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At each generalization step we have to examine
• new problems, that come into play,
• applicability of the existing techniques at previous level.
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We provide an efficient, open-source, trie-based APRIORI imple-

mentation for mining frequent sequences of items in a transac-

tional database
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The background

We developed a FIM template library that includes
• a fast IO framework,
• some basic functions (e.g. fast subset enumerator),
• modularized Apriori, eclat, fp-growth, nonord-fp algorithms,
• tester classes,
• a benchmark environment.

In Apriori of FIM itemset are converted to item sequences, hence

it is natural to extend FIM approach.
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General Properties of the Trie

• The representation of the list of edges
◦ label ordered list of (label, pointer) pairs,
◦ tabular representation (also with offset-index trick),
◦ hybrid solution

is set by a template class
• no parent pointers are stored,
• dead-end branches are removed asap,
• classes that do
◦ support counting,
◦ candidate generation

are set by template parameters.
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Investigated techniques

1. Routing strategy at the nodes,

2. candidate generation,

3. equisupport extension,

4. filtered transaction caching.

Our environment makes it possible to examine each technique

separately, and also to examine the effect on each other.
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1/4. Routing Strategy

How to find the edge to follow in Apriori? Given a node with a list
of n edges and a part of the filtered transaction (t′), find
matching labels.

• search for corresponding item
◦ if transaction is stored in a list: nt′ comparisons,
◦ indexarray solution,

• search for corresponding label
◦ tabular representation of edge: t′ comparisons,
◦ binary search: t′ log n comparisons,
◦ linear search: t′n comparisons,
◦ intelligent linear search: t′n/2 comparisons,

• simultaneous traversal (merge)
◦ first sort, then remove duplicates,
◦ first remove duplicates, then sort.
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1/4. Routing Strategy

• No single best routing strategy.
• The best routing strategy depends on
◦ size of transaction,
◦ the number of duplicates,
◦ min_supp
◦ · · ·

• Strategies with large overhead are not competitive at large
support thresholds.

• Search corresponding item performed always good.
• It is more important how does the strategy suit to the

features (prefetching, pipelining, etc.) of the modern
processors than the worst case run-times.
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2/4. Candidate Generation

Same as in FIM, there solutions can be applied

1. complete pruning with subset checks,

2. complete pruning with an intersection-based solution,

3. omit complete pruning.
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2/4. Candidate Generation

Same as in FIM, there solutions can be applied

1. complete pruning with subset checks,

2. complete pruning with an intersection-based solution,

3. omit complete pruning.

Our expectation:
Complete pruning in frequent item sequence mining is
more important than in FIM.
Reasoning:
Support counting is slower, while determining if a candi-
date’s subsequence is contained in a trie is achieved as
fast as in FIM.
Experiments:
Support our hypothesis. Omitting complete pruning never
resulted in a faster Apriori than intersection-based Apriori.
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3/4. Equisupport Extension

Omitting equisupport extension is the most widely used
technique in FIM.
Property 1. Let X ⊂ Y ⊆ I. If supp(X) = supp(Y ) then
supp(Y ∪ Z) = supp(X ∪ Z) for any Z ⊆ I \ Y .

Usage: It is not necessary to determine the support of Y ∪Z.
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1. in infrequent candidate removal phase: |X| = |Y | − 1 and X
is prefix of Y , then do not extend Y ,
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Omitting equisupport extension is the most widely used
technique in FIM.
Property 1. Let X ⊂ Y ⊆ I. If supp(X) = supp(Y ) then
supp(Y ∪ Z) = supp(X ∪ Z) for any Z ⊆ I \ Y .

Usage: It is not necessary to determine the support of Y ∪ Z.
Equisupport pruning in Apriori for FIM:

1. in infrequent candidate removal phase: |X| = |Y | − 1 and X
is prefix of Y , then do not extend Y ,

Proof. By contradiction. Let the database T be {〈A〉, 〈B,A〉}.
Then supp(〈〉) = supp(〈A〉) = 2 but
supp(〈B〉) = 1 6= 0 = supp(〈A,B〉).

Unfortunately, no equisupport extension pruning can be applied

in frequent item sequence mining.
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4/4. Filtered transaction caching

Let t be a transaction.
filtered t: infrequent items are removed from t.
Collect the same filtered transaction and store them in memory.

Advantages:
• IO cost is reduced,

• parsing costs are reduced,
• the number of support count method calls is reduced.

Disadvantage:
• needs extra memory.
• requires CPU time to collect the same filtered transactions

Possible data structures: ordered list, trie, red-black tree, patri-

cia tree
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4/4. Filtered transaction caching

Expectation:
• Transaction caching is not such an effective technique as it

is in FIM.

Reasoning:
• For two item sequences to be equal, not just the items, but

the indices of the same items have to be equal as well.

Experiments:
• never resulted in a faster algorithm,
• sometimes it significantly increases memory need.
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Is our implementation competitive?
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Conclusion

When develping solutions for frequent item sequence mining it is
useful to understand techniques used in FIM.

Thank you for your attention!
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