noprune and Apriori usetransation ahing and apply a diagonal array for determining the supports of andi-dates of size two. All three implementations use inhomogeneous trie with the speialblok alloator, dead-end branh pruning, hybrid edge representation and full equisup-port pruning.We ompared our implementation to three C/C++ implementations oded by Chris-tian Borgelt1 , Bart Goethals2 and Tingshao Zhu3 respetively. This later was �nallyexluded from the rae, beause it ran extremely slow, several orders of magnitude slowerthan the others. We used the latest versions that are available on the authors' websiteat 15th Deember 2005.We have tested two implementations from Christian Borgelt, the one that was sub-mitted to FIMI'04 (Apriori-Borgelt-FIMI) and other that an be downloaded from thewebpage. We ran this implementation with two di�erent parameters, in order to test thespeed- and memory-optimized version respetively (denoted by Apriori-Borgelt-Speedand Apriori-Borgelt-Mem respetively). Apriori-Borgelt-Speed always onsumedthe same amount of memory as Apriori-Borgelt-FIMI but sometimes ran slower.In the memory optimized version hybrid edge representation is used and transationsare not stored in the memory. The speed-optimized version uses a trie with o�set-index1http://fuzzy.s.uni-magdeburg.de/�borgelt/apriori.html2http://www.adrem.ua.a.be/�goethals/software/3http://www.s.ualberta.a/�tszhu/software.html83

http://fuzzy.cs.uni-magdeburg.de/~borgelt/apriori.html
http://www.adrem.ua.ac.be/~goethals/software/
http://www.cs.ualberta.ca/~tszhu/software.html

8.1. THE BATTLE OF APRIORI IMPLEMENTATIONSCHAPTER 8. EVALUTATIONedge representation, and a trie storing the transations. It adapts a novel supportounting method, (the basis of whih was desribed in setion 7.2.2) together with thesimple unimportant item �ltering tehnique (see setion 7.2.3).Due to the spae restritions we show only a small number of test results. We up-loaded all results to the page http://www.s.bme.hu/�bodon/fim/test.html. Threetypial run-time plots are depited in Figure 8.1.
 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 215

r
u
n
-
ti
m

e
 (

s
e
c
.)

minsup

Database: T40I10D100K

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1000

r
u
n
-
ti
m

e
 (

s
e
c
.)

minsup

Database: kosarak

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

 1

 10

 100

 1000

 31 32 33 34 35 36 37

r
u
n
-
ti
m

e
 (

s
e
c
.)

minsup

Database: BMS-WebView-1

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

Figure 8.1: Battle of the Apriori implementations, run-timesGoethals' implementation is not ompetitive in speed with the other Apriori im-plementations. Conerning just the lowest support threshold, Apriori-Borgelt-FIMI�nished in the �rst plae in 5 ases and our Apriori in 11 ases. The following �gureshows the advantage of Apriori over Apriori-Borgelt-FIMI. Positive value meansthat Apriori was faster than Apriori-Borgelt-FIMI.
 0.1

 1

 10

 100

 1000

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f r

un
-ti

m
e

pentium 4
opteron

Figure 8.2: Borgelt vs. Bodon (run-times)The highest advantage of Apriori-Borgelt-FIMI is at database T10I5N1KP5KC0.-25D200K where it is two times faster than Apriori. On the ontrary, our Apriori oftenoutperformed Apriori-Borgelt-FIMI with an order of magnitude, and in several asesApriori-Borgelt-FIMI ould not even ope with the task.84

http://www.cs.bme.hu/~bodon/fim/test.html

CHAPTER 8. EVALUTATION8.1. THE BATTLE OF APRIORI IMPLEMENTATIONSConerning memory-optimized versions, our implementation outperformed Borgelt'simplementation in run-time in 13 ases.The advantage of our solution is quite lear if we take a look at the memory need.Our implementations onsumed only a fration of the memory need of Borgelt's im-plementation. This applies to all databases at all support thresholds. Three typialmemory-need plots are in Figure 8.3.

 1

 10

 100

 1000

 1000

m
e
m

o
r
y
 n

e
e
d
 (

M
B

)

minsup

Database: T40I10D100K

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

 1

 10

 100

 1000

 10000

 1000

m
e
m

o
r
y
 n

e
e
d
 (

M
B

)

minsup

Database: kosarak

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

 1

 10

 100

 1000

 10000

 31 32 33 34 35 36 37

m
e
m

o
r
y
 n

e
e
d
 (

M
B

)

minsup

Database: BMS-WebView-1

Apriori-Goethals
Apriori-Borgelt
Apriori-Bodon

Apriori-Bodon-Noprune
Apriori-Bodon-lowmem
Apriori-Borgelt-lowmem

Figure 8.3: Battle of the Apriori implementations, memory needThe omparison of the two main rivals, i.e. Apriori and Apriori-Borgelt-FIMI isfound in Fig. 8.4.
 0.1

 1

 10

 100

 1000

pu
m

sb
*

T3
0I

15
N

1K
P

5K
C

0

T2
0I

10
N

1K
P

5K
C

0

T1
0I

5N
1K

P
5K

C
0

m
us

hr
oo

m

w
eb

do
cs

B
M

S
-W

eb
V

ie
w

-2

B
M

S
-W

eb
V

ie
w

-1

B
M

S
-P

O
S

re
ta

il

ac
ci

de
nt

s

pu
m

sb

co
nn

ec
t

T1
0I

4D
10

0K

ko
sa

ra
k

T4
0I

10
D

10
0K

ra
tio

 o
f m

em
or

y
ne

ed

pentium 4
opteron

Figure 8.4: Borgelt vs. Bodon (memory needs)In summary, our ode results in the fastest Apriori implementation in most of theases, and its memory requirement is outstanding in the �eld.85

8.2. THE BATTLE OF ECLAT IMPLEMENTATIONSCHAPTER 8. EVALUTATION8.2 The battle of Elat implementations8.3 The battle of FP-growth implementations8.4 Comparing Aprior, Elat and FP-growthIn ompared the three algorithms we endeavored to be as fair as possible. Commonmethods (like frequent item mining, input/output operations, oding/deoding subsetenumeration) use the same ode. We spend many e�orts on making these ommonmethods as eÆient as possible in order the algorithm spei� odes be dominant inrun-time and memory need.We determine the supports of the items by using a simple vetor. The element atindex i belong to item i. Initially all elements are zero, we take the transations one-by-one and inrease the ounter of those elements that our in the atual transation.In input and output routines we use bu�ering (with a arefully hosen bu�er size)manual integer to string (and bakward) onversion and low level �le operation. Tofurther redue the output of the result, whih is quite dominant in dense datasets withlow support threshold (like database mushroom with minsup = 30000), we used a depth-�rst output manager, whih ahes the string representation of the previously frequentitemset written out. For further information and experiment results of this sophistiatedsolution the reader is referred to [46℄.TEST RESULTS COME HERE!!!The test results immediately proves that the often ited misbelief \The numerousdatabase san is the reason for ine�etiveness of algorithm Apriori" has nothing to dowith the reality. Our Apriori implementation uses transation ahing (see setion 7.2.1)thus Apriori sans the entire dataset only twie, the same times as Elat and FP-growthdo. Apriori is still muh slower than the ounterparts in many ases.8.5 The bottlenek of Apriori, Elat and FP-growthWe have seen that there is no single best algorithm that outperforms the other algorithmsat every databases with every support thresholds. Eah algorithm has its bottlenek.On the ontrary to the believes (see setion 1.2), the reason why Apriori falls behindin eÆieny from Elat and Fp-growth is that Apriori does not utilize the informationgained in the previous iteration. Although it determines the over of all subsets of aandidate in the previous iteration, this information is not used in determining thesupport of the andidate. Elat and FP-growth are smarter in this respet, i.e. onlythose transations are onsidered in determining the support of a andidate that ontainthe pre�x of the andidate. 86

CHAPTER 8. EVALUTATION8.5. THE BOTTLENECK OF APRIORI, ECLAT AND FP-GROWTHTO BE CONTINUED!

87

8.5. THE BOTTLENECK OF APRIORI, ECLAT AND FP-GROWTHCHAPTER 8. EVALUTATION

88

Chapter9The furure: toward hybrid algorithmsThe fat that eah algorithm has its drawbak, opens the gate toward hybrid algorithms.The �rst hybrid algorithm AprioriHybrid appeared quite early. It is a ombination ofApriori and AprioriTid, based on the observation that Apriori performs better in theinitial phases while AprioriTid is a better hoie in the later phases. The di�erenebetween Apriori and AprioriTid lies in the support ount method. AprioriTid uses atable, eah row of a table belongs to a transation and a row at iteration ` ontainsthe andidates of size ` that ours in the transation (empty rows are removed fromthe table). Both the support of a andidate and the table of the next iteration an beounted diretly from the table. The reason AprioriTid runs faster in the �nal iterationis not the always emphasized property that it does not use the input data (IO operationsrequires insigni�ant time ompared to the other operations in the support ount) butthe simpli�ed support determination of a andidates.The swith point depends on the size of the table. If the number of andidatesdereases and the size of the table �ts into the memory then Apriori swithes to Aprior-iTid. In [18℄ is was shown that this heuristi does not neessarily works (with our wordsit is neither memory nor run-time safe), beause the number of andidates may growagain, whih may prevent the table �tting into the memory. This results in a signi�antperformane deterioration.The seond hybrid solution was proposed in [26℄ where the authors proposed to useApriori is the beginning and then swith to Elat. Unfortunately, the main question,i.e. when to do the swith is not answered and an be simply set by a parameter. In [19℄it was shown that the hybrid algorithm that swithes to Elat after the seond iterationand uses the array-based tehnique to determine the support of the pairs outperformsApriori and Elat at many databases.Sine the eÆieny of Apriori and Elat fall farbehind from the eÆieny of our Apriori and Elat, this observation does not neessarilyhold. Also to understand this hybrid solution we don't have to know anything aboutApriori and its speed-up tehniques, hene we do not regard this solution as a hybrid89

9.1. CONCLUSIONCHAPTER 9. THE FURURE: TOWARD HYBRID ALGORITHMSmethod, but rather a modi�ation of Elat.We believe that the �rst remarkable hybrid solution is algorithm DCI [36℄ whoseimprovement kDCI [38℄ turned out to be one of the most suessful FIM implementationsin 2003. In the beginning it works as an Apriori that used pre�x-array to store theandidates and applies the unimportant item �ltering tehnique in order to redue thesize of the database. As soon as the database �ts into the memory it swithes to anovel intersetion-based ounting method. Moreover, it uses a heuristis to deide if theinput database is dense or sparse and hooses the ounting proedure that is expetedto perform better.9.1 Conlusion

90

Bibliography
[1℄ Ramesh C. Agarwal, Charu C. Aggarwal, and V. V. V. Prasad. A tree projetionalgorithm for generation of frequent item sets. J. Parallel Distrib. Comput., 61(3):350{371, 2001. ISSN 0743-7315. doi: http://dx.doi.org/10.1006/jpd.2000.1693.[2℄ R. Agrawal and R. Srikant. Fast algorithms for mining assoiation rules. In J.B.Boa, M. Jarke, and C. Zaniolo, editors, Proeedings of the 20th InternationalConferene on Very Large Data Bases (VLDB'94), Santiago de Chile, September12-15, pages 487{499. Morgan Kaufmann, 1994.[3℄ R. Agrawal, T. Imielienski, and A. Swami. Mining assoiation rules between setsof items in large databases. In P. Bunemann and S. Jajodia, editors, Proeedings ofthe 1993 ACM SIGMOD Conferene on Managment of Data, pages 207{216, NewYork, 1993. ACM Press.[4℄ R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast dis-overy of assoiation rules. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, andR. Uthurusamy, editors, Advanes in Knowledge Disovery and Data Mining, pages307{328. MIT Press, 1996.[5℄ Yves Bastide, Ra�k Taouil, Niolas Pasquier, Gerd Stumme, and Lot� Lakhal.Mining frequent patterns with ounting inferene. SIGKDD Explor. Newsl., 2(2):66{75, 2000. doi: http://doi.am.org/10.1145/380995.381017.[6℄ Feren Bodon. A fast apriori implementation. In Bart Goethals and Mohammed J.Zaki, editors, Proeedings of the IEEE ICDM Workshop on Frequent Itemset Min-ing Implementations (FIMI'03), volume 90 of CEUR Workshop Proeedings, Mel-bourne, Florida, USA, 2003.[7℄ Feren Bodon and Lajos R�onyai. Trie: an alternative data struture for data miningalgorithms. Hungarian Applied Mathematis and Computer Appliation, 38(7-9):739{751, Otober 2003. 91

BIBLIOGRAPHY BIBLIOGRAPHY[8℄ Feren Bodon and Lars Shmidt-Thieme. The relation of losed itemset mining,omplete pruning strategies and item ordering in apriori-based �m algorithms. InProeedings of the 9th European Conferene on Priniples and Pratie of Knowl-edge Disovery in Databases (PKDD'05), Porto, Portugal, 2005.[9℄ Christian Borgelt. EÆient implementations of apriori and elat. In Bart Goethalsand Mohammed J. Zaki, editors, Proeedings of the IEEE ICDM Workshop on Fre-quent Itemset Mining Implementations (FIMI'03), volume 90 of CEUR WorkshopProeedings, Melbourne, Florida, USA, 2003.[10℄ Christian Borgelt. Reursion pruning for the apriori algorithm. In Bart Goethals,Mohammed J. Zaki, and Roberto Bayardo, editors, Proeedings of the IEEE ICDMWorkshop on Frequent Itemset Mining Implementations (FIMI'04), volume 126 ofCEUR Workshop Proeedings, Brighton, UK, 2004.[11℄ Christian Borgelt and Rudolf Kruse. Indution of assoiation rules: Apriori imple-mentation. In W. Hrdle and B. Rnz, editors, Proeedings of the 15th Confereneon Computational Statistis, pages 395{400. Physia-Verlag, 2002.[12℄ Sergey Brin, Rajeev Motwani, Je�rey D. Ullman, and Shalom Tsur. Dynamiitemset ounting and impliation rules for market basket data. In Joan Pekham,editor, SIGMOD 1997, Proeedings ACM SIGMOD International Conferene onManagement of Data, May 13-15, 1997, Tuson, Arizona, USA, pages 255{264.ACM Press, 05 1997.[13℄ Douglas Comer and Ravi Sethi. The omplexity of trie index onstrution. J.ACM, 24(3):428{440, 1977. ISSN 0004-5411. doi: http://doi.am.org/10.1145/322017.322023.[14℄ R. de la Briandais. File searhing using variable-length keys. In Proeedings of theWestern Joint Computer Conferene, pages 295{298, Marh 1959.[15℄ Edward Fredkin. Trie memory. Communiations of the ACM, 3(9):490{499, 1960.ISSN 0001-0782. doi: http://doi.am.org/10.1145/367390.367400.[16℄ B. Goethals and M. J. Zaki. Advanes in frequent itemset mining implementations:Report of �mi'03. ACM SIGKDD Explorations, 6(1):109{117, June 2004.[17℄ Bart Goethals. Memory issues in frequent itemset mining. In SAC '04: Proeedingsof the 2004 ACM symposium on Applied omputing, pages 530{534, New York, NY,USA, 2004. ACM Press. ISBN 1-58113-812-1. doi: http://doi.am.org/10.1145/967900.968012. 92

BIBLIOGRAPHY BIBLIOGRAPHY[18℄ Bart Goethals. EÆient Frequent Pattern Mining. PhD thesis, TransnationaleUniversiteit Limburg, 2002.[19℄ Bart Goethals. Survey on frequent pattern mining. Manuskript, 2002.[20℄ Gsta Grahne and Jianfei Zhu. EÆiently using pre�x-trees in mining frequentitemsets. In Bart Goethals and Mohammed J. Zaki, editors, Proeedings of theIEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03),volume 90 of CEUR Workshop Proeedings, Melbourne, Florida, USA, 2003.[21℄ J. Han and J. Pei. Mining frequent patterns by pattern-growth: Methodologyand impliations. ACM SIGKDD Explorations, 2(2):14{20, 2000. Speial Issue onSalable Data Mining Algorithms.[22℄ J. Han, J. Pei, and Y. Yin. Mining frequent patterns without andidate generation.In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, Proeedings of the 2000ACM SIGMOD International Conferene on Management of Data, pages 1{12.ACM Press, 2000.[23℄ J. Han, J. Pei, and Y. Yin. Mining frequent patterns without andidate generation:a frequent-pattern tree approah. Data Mining and Knowledge Disovery, ersheintdemnhst, 2003.[24℄ Jia Liang Han and Ashley W. Plank. Bakground for assoiation rules and ostestimate of seleted mining algorithms. In CIKM '96, Proeedings of the FifthInternational Conferene on Information and Knowledge Management, November12 - 16, 1996, Rokville, Maryland, USA, pages 73{80. ACM, 1996.[25℄ Johen Hipp, Ulrih Güntzer, and Gholamreza Nakhaeizadeh. Algorithmsfor assoiation rule mining a general survey and omparison. SIGKDD Explor.Newsl., 2(1):58{64, 2000. doi: http://doi.am.org/10.1145/360402.360421.[26℄ Johen Hipp, Ulrih Güntzer, and Gholamreza Nakhaeizadeh. Mining asso-iation rules: Deriving a superior algorithm by analyzing today's approahes. InPKDD '00: Proeedings of the 4th European Conferene on Priniples of Data Min-ing and Knowledge Disovery, pages 159{168, London, UK, 2000. Springer-Verlag.ISBN 3-540-41066-X.[27℄ Keyun Hu, Yuhang Lu, Lizhu Zhou, and Chunyi Shi. Integrating lassi�ationand assoiation rule mining: A onept lattie framework. In RSFDGrC '99:Proeedings of the 7th International Workshop on New Diretions in Rough Sets,Data Mining, and Granular-Soft Computing, pages 443{447, London, UK, 1999.Springer-Verlag. ISBN 3-540-66645-1.93

BIBLIOGRAPHY BIBLIOGRAPHY[28℄ Walter A. Kosters, Elena Marhiori, and Ard A. J. Oerlemans. Mining lusters withassoiation rules. In IDA '99: Proeedings of the Third International Symposium onAdvanes in Intelligent Data Analysis, pages 39{50, London, UK, 1999. Springer-Verlag. ISBN 3-540-66332-0.[29℄ Wenke Lee and Salvatore Stolfo. Data mining approahes for intrusion detetion.In Proeedings of the 7th USENIX Seurity Symposium, San Antonio, TX, 1998.URL iteseer.ist.psu.edu/artile/lee98data.html.[30℄ Dao-I Lin and Zvi M. Kedem. Piner searh: A new algorithm for disoveringthe maximum frequent set. In EDBT '98: Proeedings of the 6th InternationalConferene on Extending Database Tehnology, pages 105{119, London, UK, 1998.Springer-Verlag. ISBN 3-540-64264-1.[31℄ Heikki Mannila and Hannu Toivonen. Multiple uses of frequent sets and ondensedrepresentations (extended abstrat). In Knowledge Disovery and Data Mining,pages 189{194, 1996. URL iteseer.ist.psu.edu/mannila96multiple.html.[32℄ Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. EÆient algo-rithms for disovering assoiation rules. In Usama M. Fayyad and Ra-masamy Uthurusamy, editors, AAAI Workshop on Knowledge Disovery inDatabases(KDD-94), pages 181{192, Seattle, Washington, 1994. AAAI Press. URLhttp://iteseer.nj.ne.om/mannila94effiient.html.[33℄ Ulrih Meyer, Peter Sanders, and Jop F. Sibeyn, editors. Algorithms for MemoryHierarhies, Advaned Letures [Dagstuhl Researh Seminar, Marh 10-14, 2002℄,volume 2625 of Leture Notes in Computer Siene, 2003. Springer. ISBN 3-540-00883-7.[34℄ B. Mobasher, N. Jain, E. Han, and J. Srivastava. Web mining: Pattern disoveryfrom world wide web transations. Tehnial Report TR-96050, Department ofComputer Siene, University of Minnesota, 1996.[35℄ A. Mueller. Fast sequential and parallel algorithms for assoiation rule mining:A omparison. Tehnial report, Department of Computer Siene, University ofMaryland-College Park, 1995. CS-TR-3515.[36℄ S. Orlando, P. Palmerini, R. Perego, and F. Silvestri. Adaptive and resoure-awaremining of frequent sets. In ICDM '02: Proeedings of the 2002 IEEE InternationalConferene on Data Mining (ICDM'02), page 338, Washington, DC, USA, 2002.IEEE Computer Soiety. ISBN 0-7695-1754-4.[37℄ Salvatore Orlando, Paolo Palmerini, and Ra�aele Perego. Enhaning the apriorialgorithm for frequent set ounting. In DaWaK '01: Proeedings of the Third94

citeseer.ist.psu.edu/article/lee98data.html
citeseer.ist.psu.edu/mannila96multiple.html
http://citeseer.nj.nec.com/mannila94efficient.html

BIBLIOGRAPHY BIBLIOGRAPHYInternational Conferene on Data Warehousing and Knowledge Disovery, pages71{82, London, UK, 2001. Springer-Verlag. ISBN 3-540-42553-5.[38℄ Salvatore Orlando, Claudio Luhese, Paolo Palmerini, Ra�aele Perego, and Fab-rizio Silvestri. kdi: a multi-strategy algorithm for mining frequent sets. In BartGoethals and Mohammed J. Zaki, editors, Proeedings of the IEEE ICDM Work-shop on Frequent Itemset Mining Implementations (FIMI'03), volume 90 of CEURWorkshop Proeedings, Melbourne, Florida, USA, 2003.[39℄ Bruno Pôssas, Nivio Ziviani, Jr. Wagner Meira, and Berthier Ribeiro-Neto.Set-based model: a new approah for information retrieval. In SIGIR '02: Pro-eedings of the 25th annual international ACM SIGIR onferene on Researh anddevelopment in information retrieval, pages 230{237, New York, NY, USA, 2002.ACM Press. ISBN 1-58113-561-0. doi: http://doi.am.org/10.1145/564376.564417.[40℄ Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. An e�etive hash-based al-gorithm for mining assoiation rules. SIGMOD Re., 24(2):175{186, 1995. ISSN0163-5808. doi: http://doi.am.org/10.1145/568271.223813.[41℄ N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Pruning loseditemset latties for assoiation rules. In Proeedings of the BDAFrenh Conferene on Advaned Databases, Otober 1998. URLhttp://iteseer.nj.ne.om/pasquier98pruning.html.[42℄ Jian Pei, Jiawei Han, Hongjun Lu, Shojiro Nishio, Shiwei Tang, and DongqingYang. H-mine: Hyper-struture mining of frequent patterns in large databases. InICDM, pages 441{448, 2001.[43℄ Andrea Pietraaprina and Dario Zandolin. Mining frequent itemsets using patri-ia tries. In Bart Goethals and Mohammed J. Zaki, editors, Proeedings of theIEEE ICDM Workshop on Frequent Itemset Mining Implementations (FIMI'03),volume 90 of CEUR Workshop Proeedings, Melbourne, Florida, USA, 19. Novem-ber 2003.[44℄ Adriana Prado, Cristiane Targa, and Alexandre Plastino. Improving diret ountingfor frequent itemset mining. In DaWaK, pages 371{380, 2004.[45℄ Bal�azs R�az. nonordfp: An FP-growth variation without rebuilding the FP-tree.In Bart Goethals, Mohammed J. Zaki, and Roberto Bayardo, editors, Proeed-ings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations(FIMI'04), volume 126 of CEUR Workshop Proeedings, Brighton, UK, 2004.[46℄ Bal�azs R�az, Feren Bodon, and Lars Shmidt-Thieme. Benhmarking frequentitemset mining algorithms: from measurement to analysis. In Bart Goethals,95

http://citeseer.nj.nec.com/pasquier98pruning.html

BIBLIOGRAPHY BIBLIOGRAPHYSiegfried Nijssen, and Mohammed J. Zaki, editors, Proeedings of the ACMSIGKDD Workshop on Open Soure Data Mining Workshop (OSDM'05), Chiago,IL, USA, August 2005.[47℄ Jr. Roberto J. Bayardo. EÆiently mining long patterns from databases. In SIG-MOD '98: Proeedings of the 1998 ACM SIGMOD international onferene onManagement of data, pages 85{93, New York, NY, USA, 1998. ACM Press. ISBN0-89791-995-5. doi: http://doi.am.org/10.1145/276304.276313.[48℄ Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis ofreommendation algorithms for e-ommere. In EC '00: Proeedings of the 2ndACM onferene on Eletroni ommere, pages 158{167, New York, NY, USA,2000. ACM Press. ISBN 1-58113-272-7. doi: http://doi.am.org/10.1145/352871.352887.[49℄ Ashoka Savasere, Edward Omieinski, and Shamkant B. Navathe. An eÆientalgorithm for mining assoiation rules in large databases. In VLDB '95: Proeedingsof the 21th International Conferene on Very Large Data Bases, pages 432{444, SanFraniso, CA, USA, 1995. Morgan Kaufmann Publishers In. ISBN 1-55860-379-4.[50℄ R. Srikant. Fast algorithms for mining assoiation rules and sequential pat-terns. PhD thesis, Univeristy of Wisonsin, Madison, 1996. Supervisor-Je�reyF. Naughton.[51℄ Ja-Hwung Su and Wen-Yang Lin. Cbw: An eÆient algorithm for frequent itemsetmining. In HICSS '04: Proeedings of the Proeedings of the 37th Annual HawaiiInternational Conferene on System Sienes (HICSS'04) - Trak 3, page 30064.3,Washington, DC, USA, 2004. IEEE Computer Soiety. ISBN 0-7695-2056-1.[52℄ Hannu Toivonen. Sampling large databases for assoiation rules. In VLDB '96:Proeedings of the 22th International Conferene on Very Large Data Bases, pages134{145, San Franiso, CA, USA, 1996. Morgan Kaufmann Publishers In. ISBN1-55860-382-4.[53℄ Takeaki Uno, Tatsuya Asai, Yuzo Uhida, and Hiroki Arimura. Lm: An eÆientalgorithm for enumerating frequent losed item sets. In Bart Goethals and Mo-hammed J. Zaki, editors, Proeedings of the IEEE ICDM Workshop on FrequentItemset Mining Implementations (FIMI'03), volume 90 of CEUR Workshop Pro-eedings, Melbourne, Florida, USA, 19. November 2003.[54℄ John von Neumann. First draft of a report on the EDVAC. Con-trat No. W{670{ORD{4926 Between the United States Army OrdnaneDepartment and the University of Pennsylvania, June 1945. URLhttp://qss.stanford.edu/�fggodfrey/vonNeumann/vnedva.pdf.96

http://qss.stanford.edu/~{}godfrey/vonNeumann/vnedvac.pdf

BIBLIOGRAPHY BIBLIOGRAPHY[55℄ Yew Kwong Woon, Wee Keong Ng, and Ee-Peng Lim. Online and inrementalmining of separately-grouped web aess logs. In WISE '02: Proeedings of the 3rdInternational Conferene on Web Information Systems Engineering, pages 53{62,Washington, DC, USA, 2002. IEEE Computer Soiety. ISBN 0-7695-1766-8.[56℄ Yew-Kwong Woon, Wee-Keong Ng, and Ee-Peng Lim. A support-ordered trie forfast frequent itemset disovery. IEEE Transations on Knowledge and Data En-gineering, 16(7):875{879, 2004. ISSN 1041-4347. doi: http://dx.doi.org/10.1109/TKDE.2004.1318569.[57℄ Mohammed Javeed Zaki and Mitsunori Ogihara. Theoretial foundations of asso-iation rules. In Proeedings of third SIGMOD'98 Workshop on Researh Issuesin Data Mining and Knowledge Disovery (DMKD'98), Seattle, Washington, 1998.URL http://iteseer.nj.ne.om/zaki98theoretial.html.[58℄ Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li.New algorithms for fast disovery of assoiation rules. In David Hekerman, HeikkiMannila, Daryl Pregibon, Ramasamy Uthurusamy, and Menlo Park, editors, In 3rdIntl. Conf. on Knowledge Disovery and Data Mining, pages 283{296. AAAI Press,12{15 1997. ISBN 1-57735-027-8. URL iteseer.nj.ne.om/zaki97new.html.[59℄ Z. Zheng, Ronny Kohavi, and L. Mason. Real world performane of assoiation rulealgorithms. In Foster Provost and Ramakrishnan Srikant, editors, Proeedings of the7th International Conferene on Knowledge Disovery and Data Mining (KDD'01),New York, pages 401{406. ACM Press, 2001.

97

http://citeseer.nj.nec.com/zaki98theoretical.html
citeseer.nj.nec.com/zaki97new.html

	Introduction
	The arena of FIM algorithms; a short history
	Common misbelieves
	Algorithmic aspects of the modern processors' features
	Memory hierarchies, data locality:
	Pipeline processing, branch prediction:

	A Frequent Pattern Mining Template Library

	The Frequent Itemset Mining Problem
	Base Algorithms
	Bottom-up FIM algorithms
	Breadth-first, iterative vs. depth-first, recursive algorithms
	Techniques
	Graphical presentation of the experiments
	The trie and its variants
	The representation of the list of edges
	Index vs. pointer-based trie
	Patricia trie

	Algorithm Apriori
	The trie of Apriori
	Support Counting
	Removing Infrequent Candidates
	Candidate Generation

	Compactness of the trie
	Inhomogeneous trie
	Removing Dead-end Branches
	Routing strategies at the nodes
	Routing strategies in the case of ordered-list edge representation
	Can we speed up binary search-based routing strategies?
	Routing strategies in the case of different edge representation

	Determining the support of 2-itemset candidates
	Determining the support of 3-itemset candidates

	Algorithm Eclat
	Algorithm FPgrowth
	Techniques for improving efficiency
	Pruning equisupport extensions
	Improvements used in Apriori
	Caching the transactions
	Support count of Christian Borgelt
	Filtering unimportant items from the transactions
	Equisupport pruning
	Level 2 equisupport pruning
	Level 2 equisupport pruning and further dead-end pruning
	Intersection-based pruning
	Omitting complete pruning
	Summary of the techniques

	The influence of item ordering
	The order-preserving assumption
	The number of candidates
	Size of the trie
	Techniques in Apriori

	Evalutation
	The battle of Apriori implementations
	The battle of Eclat implementations
	The battle of FP-growth implementations
	Comparing Aprior, Eclat and FP-growth
	The bottleneck of Apriori, Eclat and FP-growth

	The furure: toward hybrid algorithms
	Conclusion

