
Active Learning in Heteroscedastic Noise I

András Antosa,∗, Varun Groverb, Csaba Szepesvária,b,∗

a Computer and Automation Research Institute of the Hungarian Academy of Sciences,
Kende u. 13-17, Budapest 1111, Hungary

b Department of Computing Science, University of Alberta, Edmonton T6G 2E8, Canada

Abstract

We consider the problem of actively learning the mean values of distributions
associated with a finite number of options. The decision maker can select which
option to generate the next observation from, the goal being to produce es-
timates with equally good precision for all the options. If sample means are
used to estimate the unknown values then the optimal solution, assuming that
the distributions are known up to a shift, is to sample from each distribution
proportional to its variance. No information other than the distributions’ vari-
ances is needed to calculate the optimal solution. In this paper we propose an
incremental algorithm that asymptotically achieves the same loss as an optimal
rule. We prove that the excess loss suffered by this algorithm, apart from log-
arithmic factors, scales as n−3/2, which we conjecture to be the optimal rate.
The performance of the algorithm is illustrated on a simple problem.

Key words: active learning, heteroscedastic noise, regression, sequential
analysis, sequential allocation

1. Introduction

Consider the problem of production quality assurance in a factory equipped
with a number of machines that output products of different quality. The qual-
ity of production can be monitored by inspecting the products manufactured:
An inspection of a product results in a (random) number which, without the loss
of generality, can be assumed to lie between zero and one, one meaning the best,
zero the poorest quality. It is assumed that the mean of these measurements
characterizes the maintenance state of the machine. The goal is to estimate
these mean values for the individual machines so as to minimize the maximum
prediction error over the machines. Since the inspection results are random,
multiple measurements are necessary for each machine. If the inspection of a

IA previous version of this paper appeared at ALT-08 [1].
∗Corresponding author.
Email addresses: antos@szit.bme.hu (András Antos), vgrover@cs.ualberta.ca (Varun

Grover), szepesva@cs.ualberta.ca (Csaba Szepesvári)

Preprint submitted to Theoretical Computer Science January 7, 2010

product is expensive (as is the case when inspection requires the destruction of
the products) then inspecting all machines equally often can be wasteful, since
the precision of the estimate of the quality of any machine will be proportional
to the variance of the inspection outcomes for that machine and hence, if there
is a machine with high variance outcomes, one can inspect that machine more
often at the price of inspecting machines with low variance outcomes less fre-
quently, thus equalizing the quality of the estimates. Based on this sample, one
suspects that a good sequential algorithm can result in significant cost-savings
as compared to inspecting the products produced by each machine equally often.

This is an instance of active learning [6], which is also closely related to
optimal experimental design of statistics [9, 5]. In particular, the problem can
be cast as learning a regression function over a finite domain. The problem
is also similar to multi-armed bandit problems [12, 3] in that only one option
(arm) can be probed at any time. However, the performance criterion is different
from that used in bandits where the observed values are treated as rewards and
performance during learning is what matters. Nevertheless, we will see that the
exploration-exploitation dilemma which characterizes classical bandit problems
will still play a role here.

The formal description of this problem is as follows: We are interested in
estimating the expected values (µk) of some distributions (Dk), each associated
with an option. If K is the number of options then 1 ≤ k ≤ K. For any k, the
decision maker can take independent observations {Xkt}t from Dk. The value
Xkt is observed when an observation is requested from option k the tth time.
(These observations correspond to the outcomes of inspections in the previous
example). The observations are drawn sequentially: Given the information
collected up to trial n the decision maker can decide which option to choose
next.

The loss minimized by the decision maker is defined as follows: After trial
n, let µ̂kn denote the estimate of µk as computed by the decision maker (1 ≤
k ≤ K). Let the error of predicting µk with µ̂kn be measured with the expected
squared error,

Lkn = E
[
(µ̂kn − µk)2

]
.

The overall loss is measured by the worst-case loss over the K options:

Ln = max
1≤k≤K

Lkn.

The motivation for considering this loss function is as follows: LetMK denote
the set of probability distributions over {1, 2, . . . ,K}. Pick some p ∈ MK .
Imagine that after learning, an option will be randomly chosen from p. The
task of the decision maker is to estimate µk if option k is selected. Assume that
the decision maker uses µ̂kn to estimate µk. The associated least-squares loss
then becomes E

[∑K
k=1 pk(µ̂kn − µk)2

]
. Since during learning p is not known,

taking a pessimistic approach, the loss is minimized for the worst distribution

2

given the estimates, i.e., the goal is to minimize

LWn = max
p∈MK

E

[
K∑
k=1

pk(µ̂kn − µk)2
]
.

It is not hard to see that LWn = Ln, thus minimizing LWn and Ln are the same.
In this paper we will assume that the estimates µ̂kn are produced by com-

puting the sample means of the respective options:

µ̂kn =
1
Tkn

Tkn∑
t=1

Xkt.

Here Tkn denotes the number of times an observation was requested from option
k up to trial n.

Consider the non-sequential version of the problem, i.e., the problem of
choosing T1n, . . . , TKn such that T1n + . . . + TKn = n so as to minimize the
loss. Let us assume for a moment that we know the distributions up to an
unknown shift. In particular, this means that we do not know (say) the mean
of the distributions, but we know the variances of the distributions and all
higher order moments. In this case there is no value in making the choice of
T1n, . . . , TKn data dependent. Due to the independence of observations

Lkn =
σ2
k

Tkn
,

where σ2
k = Var [Xk1]. For simplicity assume that σ2

k > 0 holds for all k. It
is not hard to see then that the minimizer of Ln = maxk Lkn is the allocation
{T ∗kn}k that makes all the losses Lkn (approximately) equal, hence (apart from
rounding issues)

T ∗kn = n
σ2
k

Σ2
= nλk.

Here Σ2 =
∑K
j=1 σ

2
j is the sum of the variances and

λk =
σ2
k

Σ2

is the ratio of the kth variance and the sum of the variances. The value of λk
gives the optimal allocation ratio for option k. The corresponding loss is

L∗n =
Σ2

n
.

We conclude that to calculate the optimal allocations, all one needs to know
about the distributions is their respective variances.

We note in passing that the optimal allocation is easy to extend to the
case when some options have zero variance: in such a case it is both necessary
and sufficient to make a single observation on such options. The case when all

3

variances are zero (i.e., Σ2 = 0) is uninteresting, hence we will assume from now
on that Σ2 > 0.

We expect a good sequential algorithm A to achieve a loss Ln = Ln(A) close
to the loss L∗n. We will therefore look into the excess loss

En(A) = Ln(A)− L∗n.

Since Lkn, the loss of option k, can only decrease if we request a new obser-
vation from Dk, one simple idea is to request the next observation from option
k whose estimated loss, σ̂2

kn/Tkn, is the largest amongst all estimated losses.
Here σ̂2

kn is an estimate of the variance of the kth option based on the history.
The problem with this approach is that the variance might be underestimated
in which case the option will not be selected for a long time, which prevents
refining the estimated variance, ultimately resulting in a large excess loss. Thus
we face a problem similar to the exploration-exploitation dilemma in bandit
problems where a greedy policy might incur a large loss if the payoff of the
optimal option is underestimated. One simple remedy is to make sure that the
estimated variances converge to their true values. This can be ensured if the
algorithm is forced to select all the options indefinitely in the limit, which is
often called the method of forced sampling in the bandit literature [13]. One
way to implement this idea is to introduce phases of increasing length. Then
in each phase the algorithm could choose all options exactly once at the begin-
ning, while in the rest of the phase it can sample all the options k proportionally
to their respective variance estimates computed at the beginning of the phase.
The problem then becomes to select the appropriate phase lengths to make sure
that the proportion of forced selections diminishes at an appropriate rate with
an increasing horizon n. (An algorithm along these lines have been described
and analyzed by [8] in the context of stratified sampling. We shall discuss this
algorithm further in Section 6.) While the introduction of phases allows a direct
control of the proportion of forced selections, the algorithm is not incremental
and is thus less appealing.

In this paper we propose and study an alternative algorithm that implements
forced selections but remains completely incremental. The idea is to select the
option with the largest estimated loss except if some of the options is seriously
under-sampled, in which case the under-sampled option is selected. It turns
out that a good definition for an option being under-sampled is Tkn ≤ α

√
n

with some constant α > 0. (The algorithm will be formally stated in the next
section.) We will show that the excess loss of this algorithm decreases with n
as Õ(n−3/2).1

1 A nonnegative sequence {an} is said to be Õ(fn), where {fn} is a positive valued se-
quence, if an ≤ C fn logp(fn) with suitable constants C,p > 0.

4

2. The Algorithm

The formal description of the algorithm, that we call GAFS-MAX (greedy
allocation with forced selections for max-norm loss), is as follows:

Algorithm GAFS-MAX
In the first K trials choose each option once
Set Tk,K = 1 (1 ≤ k ≤ K), n = K
At time n+ 1 do:

Predict µ̂kn = 1
Tkn

∑Tkn
t=1 Xkt

Compute σ̂2
kn = 1

Tkn

∑Tkn
t=1 X

2
kt − µ̂2

kn

Let

λ̂kn =

{
σ̂2
kn/(

∑K
j=1 σ̂

2
jn), if

∑K
j=1 σ̂

2
jn 6= 0,

1/K, otherwise

Let Un = argmin1≤k≤K Tkn
Let

In+1 =

{
Un, if TUn,n < α

√
n+ 1,

argmax1≤k≤K
λ̂kn
Tkn

, otherwise

Choose option In+1 and let Tk,n+1 = Tkn + I{ In+1=k }
Observe the feedback XIn+1,TIn+1,n+1 .

Of course, the variance estimates can be computed incrementally. Further, it is
actually not necessary to compute the estimated allocation ratios λ̂kn because in
the computation of the option index In+1, λ̂kn can be replaced by σ̂2

kn without
effecting the choices. The only parameter of the algorithm, α, determines the
minimum amount of exploration. We normally set α to 1 (cf. Section 5.1).

3. Main Results

The main result of this paper is the following theorem:

Theorem 1. Assume that the observations {Xkt} are bounded with probability
one.2 Let Ln be the loss of GAFS-MAX after the nth trial and let L∗n be the
optimal loss. Then

Ln ≤ L∗n + Õ(n−3/2).

This result will be proved in the Section 4.3.We also prove high probability
bounds on Tkn/n− λk (Theorem 2). The proofs are somewhat involved, hence
we start with an outline:

Clearly, the rate of growth of Tkn controls the rate of convergence of λ̂kn to
λk. In particular, we will show that given Tkn ≥ fn it follows that λ̂kn converges

2The results easily extend to the case when the tails of {Xkt} are sub-Gaussian.

5

to λk at a rate of Õ(1/f1/2
n) (Lemma 3). The second major tool is a result (cf.

Lemma 4 and Corollary 1) that shows how a faster rate for λ̂kn transforms into
better bounds on Tkn. The actual proof is then started by observing that due
to the forced selections Tkn ≥

√
n. Hence, by the first generic result the rate

of convergence of λ̂kn is at least 1/n1/4. The second device then enables us to
show that Tkn grows at least as fast as nλk/2, i.e., linearly in n. Using again
the first result we get that λ̂kn − λk decays at least as fast as 1/n1/2, which,
using the second result, allows us to conclude that Tkn/n−λk converges to zero
at the rate of 1/n1/2. Resorting to Wald’s second identity then allows us to
prove that the excess loss Lkn − L∗n decays at the rate of 1/(n3/2).

The convergence rate statements for λ̂kn and Tkn/n hold with high proba-
bility. In particular, they all hold on the same event set Aδ.

4. Proof

The proof is presented in three sections. In Section 4.1, we introduce the
necessary notation and some preliminary results that show the rate of conver-
gence of the estimated allocation ratios λ̂kn to the optimal allocation ratios λk.
In Section 4.2, we show that these in turn give bounds on the actual allocation
ratios, Tkn/n. Finally, in Section 4.3, we prove the main result.

4.1. Preliminaries and notation
First, we state Hoeffding’s inequality in a form that suits the best our needs:

Lemma 1 (Hoeffding’s inequality, [11]). Let Zt be a sequence of zero-mean,
i.i.d. random variables, where a ≤ Zt ≤ b, a < b reals. Then, for any 0 < δ ≤ 1,

P

(
1
n

n∑
t=1

Zt >

√
1
2

(b− a)2

n
log(1/δ)

)
≤ δ.

Let us now introduce some notation. First, let

∆(R,n, δ) = R

√
log(1/δ)

2n

denote the deviation bound that we can get from Hoeffding’s equality for the
confidence level δ after seeing n observations from a distribution whose support
is included in an interval of length R. Further, let µ(2)

k = E
[
X2
kt

]
, Rk be

the length of the (connected) range of the random variables {Xkt}t (i.e., Rk =
esssupXkt−essinf Xkt), Sk be the length of the (connected) range of the random
variables {X2

kt}t, and Bk be the essential supremum of the random variables

6

{|Xkt|}t. Note that Rk ≤ 2Bk and Sk ≤ B2
k. Let

Aδ =
⋂

1≤k≤K,n≥1

{∣∣∣∣∣ 1n
n∑
t=1

X2
kt − µ

(2)
k

∣∣∣∣∣ ≤ ∆(Sk, n, δn)

}
∩

⋂
1≤k≤K,n≥1

{∣∣∣∣∣ 1n
n∑
t=1

Xkt − µk

∣∣∣∣∣ ≤ ∆(Rk, n, δn)

}
,

where
δn =

δ

4Kn(n+ 1)
.

Note that δn is chosen so that
∑K
k=1

∑∞
n=1 δn = δ/4. Hence, we observe that

by Hoeffding’s inequality
P (Aδ) ≥ 1− δ.

The sets {Aδ} will play a key role in the proof: Many of the statements will be
proved on these set.

Our first result connects a lower bound on Tkn to the rate of convergence of
λ̂kn. Let bk = Sk + (|µk|+Bk)Rk (≤ 5B2

k), a′k = 2bk/σ2
k, and `K,δ = log(4K/δ).

Note that, by σ2
k ≤ (Rk/2)2,

a′k ≥ 8bk/R2
k ≥ 8Bk/Rk ≥ 4 (1)

and that
log(δ−1

n) = log(n(n+ 1)) + `K,δ ≤ 2 log n+ 1 + `K,δ. (2)

Lemma 2. Fix 0 < δ ≤ 1, 1 ≤ k ≤ K, and n > 0, and assume that Tkn ≥ 1
holds on Aδ. Then ∣∣σ̂2

kn − σ2
k

∣∣ ≤ bk
√

log(δ−1
Tkn

)
2Tkn

also holds on Aδ.

Proof. Let µ̂(2)
kn = 1/Tkn

∑Tkn
t=1 X

2
kt and recall that µ̂kn = 1/Tkn

∑Tkn
t=1 Xkt.

Consider any element of Aδ. Then by the definition of Aδ,∣∣∣∣∣ 1
m

m∑
t=1

X2
kt − µ

(2)
k

∣∣∣∣∣ ≤ ∆(Sk,m, δm)

holds simultaneously for any m ≥ 1. Hence, it also holds that

∣∣∣µ̂(2)
kn − µ

(2)
k

∣∣∣ =

∣∣∣∣∣ 1
Tkn

Tkn∑
t=1

X2
kt − µ

(2)
k

∣∣∣∣∣ ≤ ∆(Sk, Tkn, δTkn).

7

Similarly, we get that

|µ̂kn − µk| =

∣∣∣∣∣ 1
Tkn

Tkn∑
t=1

Xkt − µk

∣∣∣∣∣ ≤ ∆(Rk, Tkn, δTkn).

Using σ̂2
kn = µ̂

(2)
kn − µ̂2

kn and σ2
k = E

[
X2
kt

]
− (E [Xkt])2 = µ

(2)
k − µ2

k, we get∣∣σ̂2
kn − σ2

k

∣∣ ≤ ∣∣∣µ̂(2)
kn − µ

(2)
k

∣∣∣+
∣∣µ̂2
kn − µ2

k

∣∣
≤

∣∣∣µ̂(2)
kn − µ

(2)
k

∣∣∣+ |µ̂kn − µk|(|µ̂kn|+ |µk|)

≤ ∆(Sk, Tkn, δTkn) + ∆(Rk, Tkn, δTkn)(|µk|+Bk)

= (Sk +Rk(|µk|+Bk))

√
log(δ−1

Tkn
)

2Tkn
= bk

√
log(δ−1

Tkn
)

2Tkn
. ut

Lemma 3. Fix 0 < δ ≤ 1, n0 > 0, and assume that for n ≥ n0, 1 ≤ k ≤ K,
Tkn ≥ fn ≥ 2 holds on Aδ, and that for n ≥ n0, for each 1 ≤ k ≤ K such that
σk 6= 0

fn ≥
a′k

2

2
(2 log fn + 1 + `K,δ) . (3)

Then there exists a constant c > 0 such that for any n ≥ n0, 1 ≤ k ≤ K, on Aδ

∣∣∣λ̂kn − λk∣∣∣ ≤ c
√

log(δ−1
fn

)
fn

(4)

holds. In particular, c can be chosen as

√
2

Σ2
max

1≤k≤K

bk + λk

K∑
j=1

bj

 =
1√
2

max
1≤k≤K

λk

a′k +
K∑
j=1

λja
′
j

 .

Remark 1. If fn = βnp (p, n > 0) then (3) can be written as

log n ≤ β

pa′k
2 n

p − 1 + `K,δ + 2 log β
2p

. (5)

Remark 2. Note that, using (1) and λk ≤ 1, the choice of c above can be
sandwiched as

4
√

2 max
1≤k≤K

λk ≤ 1√
2

max
1≤k≤K

λk

a′k +
K∑
j=1

λja
′
j

≤ 1√

2

 max
1≤k≤K

λka
′
k +

K∑
j=1

λja
′
j

 ≤ 5
√

2
Σ2

 max
1≤k≤K

B2
k +

K∑
j=1

B2
j

 .

8

In what follows, for simplicity, we define c as

c =
1√
2

 max
1≤k≤K

λka
′
k +

K∑
j=1

λja
′
j

 ≥ √8. (6)

Proof. Using Lemma 2, for n ≥ n0, 1 ≤ k ≤ K,

∣∣σ̂2
kn − σ2

k

∣∣ ≤ bk
√

log(δ−1
Tkn

)
2Tkn

≤ bk

√
log(δ−1

fn
)

2fn
(7)

holds on Aδ, where we have used that (log(x(x+ 1)) + `K,δ)/x is monotonically
decreasing when x ≥ 2, `K,δ > 0 and that Tkn ≥ fn ≥ 2. Denote the right-hand
side of (7) by ∆kn(δ).

Now, let us develop a lower bound on λ̂kn in terms of λk. For n ≥ n0,

λ̂kn =
σ̂2
kn∑K

j=1 σ̂
2
jn

≥ σ2
k −∆kn(δ)

Σ2 +
∑K
j=1 ∆jn(δ)

=
σ2
k

Σ2

(
1 +

∑K
j=1 ∆jn(δ)

Σ2

)−1

− ∆kn(δ)

Σ2 +
∑K
j=1 ∆jn(δ)

≥ λk

(
1−

∑K
j=1 ∆jn(δ)

Σ2

)
− ∆kn(δ)

Σ2
,

where we used 1/(1 + x) ≥ 1− x that holds for x > −1.
An upper bound can be obtained analogously: For n ≥ n0, if

Σ2 ≥ 2
K∑
j=1

∆jn(δ) (8)

then

λ̂kn =
σ̂2
kn∑K

j=1 σ̂
2
jn

≤ σ2
k + ∆kn(δ)

Σ2 −
∑K
j=1 ∆jn(δ)

=
σ2
k

Σ2

(
1−

∑K
j=1 ∆jn(δ)

Σ2

)−1

+
∆kn(δ)

Σ2 −
∑K
j=1 ∆jn(δ)

≤ λk

(
1 + 2

∑K
j=1 ∆jn(δ)

Σ2

)
+ 2

∆kn(δ)
Σ2

,

where we used 1/(1− x) = 1 + x/(1− x) ≤ 1 + 2x that holds for 0 ≤ x ≤ 1/2.
This constraint follows from (8), that is implied if n is big enough so that

σ2
j ≥ 2∆jn(δ), 1 ≤ j ≤ K. (9)

9

The upper and lower bounds above, together with (7), give

|λ̂kn − λk| ≤
2

Σ2

λk K∑
j=1

∆jn(δ) + ∆kn(δ)

≤
√

2
Σ2

λk K∑
j=1

bj + bk

√ log(δ−1
fn

)
fn

proving (4).
At last, to satisfy (9), by (7), it suffices if σ4

j fn ≥ 2b2j log(δ−1
fn

), 1 ≤ j ≤ K.
Note that if σj = 0 then Rj = Sj = 0, and so bj = 0 and both sides above are
0. Otherwise we need

fn ≥
2b2j
σ4
j

log(δ−1
fn

) =
a′j

2

2
log(δ−1

fn
)

that is guaranteed by (2) and (3) provided that n ≥ n0. ut

4.2. Bounds on the actual allocation ratios
Now we show how a rate of convergence result for λ̂kn can be turned into

bounds on the difference between the actual allocation ratios Tkn/n and λk.
Note that this lemma holds pointwise, i.e., for any element ω of the probability
space Ω underlying the random variables considered. For brevity, we write below
λ̂kn instead of λ̂kn(ω), Tkn instead of Tkn(ω), etc.

Let
λmin = min

1≤j≤K
λj and ρ = 1 +

2
λmin

.

In what follows, unless otherwise stated, we will assume that λmin > 0. For
K = 1 the results are obvious, so without the loss of generality we can also
assume that K ≥ 2, in which case λmin ≤ 1/K ≤ 1/2 and 5 ≤ ρ ≤ 2.5/λmin.

Lemma 4. Fix n0 > 0. Assume that gn is such that for n ≥ n0, ngn is
monotone increasing in n, 5ngn ≥ d

√
ne, and

gn ≤ λmin/2, (10)

|λ̂kn − λk| ≤ gn, 1 ≤ k ≤ K (11)

hold. Then the following inequalities hold for n ≥ 1 and 1 ≤ k ≤ K:

−(K − 1) max
(
n0

n
,

1
n

+ ρgn

)
≤ Tkn

n
− λk ≤ max

(
n0

n
,

1
n

+ ρgn

)
.

Proof. By definition Tk,n+1 = Tkn + I{ In+1=k }. Let Ekn = Tkn − nλk with
Ek0 = 0. Note that Ekn ≤ n(1− λk) and

K∑
k=1

Ekn = 0 (12)

10

hold for any n ≥ 0. Notice that the desired result can be stated as bounds on
Ekn. Hence, our goal now is to study Ekn. If bjn is an upper bound for Ejn
(1 ≤ j ≤ K) then from (12) we get the lower bound Ekn = −

∑
j 6=k Ejn ≥

−
∑
j 6=k bjn ≥ −(K − 1) maxj bjn. Hence, we target upper bounds on {Ekn}k.

Assume now that n ≥ n0. Note that (10) and (11) imply λk − λ̂kn ≤
|λ̂kn − λk| ≤ λk/2, and thus λ̂kn ≥ λk/2 > 0 for each k.

From the definition of Ekn and Tkn we get

Ek,n+1 = Ekn − λk + I{ In+1=k }.

By the definition of the algorithm

I{ In+1=k } ≤ I
Tkn≤d

√
ne or k=argmin1≤j≤K

Tjn

λ̂jn

ff,
Assume now that k is an index where {Tjn

λ̂jn
}j takes its minimum, that is,

Tkn

λ̂kn
≤ min

j

Tjn

λ̂jn
.

Using Tjn = Ejn + nλj and reordering the terms gives

Ekn + nλk ≤ λ̂kn min
j

Ejn + nλj

λ̂jn
≤ λ̂kn

(
min
j

Ejn

λ̂jn
+ nmax

j

λj

λ̂jn

)
.

By (12), there exists an index j such that Ejn ≤ 0. Since λ̂jn > 0 for any j, it
holds that minj

Ejn

λ̂jn
≤ 0. Hence,

Ekn + nλk ≤ nλ̂kn max
j

λj

λ̂jn
. (13)

Using (11) and (10), we get

λj

λ̂jn
≤ λj
λj − gn

=
1

1− gn/λj
.

This is upper bounded by

1 +
2gn
λj

using 1/(1 − x) ≤ 1 + 2x for 0 ≤ x ≤ 1/2, where the latest constraint follows
from (10). Using (13), λ̂kn ≤ 1,and (11) again,

Ekn ≤ nλ̂kn max
j

λj

λ̂jn
− nλk

≤ n(λ̂kn − λk) +
2ngn
λmin

≤
(

1 +
2

λmin

)
ngn = ρngn.

11

Denote the right-hand side by Fn. Hence,

I{ In+1=k } ≤ I{Tkn≤d√ne or Ekn≤Fn }.

We show that Tkn ≤ d
√
ne implies Ekn ≤ Fn. By the definition of Ekn, from

Tkn ≤ d
√
ne it follows that Ekn = Tkn−nλk ≤ d

√
ne ≤ 5ngn. The bound ρ ≥ 5

implies 5ngn ≤ Fn. Hence, Ekn ≤ Fn follows. Therefore

I{ In+1=k } ≤ I{Ekn≤Fn }.

Now we need the following technical lemma:

Lemma 5. Let 0 ≤ λ ≤ 1. Consider the sequences En, Ẽn, In, Ĩn (n ≥ 1) where
In, Ĩn ∈ 0, 1, En+1 = En + In − λ, Ẽn+1 = Ẽn + Ĩn − λ, Ẽ1 = E1 and assume
that In ≤ Ĩn holds whenever En = Ẽn. Then En ≤ Ẽn holds for n ≥ 1.

Proof. Consider the difference sequence Pn = Ẽn − En. The goal is to show
that Pn ≥ 0 holds for any n. It holds that P1 = 0. Since

Pn+1 − Pn = (Ẽn+1 − Ẽn)− (En+1 − En) = Ĩn − In ∈ {−1, 0,+1 } ,

Pn is always an integer. Hence, it suffices to show that Pn+1 ≥ 0 if Pn = 0.
However, this holds because if Pn = 0 then In ≤ Ĩn. ut

Now, returning to the proof of Lemma 4, define {Ẽkn}n≥n0 by

Ẽk,n0 = Ek,n0 ,

Ẽk,n+1 = Ẽkn − λk + I{ Ẽkn≤Fn }, n ≥ n0.

The conditions of Lemma 5 are clearly satisfied from index n0. Consequently
Ekn ≤ Ẽkn holds for any n ≥ n0. Further, since Fn is monotone increasing in
n,

Ẽkn ≤ max(Ek,n0 , 1 + Fn) ≤ max(n0(1− λk), 1 + Fn), n ≥ n0,

and so Ekn ≤ max(n0(1 − λk), 1 + Fn) ≤ max(n0, 1 + Fn) for n ≥ 0, finishing
the upper-bound. ut

Corollary 1. Fix 0 < δ ≤ 1, c ≥ 1/5, and n0 ≥ 1. Assume that fn > 0 is such
that for n ≥ n0, fn is monotone increasing, but fn/n2 is monotone decreasing,
1 ≤ fn ≤ n,

fn ≥
4c2

λ2
min

(2 log fn + 1 + `K,δ), and (14)

|λ̂kn − λk| ≤ c

√
log(δ−1

fn
)

fn
, 1 ≤ k ≤ K (15)

12

hold. Let Fn(δ) = ρngn(δ), where

gn(δ) = c

√
log(δ−1

fn
)

fn
.

Then the following inequalities hold for n ≥ 0 and 1 ≤ k ≤ K:

−(K − 1) max(n0, 1 + Fn(δ)) ≤ Tkn − nλk ≤ max(n0, 1 + Fn(δ)).

Further, these inequalities remain valid if δfn is replaced by δn in Fn(δ).

Remark 3. If fn = βnp (p,n > 0) then (14) can be written as

log n ≤ βλ2
min

8pc2
np − 1 + `K,δ + 2 log β

2p
. (16)

Proof. Assume that n ≥ n0. Then ngn(δ) is monotone increasing, (2) and
(14) imply (10), and (15) implies (11). The bounds on fn, K, and δ imply

5ngn(δ) = 5nc

√
log(4Kfn(fn + 1)/δ)

fn
≥ 5c

√
n log(8fn0(fn0 + 1)),

that is at least
√
n log(16) >

√
2n ≥ d

√
ne by the bounds on c and fn0 . Thus

Lemma 4 gives the result. The last statement follows obviously from δ−1
fn
≤ δ−1

n

(since fn ≤ n). ut

Using the previous results we are now in the position to prove a linear lower
bound on Tkn:

Lemma 6. Let 0 < δ ≤ 1 arbitrary. Then there exists an integer N1 such that
for any n ≥ N1, 1 ≤ k ≤ K,

Tkn ≥ nλk/2

holds on Aδ. In particular,

N1 = max

(
2(K − 1)
λmin

n′0, D
4
2

[
logD4

2 +
1
2
(
`K,δ + 1 + 7 · 10−9

)]2)
, (17)

where D2 = 4c(2K − 1)/λ2
min, c is defined by (6), and

n′0 = max(K(K + 1), n1, n2),

n1 =
(
λminn

′
1

2

)2

, n2 =
(
λminn

′
2

2

)2

,

n′1 = max
1≤k≤K

2a′k
2

λmin
[4 log a′k + 1 + `K,δ] , n′2 =

(4c)2

λ3
min

[
4 log

√
8c

λmin
+ 1 + `K,δ

]
.

13

For the proof we need the following technical lemma that gives a bound on
the point when for a > 0 the function at1/2 + b overtakes log t.

Lemma 7. Let a > 0. For any t ≥ (2/a)2
[
log((2/a)2)− b

]2, at1/2 + b > log t.

The proof of this lemma can be found in Appendix B (Proposition 6).

Proof (Lemma 6). Due to the forced selection of the options built into the
algorithm, Tkn ≥

√
n holds for n ≥ K(K + 1). The proof of this statement

is somewhat technical and is moved into the Appendix A (Lemma 11). By
Lemma 7, for

n ≥ max
1≤k≤K

a′k
4 [4 log a′k + 1 + `K,δ]

2 = n1,

(5) holds with p = 1/2, β = 1 for each k. Hence, we can apply Lemma 3 and
Remark 1 following it with n0 = max(K(K + 1), n1) and fn = n1/2 (≥ 2), and
get that ∣∣∣λ̂kn − λk∣∣∣ ≤ c

√
log(δ−1

n1/2)
n1/2

(18)

on Aδ for n ≥ n0, 1 ≤ k ≤ K, and c ≥
√

8 as defined by (6). By Lemma 7
again, for

n ≥ 4
(

2c
λmin

)4
[

4 log
√

8c
λmin

+ 1 + `K,δ

]2

= n2,

(16) holds with p = 1/2, β = 1. Now, we can apply Corollary 1 and Remark 3
following it on Aδ with n′0 = max(n0, n2) = max(K(K + 1), n1, n2) and fn =
n1/2 (≥ 1), and get that on Aδ for n ≥ 0, 1 ≤ k ≤ K,

Tkn ≥ nλk − (K − 1) max(n′0, 1 +Hn(δ)),

where
Hn(δ) = D1n

3/4
√

log(δ−1
n)

and D1 = cρ. Hence, Tkn ≥ nλk/2 by the time when n ≥ 2n′0(K − 1)/λmin and
n ≥ 2(K−1)(1+Hn(δ))/λmin. These two constrains are satisfied when n ≥ N1,
where N1 is defined as in equation (17); the first one is obvious, the second one
follows from Proposition 7 in Appendix C. ut

With the help of this result we can get better bounds on Tkn, resulting in
our first main result:

Theorem 2. Let 0 < δ ≤ 1 be arbitrary. Then there exists a positive real
number D3 such that for any n ≥ 0, 1 ≤ k ≤ K,

−(K − 1) max(N1, 1 +Gn(δ)) ≤ Tkn − nλk ≤ max(N1, 1 +Gn(δ))

holds on Aδ, where

Gn(δ) = D3

√
n log(δ−1

n).

14

In particular, D3 = cρ
√

2/λmin, c is defined by (6), and N1 is defined in
Lemma 6.

The theorem shows that asymptotically the GAFS-MAX algorithm behaves
the same way as an optimal allocation rule that knows the variances. It also
shows that the deviation of the proportion of choices of any option from the
optimal value decays as Õ(1/

√
n).

For the proof we need the counterpart of Lemma 7 for linear functions. The
proof is in Appendix B (Proposition 4). For a real number a, let a+ denote its
positive part: a+ = max(a, 0).

Lemma 8. Let a > 0. For any t ≥ (2/a)[log(1/a)− b]+, at+ b > log t.

Proof (Theorem 2). The proof is almost identical to that of Lemma 6. The
difference is that now we start with a better lower bound on Tkn. In particular,
by Lemma 6, Tkn ≥ nλk/2 ≥ nλmin/2 holds on Aδ for n ≥ N1. Note that, using
the bounds on K, a′k, c, λmin, and `K,δ, we have that

N1 ≥
2n′0
λmin

≥ λmin

2
max 2(n′1, n

′
2) ≥ max(n′1, n

′
2).

By Lemma 8, for

n ≥ max
1≤k≤K

2a′k
2

λmin
[4 log a′k + 1 + `K,δ] = n′1,

(5) holds with p = 1, β = λmin/2 for each k. Hence, we can apply Lemma 3 and
Remark 1 following it with (n0 =) max(N1, n

′
1) = N1 and fn = nλmin/2 (≥ 2),

and get that ∣∣∣λ̂kn − λk∣∣∣ ≤ c
√

2 log(δ−1
nλmin/2

)

nλmin
(19)

on Aδ for n ≥ N1, 1 ≤ k ≤ K, and c ≥
√

8 as defined by (6). By Lemma 8
again, for

n ≥ (4c)2

λ3
min

[
4 log

√
8c

λmin
+ 1 + `K,δ

]
= n′2,

(16) holds with p = 1, β = λmin/2. Now, we can apply Corollary 1 and Remark 3
following it on Aδ with (n0 =) max(N1, n

′
2) = N1 and fn = nλmin/2 (≥ 1), and

get that on Aδ for n ≥ 0, 1 ≤ k ≤ K,

−(K − 1) max(N1, 1 +Gn(δ)) ≤ Tkn − nλk ≤ max(N1, 1 +Gn(δ)),

where
Gn(δ) = D3

√
n log(δ−1

n)

and D3 = cρ
√

2/λmin. ut

This result yields a bound on the expected value of E [Tkn]:

15

Theorem 3. Let N2 = sup0<δ≤1N1/`
2
K,δ, where N1 is defined in Lemma 6.

Then, N2 < ∞ and there exists an index N3 that depends only on N2, 1/D3,
and logK polynomially, such that for any k and n ≥ N3,

E [Tkn] ≤ nλk +D3

√
n(1 + log(4Kn(n+ 1))) + 2. (20)

Proof. Recalling the definition of N1 and that `K,δ ≥ log 8, we can easily see
that N2 < ∞. Note that N2 does not depend on δ, and N1 ≤ N2`

2
K,δ ≤

N2 log2(δ−1
n) holds for any n and 0 < δ ≤ 1. Fix 0 < δ ≤ 1. If n ≥

N2
1 /(D

2
3 log(δ−1

n)), then 1 + Gn(δ) ≥ N1, thus it follows from Theorem 2 that
for such n,

P
(
Tkn − nλk − 1

D3n1/2
>

√
log(δ−1

n)
)
≤ δ,

where we used P (Aδ) ≥ 1 − δ. Let Z = (Tkn − nλk − 1)/(D3n
1/2) and t =√

log(δ−1
n). The above inequality is equivalent to

P (Z > t) ≤ 4Kn(n+ 1) e−t
2
.

By the constraint that connects n and δ, this inequality holds for any pair (n, t)
that satisfy

n ≥ N2
2 log3(δ−1

n)/D2
3 = N2

2 t
6/D2

3,

that is, for any (n, t) such that

t ≤ (nD2
3/N

2
2)1/6.

Also, since Z ≤ n1/2/D3 is always true, P (Z > t) = 0 holds for t ≥ n1/2/D3.
We need the following technical lemma, a variant of which can be found, e.g.,
as Exercise 12.1 in [7]:

Lemma 9. Let C > 1, c > 0, 0 < a ≤ b. Assume that the random variable
Z satisfies P (Z > t) ≤ C exp(−ct2) for any t ≤ a and P (Z > t) = 0 for any
t ≥ b. Then

E [Z] ≤
√

(1 + logC)/c+ Cb2e−ca2 . (21)

Proof. By the monotonicity of P (Z > t) ≤ 1, for any u > 0,

E
[
Z2
]

=
∫ ∞

0

P
(
Z2 > t

)
dt =

∫ u

0

+
∫ a2

u

+
∫ b2

a2
+
∫ ∞
b2

≤ u+

(∫ a2

u

Ce−ct dt

)+

+
∫ b2

a2
P (Z > a) dt+ 0

≤ u+
C

c

(
e−cu − e−ca

2
)+

+ (b2 − a2)Ce−ca
2
.

This gives

E
[
Z2
]
≤ logC + (1− Ce−ca2

)+

c
+ (b2 − a2)Ce−ca

2
≤ 1 + logC

c
+ Cb2e−ca

2

16

with the choice u = (logC)/c. Now,

E [Z] ≤
√

E [Z2] ≤
√

1 + logC
c

+ Cb2e−ca2 . ut

Applying Lemma 9 with a = (nD2
3/N

2
2)1/6, b = n1/2/D3, C = 4Kn(n+ 1),

and c = 1,

E [Z] ≤
√

1 + log(4Kn(n+ 1)) + 4Kn2(n+ 1)e−(nD2
3/N

2
2)1/3/D2

3.

Thus

E [Tkn] ≤ 1 + nλk

+
√
D2

3n(1 + log(4Kn(n+ 1))) + 4Kn3(n+ 1)e−(nD2
3/N

2
2)1/3 .

Equation (20) then follows by straightforward algebra. ut

4.3. Bounding the loss: proof of Theorem 1
In order to develop a bound on the loss Lkn we need Wald’s (second) identity:

Lemma 10 (Wald’s Identity, Theorem 13.2.14 of [2]). Let {Ft} be a fil-
tration and let Yt be an Ft-adapted sequence of i.i.d. random variables. As-
sume that Ft and σ({Ys : s ≥ t+ 1 }) are independent and T is a stopping
time w.r.t. Ft with a finite expected value: E [T] < +∞. Consider the partial
sums Sn = Y1 + . . .+ Yn, n ≥ 1. If E

[
Y 2

1

]
< +∞ then

E
[
(ST − TE [Y1])2

]
= Var [Y1] E [T] . (22)

Now, we can prove Theorem 1.

Proof (Theorem 1). Let Skn =
∑n
t=1Xkt,

L̂kn =
Sk,Tkn − Tknµk

Tkn
,

G′n(δ) = (K − 1) max(N1, 1 +Gn(δ)) and

G′′n = D3

√
n(1 + log(4Kn(n+ 1))) + 2.

Note that by Theorem 2,

P (Tkn < nλk −G′n(δ)) ≤ δ (23)

holds for any n ≥ 0 and 0 < δ ≤ 1. Then, for any 0 < δ ≤ 1,

Lkn = E
[
L̂2
kn

]
= E

[
L̂2
knI{Tkn≥nλk−G′n(δ) }

]
+ E

[
L̂2
knI{Tkn<nλk−G′n(δ) }

]
≤

E
[
(Sk,Tkn − Tknµk)2

]
(nλk −G′n(δ))2

+R2
k P (Tkn < nλk −G′n(δ)) .

17

Using Lemma 10 and then (20) of Theorem 3 for the first term, for n ≥ N3,

E
[
(Sk,Tkn − Tknµk)2

]
= σ2

kE [Tkn] ≤ σ2
k(nλk +G′′n),

and thus

E
[
(Sk,Tkn − Tknµk)2

]
(nλk −G′n(δ))2

≤ σ2
k(nλk +G′′n)

(nλk −G′n(δ))2

=
σ2
k

nλk

1
(1−G′n(δ)/(nλk))2

+
σ2
kG
′′
n

(nλk −G′n(δ))2
,

while, by (23), the second term is bounded above by R2
kδ.

Now choose δ = n−3/2. Then, recalling the definition of G′n(δ), Gn(δ), δn,
`K,δ, and that N1 ≤ N2`

2
K,δ, we have G′n(n−3/2) = O(

√
n log n), thus for n

sufficiently large, G′n(n−3/2)/(nλk) ≤ 1/2. Therefore, for such large n, using
1/(1− x) ≤ 1 + 2x for 0 ≤ x ≤ 1/2, we get,

Lkn ≤ σ2
k

nλk

(
1 + 2

G′n(n−3/2)
nλk

)2

+
σ2
kG
′′
n

(nλk −G′n(n−3/2))2
+R2

kn
−3/2,

which gives

Lkn ≤
σ2
k

nλk
+ Õ(n−3/2) =

Σ2

n
+ Õ(n−3/2) = L∗n + Õ(n−3/2).

Taking the maximum with respect to k yields the desired result. ut

Let us now comment on the case when for some options λk = 0. Such options
are chosen in the optimal allocation exactly once. Algorithm GAFS-MAX will
select such options

√
n-times in n-steps since the estimated variance will be zero.

Hence, we will have Tkn ≤ T ∗kn + O(
√
n). Clearly, the loss for such an option

will be zero. Further, since options with σ2
k = 0 are pulled only O(

√
n)-times,

they can not significantly influence the number of times the other options are
chosen. Hence, the results go through if we replace mink λk with mink:λk 6=0 λk.

5. Illustration

The purpose of this section is to illustrate the theory by means of some
computer experiments. One particular goal of the experiments was to verify the
excess loss rate obtained in the previous section. Another goal was to compare
the adaptive strategy with a non-adaptive strategy.

5.1. Experimental Setup
Here we illustrate the behavior of the algorithm in a simple problem with

K = 2, when the random responses are modeled as Bernoulli random variables
for each of the options. In order to estimate the expected squared loss between
the true mean and the estimated mean we repeat the experiment 100,000 times,

18

then take the average. The error bars shown on the graphs show the standard
deviations of these averages. The algorithms compared are GAFS-MAX (the al-
gorithm studied here), GFSP-MAX (the algorithm described in the introduction
that works in phases), and “UNIF”, the uniform allocation rule.

The exploration parameter α of GAFS-MAX was set to 1. We have run
experiments to test the sensitivity of GAFS-MAX to the choice of the value
of α. The experiments showed that GAFS-MAX is largely insensitive to this
choice unless a too small value is selected for α in which case if the algorithm
underestimates the variance of some of the options then it will take a large
amount of time for it to recover. In the limit, when α = 0 (no forcing), as
discussed before, the allocation ratios of the algorithm may fail to converge to
the optimal ratios. For example, if initially the variance estimate for one of
the options is zero (which happens with positive probability when the responses
have Bernoulli distributions), that option will never be selected any more, in
which case the loss Ln will fail to converge to zero, i.e., such an algorithm will
suffer Ω(1) excess loss. Hence, for simplicity we sticked to α = 1 which was
proved to be an acceptable value for the problems tested (for details, see [10]).

The algorithm UNIF works in a round-robin fashion (i.e., tests the options
systematically). In the case of GFSP-MAX, after the initialization phase where
each option is observed twice, the phase length of the kth phase is set to K + k.
This ensures that at the end of the kth phase, every options is explored at least k
times, while the total number of observations is 2K+Kk+(1+2+. . .+k) ≈ k2/2.
Thus, by time t each option is explored at least approximately

√
2t times, which

makes the comparison with GAFS-MAX running with α = 1 fair, given our
experience that normally the difference between the performance of GAFS-MAX
running with α =

√
2 and α = 1 is small.

5.2. Results
In order for an adaptive algorithm to have any advantage the two options

have to have different variances. For this purpose we chose p1 = 0.8, p2 = 0.9
so that λ1 = 0.64 and λ2 = 0.36.

Figure 1 shows the rescaled excess loss, n3/2(Ln − L∗n), for the three algo-
rithms. We see that the rescaled excess losses of the adaptive algorithms stay
bounded, while the rescaled loss of the uniform sampling strategy grows as

√
n.

It is remarkable that the limit of the rescaled loss seems to be a small number,
showing the efficiency of the algorithm.3 Incidentally, in this case the incre-
mental method (GAFS-MAX) performs better than the algorithm that works
in phases (GFSP-MAX), although their performance is quite similar and this
does not need to hold generally.

Note that this example shows that the uniform allocation initially performs
better than the adaptive rules. This is because the adaptive algorithms need to

3As far as we could measure it, the graph flattens out when considering larger sample sizes
(see also Figure 3). However, it might still be the case that the rescaled loss goes to zero at a
rate of (e.g.) 1/ logn.

19

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8 9 10

R
es

ca
le

d
E

xc
es

s
Lo

ss

Number of Samples (x 1000)

Mean1: 0.8, Mean2: 0.9

GAFS-MAX
GFSP-MAX

UNIF

Figure 1: The rescaled excess loss, n3/2(Ln − L∗n), against the number of observations. The
losses were measured when the sample size is an integer multiple of 1000.

get a good estimate of the statistics before they can start exploiting. The cross-
over point happens at ca. 1,700 for GAFS-MAX, while it happens just after
2,000 observations for GFSP-MAX. By selecting a larger exploration parameter
α the cross-over point could be moved to the left.

From the point of view of an adaptive algorithm the most difficult case is
when all variances are small (cf. Lemma 3), but (λk) is significantly different
from the uniform distribution. This is explored further in Figure 2, which plots
the cross-over point for a series of single-parameter problems. The parameter,
κ, determines the means: p1(κ) = κ, p2(κ) = κ/2. This makes the allocation
proportions non-uniform, but roughly constant (for small κ these proportions
are 4/5 and 1/5, respectively for the first and the second option). This way we
can measure the influence of the variance on the difficulty of competing with
the uniform allocation. The figure also shows the curve a/κ2 for an appropriate
positive constant a. Based on the graph, we may conclude that the difficulty
of catching up with the uniform allocation rule increases roughly proportionally
to σ−2

max = max(σ1, . . . , σK)−2. This is very well expected: Indeed, as both vari-
ances become small, it becomes increasingly harder to figure out their relative
sizes. Note, however, that as the variances become smaller the overall precision
improves for the same sample size (independently of what algorithm is used).

Figure 3 shows the rescaled allocation ratio deviations,
√
n|Tkn/n− λk|, for

k = 1. If we disregard logarithmic terms, our theory predicts that these rescaled
deviations should stay bounded for the adaptive algorithms. The figure indeed
supports this. The behavior of the curve for the uniform sampling method is
markedly different: due to the mismatch of the allocation ratios, this curve grows
as
√
n. Note that the variance of the algorithm that uses phases is much larger

than the variance of the incremental algorithm. This is because the incremental
algorithm is faster to update its statistics.

In conclusions, the experiments show that our method indeed performs bet-
ter than a non-adaptive solution. In fact, depending on the problem parameters

20

 500

 1000

 2000

 4000

 8000

 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
at

ch
-u

p
tim

e

kappa

GAFS-MAX
a/kappa2

Figure 2: The number of observations required to perform better than uniform sampling for a
range of problems parameterized with a single parameter 0 < κ < 1. The solid line shows the
data measured for GAFS-MAX, while the dashed curve shows a/κ2 for an appropriate value
of a. Note the log-log scale. For more information see the text.

the performance difference between the adaptive and non-adaptive algorithms
can be large. Further, our experiments verified that the allocation strategy
found by our algorithm converges to the optimal allocation strategy at the rate
predicted by the theory (apart from logarithmic factors).

-2

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4 5 6 7 8 9 10

R
es

ca
le

d
A

llo
ca

tio
n

de
vi

at
io

n
fo

r
k=

1

Number of Samples (x 1000)

Mean1: 0.8, Mean2: 0.9

GAFS-MAX
GFSP-MAX

UNIF

Figure 3: The rescaled allocation deviations,
√
n|Tkn/n − λk|, for k = 1 against the number

of observations.

6. Related Work

As mentioned earlier, this work is closely related to active learning in a
regression setting (e.g., [4]) and to optimal experimental design (OED) [9]. The
connection is that the model studied here can be viewed as a linear regression

21

problem over the finite domain X = {e1, . . . , eK}, where ei is the ith unit vector
of the K-dimensional Euclidean space: ei ∈ RK , ei = (0, . . . , 1, . . . , 0), i.e., all
components of ei are zero except its ith component whose value is one. Indeed,
with this definition of X , the response to the choice of option k can be written
as the linear regression model Y = θT ek + W (ek), where θ is the unknown
parameter and W (ek) is a zero mean random variable.

Interestingly, in the rather extensive active learning and OED literature,
to the best of our knowledge, no one looked into the problem of learning in a
situation where the noise in the dependent variable varies in space, i.e., when
the noise is heteroscedastic. Although the rate of convergence of an adaptive
method that pays attention to heteroscedasticity will not be better than that
of the one that does not, an adaptive algorithm’s finite-time performance may
be significantly better than that of underlying a non-adaptive algorithm. This
has been demonstrated convincingly in a forthcoming related paper where Etore
and Jourdain studied the utility of adapting the sampling proportions in strat-
ified sampling [8].4 Interestingly, this application is very closely related to the
problem studied here. The only difference is that the loss is measured by taking
the weighted sum of the losses of the individual prediction errors with some fix
set of weights that sum to one. With obvious changes, the algorithm presented
here can be modified to work in this setting and the analysis carries through
with almost no changes (for details, see [10]). The algorithm studied in [8] is
the phase-based algorithm. The results are weak consistency results, i.e., no
bounds are given on the excess loss. In fact, the only condition the authors pose
on the proportion of forced selections is that this proportion should go to zero
such that the total number of forced selections for any option goes to infinity.

7. Conclusions and Future Work

When finite-sample performance is important, one may exploit heteroscedas-
ticity to allocate more observations to parts of the input space where the variance
is larger. In this paper we designed an algorithm for such a situation and showed
that the excess loss of this algorithm compared with that of an optimal rule, that
knows the variances, decays as Õ(n−3/2). It remains an open question if this is
the optimal rate for the class of problems studied here. Although currently we do
not have a proof, the following heuristic argument provides some support for this
conjecture: Take any algorithm A and let λ′kn be the allocation ratios achieved
when running A. The loss of A is roughly Ln(A) ≈ maxk(σ2

k/λ
′
kn)/n, while the

optimal loss is L∗n = maxk(σ2
k/λk)/n. Let εkn = λ′kn − λk. Assuming that the

maximum above is taken at the same k = k∗ in both losses (which is reasonable
if εkn → 0 as n → ∞), En(A) = Ln(A) − L∗n ≈ σ2

k∗ |εk∗n|/(λk∗(λk∗ + εk∗n)n).

4 In fact, we have learned about this paper just at the time when we submitted the first
version of this paper. An earlier paper studying the same problem and achieving somewhat
weaker results is due to Peierls and Yahav [14].

22

Since one expects that independently of the algorithm chosen εk∗n = Ω(1/
√
n)

(i.e., all λ′kn converge at the parametric rate), we get En(A) = Ω(n−3/2).
Our analysis can probably be improved, e.g. in terms of the dependence of

our constants in our bounds on λ−1
min. However, we think that the proof technique

developed here might be useful to analyze similar algorithms in related contexts,
such as active learning with heteroscedastic noise in related parametric and non-
parametric models. We are currently investigating such models.

An interesting question is whether the algorithm and the results can be
extended to other losses. An important class of losses can be expressed in terms
of the expectation of a convex function. In this case, the natural algorithm is
to minimize the empirical estimate of the loss based on the sample average (in
fact, our algorithm is a special case of this general scheme). We believe that if
the convex function is strictly convex in a small neighborhood of zero then a
second order approximation to it can be used to prove results entirely similar
to the ones obtained here. The analysis of the case when strict convexity does
not hold looks more challenging and will probably require ideas that go beyond
those presented in this paper.

Acknowledgements

This research was funded in part by the National Science and Engineering Research Coun-

cil (NSERC) of Canada, iCore, the Alberta Ingenuity Fund, the Mobile Innovation Center of

Hungary, the Hungarian Scientific Research Fund and the Hungarian National Office for Re-

search and Technology (OTKA-NKTH CNK 77782), the PASCAL2 Network of Excellence

(EC grant no. 216886), and by the Hungarian Academy of Sciences (Bolyai Fellowship for

András Antos).

A. Forced selection lemma

Lemma 11. For 1 ≤ k ≤ K, n ≥ K(K + 1)

Tkn ≥
√
n (24)

holds.

Proof. For a positive integer l, let Cl =
{

(l − 1)2 + 1, (l − 1)2 + 2, . . . , l2
}

, a
partition of { 1, 2, . . . }. Observe that if (24) holds for some n = n′ ∈ Cl, then it
holds also for any n = n′′ ∈ Cl, n′′ > n′, since Tk,n′′ ≥ Tk,n′ ≥

√
n′ > l−1 which

implies Tk,n′′ ≥ l ≥
√
n′′. Thus, it is enough to prove (24) for n = K(K + 1)

and then for n = l2 + 1, l = K + 1,K + 2,
By a careful analysis of the algorithm, we see that only forced selection steps

happen till n = K(K + 2) in a uniform manner, during which each option is
selected K + 2 times. This implies that Tk,K(K+1) = K + 1 >

√
K(K + 1)

and that Tk,(K+1)2+1 ≥ Tk,K(K+2) = K + 2 >
√

(K + 1)2 + 1, i.e., (24) holds
for n = K(K + 1) and (K + 1)2 + 1, for all k. Now we use induction for l.
Assume that (24) holds for all k, for some n = (l − 1)2 + 1 (l ≥ K + 2), i.e.,

23

Tk,(l−1)2+1 ≥
√

(l − 1)2 + 1 > l − 1 implying Tk,(l−1)2+1 ≥ l. Now at times
(l − 1)2 + 2, . . . , l2 + 1 (which total up to |Cl| = 2l − 1(≥ 2K − 3) steps), one
of those arms for which Tk,(l−1)2+1 = l holds is forced to be selected exactly
once. Hence each such arm is selected at least once in this phase, assuring
Tk,l2+1 ≥ l + 1 >

√
l2 + 1 for all k, i.e., (24) holds for n = l2 + 1. ut

B. Some elementary comparison lemmata

The purpose of this section is to provide upper bounds on the solutions of
equations of the form

log(t) = atp + b, (25)

where a, p, t > 0.
Let

`(t) = log t,
q(t) = atp + b, and
t0 = (pa)−1/p.

Here t0 is the point where ` and q have the same growth rate, i.e., where
`′(t0) = q′(t0). Note that q′(t)/l′(t) = aptp is strictly monotone increasing in t,
hence for t > t0, q′(t) > `′(t). Hence, if q(t0) > `(t0) then (25) has no solutions
on [t0,∞). Now observe that it also holds that q′(t) < `′(t) when t < t0. Hence,
if q(t0) > `(t0) then (25) has no solutions on (0, t0] since ` decreases faster than
q as we move from t0 towards zero. Now, consider the case when q(t0) ≤ `(t0).
Since for t > t0, q′(t) > `′(t) and q(t)/`(t) t→∞→ ∞, (25) will have exactly one
solution in [t0,∞).

These findings are summarized in the next proposition:

Proposition 1. Consider t0 = (pa)−1/p, q(t) = atp + b, and `(t) = log t, where
a, p, t > 0. Then q(t0) ≤ `(t0) is a sufficient and necessary condition for the
existence of a solution to q(t) = `(t). Further, when q(t0) ≤ `(t0) then there is
exactly one solution on [t0,∞).

Remark 4. Note that q(t0) ≤ `(t0) is equivalent to 1 + bp ≤ − log(pa), which
is thus a sufficient and necessary condition for the existence of a solution to
q(t) = `(t).

In the sequel we will derive upper bounds on the solutions of (25) by picking
some t∗ such that q(t∗) ≥ `(t∗) and q′(t∗) ≥ `′(t∗). In doing so we will first
consider the homogeneous version of (25),

log u = a′up. (26)

The following proposition gives the link between the solutions of the homoge-
neous and inhomogeneous equations.

24

Proposition 2. Any solution of (25) can be obtained by solving (26) with a′ =
aepb and then using t = ebu and vice versa. Further, if u∗ is an upper bound on
the solutions of (26) then t∗ = ebu∗ is an upper bound on the solutions of (25).

Now, let us consider the linear case, i.e., when p = 1.

Proposition 3. Let q(t) = at, `(t) = log t, where a > 0. Let t∗ = (2/a) log(1/a).
Then for any positive t such that t ≥ t∗, q(t) > `(t) holds.

Proof. We may assume that log(1/a) ≥ 1, otherwise by Remark 4, q(t) = `(t)
does not have a solution and the statement follows trivially. It suffices to show
that `(t∗) < q(t∗) and `′(t) < q′(t) holds for t ≥ t∗. The second inequality
follows from log(1/a) ≥ 1 and the monotonicity of q′(t)/l′(t), while the first
follows from the inequality log(z2) < z (z > 0). ut

Proposition 4. Let q(t) = at + b, `(t) = log t, where a > 0. Let t∗ =
(2/a)[log(1/a)− b]. Then for any positive t such that t ≥ t∗, q(t) > `(t) holds.

Proof. The statement follows immediately from Propositions 2 and 3. ut

Now, let us turn to the case when p = 1/2.

Proposition 5. Let q(t) = at1/2, `(t) = log t, where a > 0. Let t∗ =
(2/a)2 log2((2/a)2). Then for any positive t such that t ≥ t∗, q(t) > `(t) holds.

Proof. We may assume that log(2/a) ≥ 1, otherwise by Remark 4, q(t) = `(t)
does not have a solution and the statement follows trivially. It suffices to show
that `(t∗) < q(t∗) and `′(t) < q′(t) holds for t ≥ t∗. The second inequality
follows from log(2/a) ≥ 1 and the monotonicity of q′(t)/l′(t), while the first
follows from the inequality log(z2) < z (z > 0). ut

Proposition 6. Let q(t) = at1/2 + b, `(t) = log t, where a > 0. Let t∗ =
(2/a)2

[
log((2/a)2)− b

]2. Then for any positive t such that t ≥ t∗, q(t) > `(t)
holds.

Proof. The statement follows immediately from Propositions 2 and 5. ut

C. Technical calculation for Lemma 6

Proposition 7. n ≥ N1 implies n ≥ 2(K − 1)(1 +Hn(δ))/λmin.

Proof. Recalling that Hn(δ) = D1n
3/4
√

log(δ−1
n), D1 = cρ, ρ = (1 + 2/λmin),

we would like to have

n ≥ 2(K − 1)
(

1 +D1n
3/4
√

log(δ−1
n)
)
/λmin,

25

or equivalently, if both n ≥ 2(K − 1)/λmin and(
λminn

1/4

2D1(K − 1)
− 1
D1n3/4

)2

≥ log(δ−1
n). (27)

The first inequality follows immediately from n ≥ N1. Introducing D′2 =
4D1(K − 1)/λmin = 4cρ(K − 1)/λmin, we have

D′2 = 4c(2K − 2 +Kλmin − λmin)/λ2
min ≤ 4c(2K − 1)/λ2

min = D2.

Using (2), (27) follows from

4
√
n

D′22
+

1
D2

1n
3/2
− 4
D1D′2

√
n

=
(

2n1/4

D′2
− 1
D1n3/4

)2

≥ 2 log n+ 1 + `K,δ,

that follows from

2
√
n

D′22
− 2
D1D′2

√
n
− 1

2
(1 + `K,δ) ≥ log n.

Whenever n ≥ N1 > D4
2[logD4

2 + (`K,δ + 1)/2]2, then

2
D1D′2

√
n
<

2
D1D′2D

2
2[logD4

2 + (`K,δ + 1)/2]
,

which is, after substituting D1, D2, D′2 and using 1/λmin ≥ K ≥ 2, δ ≤ 1,
c ≥
√

8, bounded above by

1
450(128)2[8 log 6 + 13 log 8 + 1]

< 10−8/3.

Thus, it is enough to have

2
√
n

D′22
− 1

2
(1 + 7 · 10−9 + `K,δ) ≥ log n.

This is implied by Lemma 7 and n ≥ D′
4
2[log(D′42) + (`K,δ + 1 + 7 · 10−9)/2]2,

which follows from n ≥ N1 and D2 ≥ D′2. ut

References

[1] A. Antos, V. Grover, and Cs. Szepesvári. Active learning in multi-armed bandits.
In Proc. of the 19th International Conference on Algorithmic Learning Theory,
volume LNCS/LNAI 5254, pages 287–302. Springer-Verlag, 2008.

[2] K.B. Athreya and S.N. Lahiri. Measure Theory and Probability Theory. Springer,
2006.

[3] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

26

[4] R. Castro, R. Willett, and R.D. Nowak. Faster rates in regression via active
learning. In Advances in Neural Information Processing Systems 18 (NIPS-05),
pages 179–186. MIT Press, 2006.

[5] P. Chaudhuri and P. Mykland. On efficient designing of nonlinear experiments.
Statistica Sinica, 5:421–440, 1995.

[6] D. Cohn, Z. Ghahramani, and M. Jordan. Active learning with statistical models.
Journal of Artificial Intelligence Research, 4:129–145, 1996.

[7] L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recogni-
tion. Applications of Mathematics: Stochastic Modelling and Applied Probability.
Springer-Verlag New York, 1996.

[8] P. Etore and B. Jourdain. Adaptive optimal allocation in stratified sam-
pling methods. Methodology and Computing in Applied Probability, 2008.
http://www.citebase.org/abstract?id=oai:arXiv.org:0711.4514.

[9] V. V. Fedorov. Theory of Optimal Experiments. Academic Press, 1972.

[10] V. Grover. Active learning and its application to heteroscedastic problems. Mas-
ter’s thesis, Department of Computing Science, University of Alberta, 2009.

[11] W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58:13–30, 1963.

[12] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6:4–22, 1985.

[13] T.L. Lai and S. Yakowitz. Machine learning and nonparametric bandit theory.
IEEE Transactions on Automatic Control, 40:1199–1209, 1995.

[14] R.F. Peierls and J.A. Yahav. Adaptive allocation for importance sampling. In
J. van Ryzin, editor, Adaptive Statistical Procedures and Related Topics, volume 8,
pages 204–218. Institute of Mathematical Statistics, 1986.

27

	Introduction
	The Algorithm
	Main Results
	Proof
	Preliminaries and notation
	Bounds on the actual allocation ratios
	Bounding the loss: proof of Theorem 1

	Illustration
	Experimental Setup
	Results

	Related Work
	Conclusions and Future Work
	Forced selection lemma
	Some elementary comparison lemmata
	Technical calculation for Lemma 6

