
A Trie-based APRIORI Implementation for Mining
Frequent Item Sequences

Ferenc Bodon

bodon@cs.bme.hu

Department of Computer Science and Information Theory,

Budapest University of Technology and Economics

supervisor: Lajos Rónyai

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.1/14

The hierarchy of the pattern types

itemset
item sequence

without duplicates
item sequence
with duplicates

rooted tree

sequence of itemsets

tree graph

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.2/14

The hierarchy of the pattern types

itemset
item sequence

without duplicates
item sequence
with duplicates

rooted tree

sequence of itemsets

tree graph

ordered/unordered

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.2/14

The hierarchy of the pattern types

itemset
item sequence

without duplicates
item sequence
with duplicates

rooted tree

sequence of itemsets

tree graph

ordered/unordered directed/undirected

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.2/14

The hierarchy of the pattern types

itemset
item sequence

without duplicates
item sequence
with duplicates

rooted tree

sequence of itemsets

tree graph

ordered/unordered directed/undirected

vertex labeled/unlabeled
edge labeled/unlabeled

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.2/14

The hierarchy of the pattern types

itemset
item sequence

without duplicates
item sequence
with duplicates

rooted tree

sequence of itemsets

tree graph

ordered/unordered directed/undirected

vertex labeled/unlabeled
edge labeled/unlabeled

At each generalization step we have to examine
• new problems, that come into play,
• applicability of the existing techniques at previous level.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.2/14

The hierarchy of the pattern types

itemset
item sequence

without duplicates
item sequence
with duplicates

rooted tree

sequence of itemsets

tree graph

ordered/unordered directed/undirected

vertex labeled/unlabeled
edge labeled/unlabeled

We provide an efficient, open-source, trie-based APRIORI imple-

mentation for mining frequent sequences of items in a transac-

tional database

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.2/14

The background

We developed a FIM template library that includes
• a fast IO framework,
• some basic functions (e.g. fast subset enumerator),
• modularized Apriori, eclat, fp-growth, nonord-fp algorithms,
• tester classes,
• a benchmark environment.

In Apriori of FIM itemset are converted to item sequences, hence

it is natural to extend FIM approach.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.3/14

General Properties of the Trie

• The representation of the list of edges
◦ label ordered list of (label, pointer) pairs,
◦ tabular representation (also with offset-index trick),
◦ hybrid solution

is set by a template class
• no parent pointers are stored,
• dead-end branches are removed asap,
• classes that do
◦ support counting,
◦ candidate generation

are set by template parameters.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.4/14

Investigated techniques

1. Routing strategy at the nodes,

2. candidate generation,

3. equisupport extension,

4. filtered transaction caching.

Our environment makes it possible to examine each technique

separately, and also to examine the effect on each other.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.5/14

1/4. Routing Strategy

How to find the edge to follow in Apriori? Given a node with a list
of n edges and a part of the filtered transaction (t′), find
matching labels.

• search for corresponding item
◦ if transaction is stored in a list: nt′ comparisons,
◦ indexarray solution,

• search for corresponding label
◦ tabular representation of edge: t′ comparisons,
◦ binary search: t′ log n comparisons,
◦ linear search: t′n comparisons,
◦ intelligent linear search: t′n/2 comparisons,

• simultaneous traversal (merge)
◦ first sort, then remove duplicates,
◦ first remove duplicates, then sort.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.6/14

1/4. Routing Strategy

• No single best routing strategy.
• The best routing strategy depends on
◦ size of transaction,
◦ the number of duplicates,
◦ min_supp
◦ · · ·

• Strategies with large overhead are not competitive at large
support thresholds.

• Search corresponding item performed always good.
• It is more important how does the strategy suit to the

features (prefetching, pipelining, etc.) of the modern
processors than the worst case run-times.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.7/14

2/4. Candidate Generation

Same as in FIM, there solutions can be applied

1. complete pruning with subset checks,

2. complete pruning with an intersection-based solution,

3. omit complete pruning.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.8/14

2/4. Candidate Generation

Same as in FIM, there solutions can be applied

1. complete pruning with subset checks,

2. complete pruning with an intersection-based solution,

3. omit complete pruning.

Our expectation:
Complete pruning in frequent item sequence mining is
more important than in FIM.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.8/14

2/4. Candidate Generation

Same as in FIM, there solutions can be applied

1. complete pruning with subset checks,

2. complete pruning with an intersection-based solution,

3. omit complete pruning.

Our expectation:
Complete pruning in frequent item sequence mining is
more important than in FIM.
Reasoning:
Support counting is slower, while determining if a candi-
date’s subsequence is contained in a trie is achieved as
fast as in FIM.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.8/14

2/4. Candidate Generation

Same as in FIM, there solutions can be applied

1. complete pruning with subset checks,

2. complete pruning with an intersection-based solution,

3. omit complete pruning.

Our expectation:
Complete pruning in frequent item sequence mining is
more important than in FIM.
Reasoning:
Support counting is slower, while determining if a candi-
date’s subsequence is contained in a trie is achieved as
fast as in FIM.
Experiments:
Support our hypothesis. Omitting complete pruning never
resulted in a faster Apriori than intersection-based Apriori.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.8/14

3/4. Equisupport Extension

Omitting equisupport extension is the most widely used
technique in FIM.
Property 1. Let X ⊂ Y ⊆ I. If supp(X) = supp(Y) then
supp(Y ∪ Z) = supp(X ∪ Z) for any Z ⊆ I \ Y .

Usage: It is not necessary to determine the support of Y ∪Z.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.9/14

3/4. Equisupport Extension

Omitting equisupport extension is the most widely used
technique in FIM.
Property 1. Let X ⊂ Y ⊆ I. If supp(X) = supp(Y) then
supp(Y ∪ Z) = supp(X ∪ Z) for any Z ⊆ I \ Y .

Usage: It is not necessary to determine the support of Y ∪ Z.

 0

 100

 200

 300

 400

 500

 600

 30000 35000 40000 45000 50000 55000

tim
e

(s
ec

)

Support threshold

Database: connect

NOPRUNE
INTERSECT-PRUNE

NOPRUNE-NEE

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.9/14

3/4. Equisupport Extension

Omitting equisupport extension is the most widely used
technique in FIM.
Property 1. Let X ⊂ Y ⊆ I. If supp(X) = supp(Y) then
supp(Y ∪ Z) = supp(X ∪ Z) for any Z ⊆ I \ Y .

Usage: It is not necessary to determine the support of Y ∪ Z.
Equisupport pruning in Apriori for FIM:

1. in infrequent candidate removal phase: |X| = |Y | − 1 and X
is prefix of Y , then do not extend Y ,

2. in candidate generation’s subset check phase: Y ∪ Z is
potential candidate, Y is non-prefix of Y ∪ Z, X is prefix of
Y then the support of Y ∪ Z is not determined.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.9/14

3/4. Equisupport Extension

Omitting equisupport extension is the most widely used
technique in FIM.
Property 1. Let X ⊂ Y ⊆ I. If supp(X) = supp(Y) then
supp(Y ∪ Z) = supp(X ∪ Z) for any Z ⊆ I \ Y .

Usage: It is not necessary to determine the support of Y ∪ Z.
Equisupport pruning in Apriori for FIM:

1. in infrequent candidate removal phase: |X| = |Y | − 1 and X
is prefix of Y , then do not extend Y ,

2. in candidate generation’s subset check phase: Y ∪ Z is
potential candidate, Y is non-prefix of Y ∪ Z, X is prefix of
Y then the support of Y ∪ Z is not determined.

Unfortunately, no equisupport extension pruning can be applied

in frequent item sequence mining.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.9/14

3/4. Equisupport Extension

Omitting equisupport extension is the most widely used
technique in FIM.
Property 1. Let X ⊂ Y ⊆ I. If supp(X) = supp(Y) then
supp(Y ∪ Z) = supp(X ∪ Z) for any Z ⊆ I \ Y .

Usage: It is not necessary to determine the support of Y ∪ Z.
Equisupport pruning in Apriori for FIM:

1. in infrequent candidate removal phase: |X| = |Y | − 1 and X
is prefix of Y , then do not extend Y ,

Proof. By contradiction. Let the database T be {〈A〉, 〈B,A〉}.
Then supp(〈〉) = supp(〈A〉) = 2 but
supp(〈B〉) = 1 6= 0 = supp(〈A,B〉).

Unfortunately, no equisupport extension pruning can be applied

in frequent item sequence mining.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.9/14

4/4. Filtered transaction caching

Let t be a transaction.
filtered t: infrequent items are removed from t.
Collect the same filtered transaction and store them in memory.

Advantages:
• IO cost is reduced,

• parsing costs are reduced,
• the number of support count method calls is reduced.

Disadvantage:
• needs extra memory.
• requires CPU time to collect the same filtered transactions

Possible data structures: ordered list, trie, red-black tree, patri-

cia tree

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.10/14

4/4. Filtered transaction caching

Let t be a transaction.
filtered t: infrequent items are removed from t.
Collect the same filtered transaction and store them in memory.

Advantages:
• IO cost is reduced,
• parsing costs are reduced,

• the number of support count method calls is reduced.

Disadvantage:
• needs extra memory.
• requires CPU time to collect the same filtered transactions

Possible data structures: ordered list, trie, red-black tree, patri-

cia tree

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.10/14

4/4. Filtered transaction caching

Let t be a transaction.
filtered t: infrequent items are removed from t.
Collect the same filtered transaction and store them in memory.

Advantages:
• IO cost is reduced,
• parsing costs are reduced,
• the number of support count method calls is reduced.

Disadvantage:
• needs extra memory.
• requires CPU time to collect the same filtered transactions

Possible data structures: ordered list, trie, red-black tree, patri-

cia tree

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.10/14

4/4. Filtered transaction caching

Let t be a transaction.
filtered t: infrequent items are removed from t.
Collect the same filtered transaction and store them in memory.

Advantages:
• IO cost is reduced,
• parsing costs are reduced,
• the number of support count method calls is reduced.

Disadvantage:
• needs extra memory.
• requires CPU time to collect the same filtered transactions

Possible data structures: ordered list, trie, red-black tree, patri-

cia tree
Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.10/14

4/4. Filtered transaction caching

Expectation:
• Transaction caching is not such an effective technique as it

is in FIM.

Reasoning:
• For two item sequences to be equal, not just the items, but

the indices of the same items have to be equal as well.

Experiments:
• never resulted in a faster algorithm,
• sometimes it significantly increases memory need.

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.11/14

Is our implementation competitive?

 0
 100
 200
 300
 400
 500
 600

 1000 10000

tim
e

(s
ec

)

Support threshold

Database: BMS-POS

Apriori
PrefixSpan

 0
 100
 200
 300
 400
 500
 600
 700

 100000

tim
e

(s
ec

)

Support threshold

Database: kosarak100_infty

Apriori
PrefixSpan

 0
 20
 40
 60
 80

 100
 120

 1 10 100

tim
e

(s
ec

)

Support threshold

Database: kosarak2_10_2

Apriori
PrefixSpan

 0
 100
 200
 300
 400
 500
 600
 700
 800

 10000
tim

e
(s

ec
)

Support threshold

Database: kosarak2_100_infty

Apriori
PrefixSpan

Run-times
Apriori vs. prefixSpan by Taku Kudo

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.12/14

Is our implementation competitive?

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 1000 10000

m
em

 (M
B

)

Support threshold

Database: BMS-POS

Apriori
PrefixSpan

 0
 20
 40
 60
 80

 100
 120
 140

 100000

m
em

 (M
B

)

Support threshold

Database: kosarak100_infty

Apriori
PrefixSpan

 0
 50

 100
 150
 200
 250
 300

 1 10 100

m
em

 (M
B

)

Support threshold

Database: kosarak2_10_2

Apriori
PrefixSpan

 0
 20
 40
 60
 80

 100
 120
 140
 160

 10000
m

em
 (M

B
)

Support threshold

Database: kosarak2_100_infty

Apriori
PrefixSpan

Memory needs
Apriori vs. prefixSpan by Taku Kudo

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.13/14

Conclusion

When develping solutions for frequent item sequence mining it is
useful to understand techniques used in FIM.

Thank you for your attention!

Open Source Data Mining Workshop on Frequent Pattern Mining Implementations – p.14/14

	The hierarchy of the pattern types
	The background
	General Properties of the Trie
	Investigated techniques
	1/4. Routing Strategy
	1/4. Routing Strategy
	2/4. Candidate Generation
	3/4. Equisupport Extension
	4/4. Filtered transaction caching
	4/4. Filtered transaction caching
	Is our implementation competitive?
	Is our implementation competitive?
	Conclusion

